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Background

The University of Waterloo
> A young tech university

> One of the largest research groups in Actuarial Science/Quantitative

Finance/Risk Management in the world with =~ 20 professors
» No.1 in Actuarial Science Research worldwide by UNL ranking
> Largest Mathematics Faculty, > 8000 students, > 240 professors
For this talk, | assume
> Basic college probability theory
» Basic college statistics

» Good understanding in mathematics
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A general setup

A random vector X = (X1,...,X,)

marginals may be known; dependence is unknown /arbitrary

» properties of W(X) for some W : R” — RY
: » range of P(X € A) for some A C R”
Questions:
» ‘“optimal” dependence structures of X
> statistical decisions based on X
Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

» Data scarcity; uncertainty; optimization variable; absent

information; lack of models; equilibrium output
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An innocent question

What is a possible distribution of S = Xj + X5 for uniformly
distributed X7 and X5?

Obvious constraints
» E[S]=0
> range of S C [-2,2]
> Var(S) <4/3
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Financial crisis

The 2007 - 09 financial crisis:
> the worst one since the Great Depression of the 1930s
» once in 50 years event
» subprime mortgage bubble

» Key ingredients
® a housing market at peak (2006)
® structured financial products and derivatives
@ collateralized debt obligations (CDO)
@ credit default swaps (CDS)
® advanced mathematical models
® political shortsightedness and the slow reaction of regulators
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A CDO repackages the cash flows from a set of assets
> Pooling the return from a set of assets (e.g. loans)
» Claims are tranched: differing priorities

» Creates new securities, of which some are less risky than the original

assets, and others are riskier.

“The engine that powered the mortgage supply chain” for nonprime

mortgages
> Sales of CDOs grew from $69B in 2000 to around $500B in 2006

> Between 2003 and 2007, Wall Street issued almost $700B in CDOs

that included mortgage-backed securities as collateral
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CDO: An example

» X; > 0 is the random loss from a defaultable,

speculative-grade bond i, i=1,...,n

» Xi,...,X, standalone are not very attractive to investors
» The idea of CDO
® Pool Xi,...,X,: let L = 27:1 X; and take some constants
Ki < K>

® Design financial products with payments Y7, Y5, Y3 so that
("] Y]_ = (L — K2)+
] Y2 = min{(L = K1)+, K2 — K]_}
) Y3 = min{L, Kl}

°* Yi+Yo+Ys=1L

® P(Y; > 0) =P(L > K;) can be very small
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CDO: An example

Original CDO

SAFEST Retained by
TIER e Banks

New CDOs

RISKIER Mezzanine > Process Repeats

TIER
>

RISKIEST e - -
Riskiest Tier Sold to Hedge Funds «

TIER

» The one-year loss probability of senior (AAA-rated) tranches is less than
1/10,000
» Some investors are happy to hold a speculative grade bond, while others seek

safer bonds.
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Dependence modeling and risk aggregation

The rating for CDO tranches involves calculating P(L > K), where
» L=>3"",X;, and X; is the loss from a loan
» K is a constant and K > E[L]

n is large, and each X; has a small probability of loss
(default), i.e. P(X; =0) =1 —¢; and ¢; is small

v

€; is the default probability of loan i and it is decisive in the

v

calculation of the interest rate or price for this loan

v

€; is modelled “relatively well” using individual credit

characteristics
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Dependence modeling and risk aggregation

» How Xi,..., X, are dependent is unknown and they are

almost “uncorrelated” because they were diversified by region

» If X1,..., X, are almost independent, then the central limit
theorem can be applied, and P(L > K) can be approximated
» The dependence structure of (Xi, ..., X,) matters:
° Assume P(X; = 1) = 0.1, P(X; = 0) = 0.9, n = 1000, K = 200
° If Xi,..., X, are iid, then P(L > K) < 10=%
® If Xi,...,X, are positively dependent, then P(L > K) ~ 0.1
® sup{P(L > K) : all dependence structures} = 7
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Financial crisis

