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VaR/ES
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Risk measures

A risk measure p assigns a real number to each risk (via a model)
> regulatory capital calculation
> insurance pricing
» decision making, optimization, and portfolio selection

» performance analysis and capital allocation
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VaR and ES

VaRg .95
ESo.95

Value-at-Risk (VaR), p € (0,1)
VaR, : L — R,

Expected Shortfall (ES), p € (0,1)
ES,: ! SR,
VaR,(X) = F*(p)

1 1
ES X:—/VaR X)d
=inf{x e R:P(X < x) > p}. #(X) 1-pJp o(X)dq

(left-quantile) (also: TVaR/CVaR/AVaR/CTE)
V.
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VaR and ES

If X is continuously distributed, then

VaR,(X) = x, where P(X > x,) =P(X > x,) =1 —p;
ESp(X) = E[X|X > xp] = E[X|X > x,].

Empirical estimators
» Let n, = [n(1 — p)|
> \7&?%,,: empirical p-quantile (the n,-th largest order statistic)

» ES,: average of the largest n, observations
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VaR and ES

The ongoing co-existence of VaR and ES:
» Basel lll/IV - ES for market risk, VaR for backtest and OpRisk
» Solvency Il - VaR
» Swiss Solvency Test - ES
» US Solvency (NAIC ORSA) - different system
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VaR/ES
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General question

What is a “good” risk measure? VaR, ES, or another?

» Regulator’s and firm manager's perspectives can be different
or even conflicting

® well-being of the society versus interest of the shareholders

® stability of a system versus sustainability of a firm

» Many practical questions on these risk measures
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Theoretical properties
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Theoretical properties

Artzner/Delbaen/Eber/Heath’99

A monetary risk measure satisfies two properties

» Monotonicity: p(X) < p(Y)if X <Y

» Translation invariance: p(X + ¢) = p(X) + c for c € R
for all X, Y in the domain X of p

A coherent risk measure satisfies, in addition,
» Subadditivity: p(X + Y) < p(X) + p(Y)
» Positive homogeneity: p(AX) = Ap(X) for A > 0
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Coherence

» VaR is monotone, translation invariant, positively
homogenous, but not subadditive
» ES is coherent
® also a convex risk measure (Folmer/Schied’02)
» For elliptical risk vectors, VaR is subadditive

® The elliptical family includes normal and t distributions
® Excludes financial options, insurance losses, credit risks, ...
® Fundamental theorems of QRM (as per Embrechts'19)

> VaR and ES are law invariant, i.e., p(X) = p(Y) if X £ Y
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Capturing the tail risk

>

Tail event: X > x, = VaR,(X)
VaR is blind about the loss magnitude when X > x,

v

® ‘“ignoring the tail risk”; “only frequency”

v

ES is the expected loss when X > x,

® ‘“capturing the tail risk”; “frequency and severity”

v

The Basel Committee on Banking Supervision (BCBS)
Fundamental Review of the Trading Book (FRTB), Jan 2016
® ESp.o75 replaces VaRg g9 as the standard tool for market risk
® Page 1, Executive Summary:
“Use of ES will help to ensure a more prudent capture of “tail
risk” and capital adequacy ..."
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Comonotonic addititivity

>

Comonotonicity of (X, Y): X and Y are both increasing
functions of a common random variable Z
Comonotonic addititivity: p(X + Y) = p(X) + p(Y) if (X, Y)

is comonotonic

v

® Economic theory: Yaari'87; Schmeidler'89
® Actuarial Science: Wang/Young/Panjer'97; Denneberg'94

® Mathematical Finance: Kusuoka'0l

v

No diversification for comonotonic portfolios

v

Both VaR and ES are comonotonic additive
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Numéraire invariance

Numeéraire invariance
» R >0 is a random exchange rate (e.g., EUR/CHF)
» If X is acceptable, i.e., p(X) <0, then so should be RX
» Numéraire invariance: p(X) <0 = p(RX) <0 for any
random variable R > 0

» VaR is numéraire invariant; ES is not

® Koch-Medina/Munari'15
® He/Peng'l8
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Surplus invariance

Surplus invariance
» Whether X is acceptable depends only on potential loss but
not surplus
» Surplus invariance: p(X) <0 < p(X;) <0
» VaR is surplus invariant; ES is not

® Cont/Deguest/He'13
® Koch-Medina/Moreno-Bromberg/Munari'15
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Domain
VaR ES
Capturing tail risk no yes
Coherence no yes
Numéraire invariance yes no
Surplus invariance yes no
Domain all integrable

» ES is finite for loss X with E[X}] < co

® Suitable for losses from financial assets and most insurance
businesses

® Catastrophe risk? Operational risk?
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Axiomatic theory
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Axioms
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Axiomatic theory