» Classic statistics fails to apply here: no data are available for the

scenario “house prices started to fall”

> The past data (the scenario “house prices are good”) suggests that

X1,...,X, are mildly correlated or almost independent

> Substantial miscalculation of P(L > K) leads to unjustified high
rating of CDO products = huge model risk

» In 2007, the mortgage backed securities turned out to be highly

correlated

» CDOs made up over half ($542 billion) of the nearly trillion dollars
in losses suffered by financial institutions from 2007 to early 2009
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Risk assessment under uncertainty

Abstract setup.
» A vector of risk factors: X = (X,...,Xy)
» A financial position W(X)

» A mapping p : X — R (a measure of risk)

Key task: Calculate p(W(X)) ]

Most practical choices:
> V(X) =27 Xi
» p(X)=P(X >t), p=VaR, or p =ES,
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Risk assessment under uncertainty

Value-at-Risk (VaR), p € (0,1)

VaR, : L — R,

VaR,(X) = gp(X)

=inf{x e R:P(X < x) > p}

(left-quantile)
V.

Ruodu Wang
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Expected Shortfall (ES), p € (0,1)
ES,: ! 5 R,

1 1
p

(also: TVaR/CVaR/AVaR/CTE)

o
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Risk assessment under uncertainty

>

Because ES is subadditive, with unknown dependence

ES, Zn:x,, < zn:Esp(x,-)
i=1 i=1

v

Marginal information provides bounds on the portfolio
Worst-case ES: ES, = Y7_; ES,(X;)

VaR: not subadditive

v

v

» Worst-case VaR: generally an open question for n > 3

Similarly: bounds on P(>"7 ; X; > t)

v

W.-Peng-Yang, Bounds for the sum of dependent risks and worst Value-at-Risk
with monotone marginal densities. Finance and Stochastics, 2013
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Equilibria

> n agents each with a preference
» Competitive equilibrium
® Each agent i/ chooses a decision X; according to some
optimization of his/her own preference and constraints
® Equilibrium: A random vector (Xi, ..., X,) such that no agent
would be able to change positions to improve
» Cooperative (Pareto) equilibrium
® A central planner chooses (Xi, ..., X,)
® Equilibrium: A random vector (Xi, ..., X,) that cannot be

strictly improved

Welfare theorems
Under some conditions, competitive equilibrium <= cooperative

equilibrium
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Positive and negative dependence

Random variables Xi,..., X,
» Positive dependence
® Random variables roughly move in the same direction
® |f one of them is large, then others are likely to be large
® Example: Xi,..., X, are all proportional to each other
» Independence
» Negative dependence

® Random variables roughly move in the opposite direction

If one of them is large, then others are likely to be small

Example: (Xi,...,X,) ~ Multinomial
® Very difficult to analyze if n > 3
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Risk sharing games

Risk sharing, risk exchange, and market equilibria
X — (Xp,.. X)) st Y X=X
i=1

“Canonical form” of an equilibrium allocation?
» proportional: X; = a;X for some > ; a; = 17
> lottery: X; = 14X for some |J7_; Aj = Q7?

» other forms?

T Wotlonss
RRROLL UP

rue mitos

_DERRROULE,
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Quantile-based risk sharing

utility-based quantile-based
max Y_i_y NE[ui(X)] | min Yo7 AiVaRa, (X;)

horizontally cut vertically cut
(X/n,...,X/n) (X1g,,...,X14,)
coinsurance roulette
positive dependence negative dependence

For mixed VaR, ES, and “other similar” agents, an equilibrium

allocation is extremally negatively dependent.

Embrechts-Liu-W., Quantile-based risk sharing.
Operations Research, 2018, Theorems 1 - 3
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Colonel Blotto games

Colonel Blotto games (all-pay auctions)

Colonel Blotto » Two players
OQQ O » Xl dhooo ot Xn — x The Eicctonal ‘°

AN

> Goal: maximize % & Q @ :?\;b

N/ S E[H(X:, V)] x ' V
@00  cu iD=l
Colonel Lotso » Nash equilibrium

» solve for marginals X; ~ F1,..., X, ~ F,
Approach: » find dependence (if possible) s.t. X; + - + X, = x

> = Extremal negative dependence (joint mixability)

Wang-W., Joint mixability. Mathematics of Operations Research, 2016
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Axiomatic characterization of ES

A risk measure penalizes risk .