Axiomatic foundation
Academic introduction

Industry
implementation

Theory and models

Estimation and

Backtesting calibration

Optimization
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Axiomatic theories for VaR

Axiomatic characterizations of VaR (quantile):

v

Chambers'09: ordinal covariance + law invariance

v

Kou/Peng'16: elicitability + comonotonic additivity + non-linearity

v

He/Peng'18: surplus invariance + law invariance + pos. homog.

v

Liu/W."21: elicitability + tail relevance + pos. homog.

all + monetary + some form of continuity

Consider X = L*°

v
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Axioms
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An axiomatic theory of VaR

» Ordinal covariance: p(¢(X)) = ¢(p(X)) for all strictly
increasing and continuous ¢

® e.g., VaR,(exp(X)) = exp(VaR,(X))
» Lower semicontinuity: with respect to convergence in

distribution

Theorem (Chambers'09 MF)

A functional p : X — R satisfies law invariance, monotonicity,
lower semicontinuity and ordinal covariance if and only if

p = VaR, for some p € (0,1).
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An axiomatic theory of ES

> A tail event A of X satisfies 0 < P(A) < 1 and X(w) > X(w')
for a.s. allw € A and W' € A°.

® eg, A={X>x}
» No reward for concentration: There exists an event A € F

such that p(X + Y) = p(X) + p(Y) holds for all risks X and
Y sharing the tail event A.

Theorem (W./Zitikis'21 MS)

A functional p : X — R with p(1) = 1 satisfies law invariance,
monotonicity, lower semicontinuity and no reward for

concentration if and only if p = ES, for some p € (0,1).
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Axiomatic theories

VaR ES
First axiom monotonicity monotonicity
Second axiom law invariance law invariance
Third axiom lower semicontinuity lower semicontinuity
Fourth axiom ordinal covariance no reward for concentration
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Converting between VaR and ES
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Converting between VaR and ES

» For all p € (0,1), ESp(X) > VaR,(X)

» For light-tailed distributions (e.g., normal or exponential)

lim ESp(X)

it A SV
p—1 VaRp(X)

» For heavy-tailed distributions (e.g., Pareto or t)
® P(X > x) =x *L(x), a > 1; L slowly varying

it holds .
lim p( ) - _¢

p—1 VaR,(X)  a—1
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Fundamental Review of the Trading Book (FRTB)

» Widely discussed since 2012, still not fully implemented

VaRog9 = ESp.ors

» In a survey in 2015, 2/3 of banks reported higher capital
charge under the (back-then) proposed FRTB

» General relationship between VaRg 99 and ESg 9757
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Conversion
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» A number ¢ € [1,1/¢] such that ES;_.(X) = VaRi_.(X)

V‘Alef

ES].—CF
ESl—e

» For e = 0.01 +— VaRjgg9 in the FRTB transition:

® ¢ > 25 = ESpg75 > VaRg 99 = capital increases
® c~ 25 = ESpg75 ~ VaRg g9 = little or no change in capital

» cis called the PELVE at level € (Li/W."19)
® Probability Equivalent Level of VaR and ES
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Typical values of PELVE

: LN(o?)
€ Dirac U N Exp
0.04 | 0.25 1
0.100 2.46 256 | 2.76 | 3.23
0.050 251 261 | 2.79 | 3.19
1.00 || 2.00 2.72
0.010 2.58 2.66 | 2.81 | 3.13
0.005 2.59 2.67 | 2.81 | 3.10
t(v) Pareto(«)
€
2 10 30 2 4 10
0.100 || 3.60 | 2.58 | 2.49
0.050 || 3.80 | 2.65 | 2.55
4.00 | 3.16 | 2.87
0.010 || 3.96 | 2.74 | 2.63
0.005 || 3.98 | 2.77 | 2.65
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Implications of PELVE

Theoretical conclusions
> For heavy-tailed risks, ¢ > 2.7 (more capital)
> For light-tailed risks, ¢ € [2.5,2.7] (roughly similar capital)

» For portfolios, ES rewards diversification more than VaR

® not related to coherence
Empirical observations
> For individual asset log-returns, ¢ & 3 (heavy)
> For well-diversified portfolios (such as 1/N), c ~ 2.7 (light)
Estimation of VaR vs ES (cf. Danielson/Zhou'16)
> \725{0_99 has a smaller error if tail is quite heavy (roughly ¢ > 2.9)

> 1%0_975 has a smaller error if tail is not too heavy (roughly ¢ < 2.9)
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Optimization, capital allocation, and risk aggregation
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Operations
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Optimization, capital allocation, and risk aggregation

Rockafellar/Uryasev’'02

VARl (<) & are min {x + lipz@[(x _ x)+]}

x€R

B8,(X) = in {x+ T 2EIX 0.1

» Minimizing ES as an objective

® = minimizing an expected convex function v*
» Optimization with ES as constraints