] e
concentration (a special form of S Nas >

positive dependence) if and only if

. ’ #ﬁ"‘ DJl i
it is an ES. f s Bl

» ES is the most important risk measure in banking regulation
(Basel FRTB)

» The first axiomatic characterization of ES (introduced ~2000)

W .-Zitikis, An axiomatic foundation for the Expected Shortfall.
Management Science, 2021, Theorem 1
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Axiomatic characterization of ES

Axioms

M. (Monotonicity) A surely larger or equal loss leads to a larger or equal risk
value, that is, p(X) < p(Y) whenever X < Y.

LI. (Law-invariance) The risk value depends on the loss via its distribution, that
is, p(X) = p(Y) whenever X dy,

P. (Prudence) The risk value is not underestimated by approximations, that is,
limsup, p(§n) > p(X) whenever &, — X point-wise.

NRC. (No reward for concentration) There exists an event A € F such that
p(X 4+ Y) = p(X)+ p(Y) holds for all risks X and Y sharing the tail event A.

Definition (Tail events)

A tail event of X is A € F such that
a) 0<P(A) <1

A functional p: L' — R with p(1) =1
satisfies Axioms M, LI, P and NRC if and
b) X(w) > X(w) only if p = ES,, for some p € (0,1).

for a.s. all w € A and W’ € A€
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Equivalence between risk and dependence

Risk aversion (Rothschild-Stiglitz) <= dependence aversion

A mapping p : X — R is dependence neutral, i.e., p(X + Y)
depends only on the marginal distributions of (X, Y) € X2, if and
only if p=1f oK on X for some f : R — R.

W.-Wu, Dependence and risk attitudes: An equivalence.
SSRN: 3707709, 2020, Theorems 1 - 2 and Proposition 3
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Transport theory

» Pure mathematics

» Important applications Ho T ('>

® economics X

® decision theory

® finance
® engineering

® operations research

physics

> 1 Nobel Prize laureate A=f: TREB)

» 2 Fields medalists
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Monge's formulation

>

A and B are two Radon spaces (main example: RY)

v

Cost function ¢ : A x B — [0, 00| or (—o0, 00]

v

Given probability measures i on A and v on B

» Monge's problem: find a transport map T : A — B that

attains

inf { /A c(x, T(x)) du(x)

To(u) = } ,

where T, (u) is the push forward of u by T
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Monge's formulation

Gaspard-l\-/longe“-
1746-1818

Mass transport
[eleleY Yolole}

Le mémoire sur les déblais et les remblais

( The note on land excavation and infill )
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Kantorovich's formulation

» Monge's formulation may be ill-posed (e.g., point masses)

» Kantorovich’s problem: find a probability measure P on A x B
that attains

nf{ [ ctxy)apley) | P e T}

where I'(u, V) is the set of probability measures on A x B with

marginals y and v.
» Ax B=R xR : copulas and dependence

> Discrete version: linear programming
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Kantorovich's formulation

U1
Y2

30
Y3

)

Leonid Kantorovich Resource allocation
1912-1986
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Scheduling

Minimize max(W(X))
Minimize Var(V(X))
st. X;j~F;,i=1,...,n

(an NP-hard problem)

44 10 24 78 87 10 43 140
66 32 37 135 71 60 24 155
67 48 41 156 = 67 48 41 156
71 57 43 171 44 32 83 159
i 87 60 83 | 230 i 66 57 37 160
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Treatment effect analysis

score X (control)

score Y (experimental)

» Marginals of (X, Y): v

» Effect measurement

E[Y — X]: v
» Var(Y — X):

®

» Dependence of (X, Y):

unidentifiable
(Neyman'23)

Ruodu Wang
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Meta analysis

>

A (large) set of p-values is only one vector: little hope to

test/verify the dependence model

Efron’10, Large-scale Inference, p50-p51:
“independence among the p-values ... usually an unrealistic
assumption. ... even PRD [positive regression dependence] is

unlikely to hold in practice.”