® = can be solved via convex programming v~

» VaR does not have any of the above features
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Operations
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Capital allocation

» n individual business lines (desks) with losses Xi, ..., X,

» Total loss S = >"7 | X;, assumed continuous

» Total capital C” = p(S) where p is VaR, or ES,

» Allocate C{, ..., Cf to each desk such that C* =>"7 | C’
The classic Euler capital allocation (RORAC compatibility)

C*Rr = E[X;|S = VaR,(S)]

C™ = E[X|S > VaR,(S)]

> Cl.vaR” is much harder to estimate, compute, or simulate
® e.g., Tasche'08; Scaillet'04; Asmit/Peng/W./Yu'19
® — a large literature on sensitivity analysis of quantiles
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Operations
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Risk aggregation

>

Because ES is subadditive, with unknown dependence

Es, (Z x,,> < 3 ES,(X)
i=1 i=1

Marginal information provides bounds on the portfolio
Worst-case ES : ES, = Y_7_; ES,(X;)

VaR: not subadditive!

VaR,, VaR,,

® Embrechts/Puccetti'06; W./Peng/Yang'13;
Embrechts/Puccetti/Riischendorf’'13; Embrechts/Wang/W.'15

v

v

v

v

and ES,: generally open questions for n > 3
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Operations
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Example: Pareto risks

Bounds on VaR and ES for the sum of n Pareto(2) distributed rvs for
p = 0.999; VaR:,r corresponds to the sum of individual VaR,.

n=28 | n=>56

VaR,, 31 53

ES, 178 | 472
VaR} 245 | 1715
VaR,, 465 | 3454
ES, 498 | 3486
VaR,/VaR;} | 1.898 | 2.014
ES,/VaR, | 1.071 | 1.009
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Dependence-uncertainty spread

ES and VaR of S, = X + - - - + X,,, where

> X; ~ Pareto(2+0.1/), i=1,...,5;

> X; ~Exp(i —5), i =6,...,10;
» X; ~ Log-Normal(0, (0.1(/ — 10))?), i = 11,...,20.

n=>5 n=20
best worst spread | best  worst spread
ESo.975 2248 44383 2240 | 29.15 102.35 73.20
VaRo.975 9.79 4146 31.67 | 21.44 100.65 79.21
VaRg.99 1296 62.01 49.05 | 22.29 136.30 114.01
ESo.075/ VaRo g75 1.08 1.02

» VaR, has a larger spread than ES;, p > g, under mild conditions
(Embrechts/Wang/W.'15)
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Robustness
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Robustness

Statistical robustness addresses the question of “what if the data is
compromised with small error?”

» Originally robustness is defined on estimators (estimation

procedures)

» Models are at most “approximately correct” = robustness

» Hampel'71 identified robustness of a statistical functional with
continuity with respect to some metric

® Huber/Ronchetti'07
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Robustness of risk measures

» With respect to convergence in distribution:

® VaR, is continuous at distributions whose quantile is
continuous at p. VaR, is argued as being almost robust.

® ES, is not continuous for any X D L> (similar to the mean)

» ES, is continuous w.r.t. some other (stronger) metric, e.g.,

the L9 metric for g > 1 (or the Wasserstein-L9 metric)

Robustness in a static setting (Cont/Deguest/Scandilo’10):

ES < VaR

However, one cannot decouple the properties of a risk measure

from the incentives it creates
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00®000

Robustness in risk allocation

Risk sharing, risk exchange, and market equilibria

X — (Xp,.. X)) st Y X=X
i=1

» Optimality: aggregate risk < collaborative <= competitive

» Robustness: small model misspecification of X does not lead

to very different individual risk values

Robustness in risk allocation (Embrechts/Liu/W."18):

VaR < ES
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Robustness
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Robustness in optimization

“The optimization problem”

to minimize p(g(Xi,...,X,)) overge g

» Robustness: small model misspecification of (Xi,...,X,) does

not lead to very different optimized risk values

Robustness in optimization (Embrechts/Schied/W.'21):

VaR < ES

» The non-robustness of VaR comes from the fact that
optimizing VaR is “too greedy”: always ignores tail risk, and
hopes that the probability of the tail risk is correctly modelled
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Robustness in optimization

Figure: p(gx(Z)) for Z ~ Pareto(d) and X ~ Pareto(§: 5). The
function gx minimizes p(g(X)) within the class of all measurable
functions g satisfying 0 < g(x) < x and E[Xg(X)] > 1.
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Robustness
[eIeleTelo] }

Optimization, capital allocation, and risk aggregation

VaR ES
Optimization non-convex convex
Capital allocation difficult straightforward
Risk aggregation difficult straightforward
Uncertainty spread relatively large | relatively small
Robustness (static) VaR > ES
Robustness (optimization) VaR < ES
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Elicitability
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Elicitability

Definition (Osband'85)

A functional p : X — R? is elicitable on X if there exists a loss
function L : R9*t1 — R such that for all X € X,

p(X) = argmin E[L(y, X)].
yeRd

If (p1,p2) : X — R? is elicitable, then p; is co-elicitable with ps.

» Elicitability = empirical risk minimization (ERM)
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Elicitability

Examples for d = 1. (L9(p): rvs in L9 with a unique p-quantile)

» The mean is elicitable on L? with
Ly, X) = (y = X)*.
» The median is elicitable on L!(1/2) with
Ly, X) =y = X|.
» The p-quantile VaR,, is elicitable on L'(p) with
L(y,X) = (L= p)y + (X —y)+.
> The p-expectile e, is elicitable on L2 with

L(y, X) = (L = p)(y = X)3 + p(X — )3
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Elicitability

E[L(p, X)] can be seen as an average error for an estimate p
» Good estimate = smaller average error (empirically)
» Forecast comparison
» Model selection

» Learning theory

Theorem (Gneiting'11 JASA)

For p € (0,1), on L*(p), VaR,, is elicitable whereas ES,, is not.

> Ziegel'16, Bellini/Bignozzi'l5, Kou/Peng'16, Liu/W.21, ...
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Elicitability
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Co-elicitability

Theorem (Fissler/Ziegel'16 AoS)
For p € (0,1), ES,, is co-elicitable with VaR, on L*°(p).

» ES is “second-order” elicitable
» Forecast comparison of ES can be carried out with VaR

» Similarly, the variance is co-elicitable with the mean

Theorem (Wang/W.20 MF)

A coherent, lower semicontinuous, and comonotonic additive risk

measure p is co-elicitable with VaR, on L*°(p) if and only if
p=ES,.

Ruodu Wang  (wang@uwaterloo.ca) Contrasting VaR and ES 39/47


wang@uwaterloo.ca

Backtesting
©0000

Backtesting
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Backtesting

> Risk measure p to backtest
» Define

Fio1i=0(Xs:s<t—1)

» Daily observations

® risk measure forecast r; for p(X;)
® realized loss X;

Hypothesis to test

Ho : conditional on Fe_y: fort=1,..., T
re > p(Xe| Fr-1)
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Backtesting VaR

Information
» Daily prediction r; = \@,,(Xt)
» Daily realization X;
Backtesting for fixed T

» Under Ho: Y = 1;x,>, are independent Bernoulli sample

with mean at most 1 — p
» St = Zthl Y: <s Binom(T,1 — p)
» Easy to construct p-values (reject if S; large)
» Completely model free

Such a simple procedure does not exist for ES!
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Backtesting ES

Model-free backtest for ES (on-going work)
> relies on e-values and e-tests
® Definition of an e-value E: E[E] <1and E >0
® \ovk/W.'21, W./Ramdas'21, Shafer'21, ...

» relies on VaR forecasts

Define
(x—2)4

1=p)r—2)
> if r > ESp(X) and z = VaR,(X), then E[e,(X,r,z)] <1
> if r <ESp(X), then E[e,(X,r,z)] > 1 for all z

ep(x,r,z) = xeER, z<r
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Backtesting ES

The general protocol for t € N

> The firm supplies ES forecast r; and VaR forecast z;

v

Decide a predictable A\; € [0,1] (= not shown to the firm)

v

Observe realized loss X;

v

Obtain the e-value x; = ey (X¢, rt, z¢)

v

Compute the e-process (Eg = 1)

t
E: = E:_1(1 — At 4+ Aexe) = H(1 — As + AsXs).

s=1
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Backtesting ES

Ho: re> ESp(X:|Fe 1) and z, = VaRp(Xe|Fr_1) fort=1,...,T J

rt — Z¢ Z ESp(Xt|]:t_1) — VaRp(Xt‘]:t_l) fo

rt=1,...., T
and Zt Z VaRp(Xt‘]:tfl)

H('):

V

Under Hy or H}, (Et)¢=1,...T is a supermartingale, and

1
P (sup E; > > < a.
t>1 «

» model free; anytime valid (works for stopping times T)

» prudent regulation: one may reject if E7 > 1+ ¢
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VaR versus ES: Summary
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VaR versus ES: Summary

Value-at-Risk

Expected Shortfall

Domain

always exists

needs first moment

Capturing tail risk

only frequency

frequency and severity

Estimation comparably difficult comparably difficult
Numéraire invariance | yes no

Surplus invariance yes no

Diversification non-coherent/non-NRC | coherent/NRC
Optimization non-convex/non-robust | convex/robust

Capital allocation

difficult to estimate

straightforward (Euler)

Continuity

weak topology

L-metrics

Elicitability

first order

second order

Backtesting

straightforward

complicated (e-backtesting)
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Thank you for your kind attention
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