Need procedures which work on arbitrarily dependent p-values
Complicated /strange dependence arises when tests statistics
are generated by some adaptive procedure

® selective inference

® multi-armed bandit problems
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Merging p-values in multiple hypothesis testing

v

Pi,..., Pk: p-values (satisfying P(Px <€) < ¢)

v

arbitrarily dependent

v

P-merging function F:
P(F(Py,...,Px) <e€) <eforall (P1,...,Px)and e

Find a, x such that a, x M, k is a p-merging function
Pi+--+Pi )L/
K

v

® Generalized average M, x(p) = (

a1 k = 2 (arithmetic) ag k ~ e (geometric)

a_1 k ~ log K (harmonic) a_. x = K (Bonferroni)

Vovk-W., Combining p-values via averaging. Biometrika, 2020; Theorems- - 2
Ruodu Wang  (wang@uwaterloo.ca) Dependence in Stochastic Modeling 38/51


wang@uwaterloo.ca

Selective inference

9000000000000

@ E-values and selective inference
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Typical scientific research

» Group A tests a medication; gets “promising but not

conclusive” results
» Group B continues with new data; even more promising
» Group C continues with new data ...

> Sweep all data together to recalculate p-value = p-hacking
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What is an e-value?

> A hypothesis H: a set of probability measures

Definition (e-values and p-values)

(1) An e-value for testing  is a non-negative extended random
variable E : Q — [0, oc] that satisfies supy o, [ EdH < 1.

(2) A p-value for testing # is a random variable P : Q — [0, c0)
that satisfies supycy, H(P < a) < « for all a € (0, 1).

> For simple hypothesis {P}: non-negative E with mean <1
> P-test: p(data) small = reject

> E-test: e(data) large = reject

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021
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E-values, test supermartingales and betting scores

> A test supermartingale: a supermartingale X = (X;) (i.e.,
E[Xt+1|X¢] < X¢) under the null with Xp =1
Optional validity (Doob's optional stopping theorem):

v

X; is an e-value for any stopping time 7

v

Retrospective validity (Ville's inequality):

1 . .
P (supXt > ) <a = inf X;l is a p-value
t>0 o t>0

» Bayes factors and likelihood ratios:
Pr(data | Q)
data) = —
e(data) Pr(data | P)

v

Betting scores (Shafer-Vovk'19, Shafer'21)
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An analogy of p-values and e-values

requirement specific interpretation | representative forms keyword

p-value | P(P < a) < a | probability of a more BT < TX)X) (conditional)

P for o € (0,1) extreme observation probability
likelihood ratios, p [dQ
§ PIE] < E [— )x -
e vzlue E cEEE] S ; ) R dP (conditional)
an = and betting scores EP[M;|X] EXpectation

An analogy of p-variables and e-variables for a simple hypothesis {P}

X is data
T(X) is any test statistic
T’ is an independent copy of T(X) under P

Q is any probability measure

vV V. vV VY

M is a test supermartingale under P and 7 a stopping time
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Advantages of e-values

» Validity for arbitrary dependence = expectation

» Validity for optional stopping times = martingale

E-values are a useful tool even if one is only interested in p-values )

> Easy to combine
» Flexible to stop/continue (online testing; unfixed sample size)

» Non-asymptotic and often model-free

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
Annals of Statistics, 2021, Theorem 5.1

Ruodu Wang  (wang@uwaterloo.ca) Dependence in Stochastic Modeling


wang@uwaterloo.ca

Selective inference
000000e000000

Example: Multi-armed bandit problems

» K arms

v

Hy: arm k has mean reward at most 1

v

Strategy (k¢): at time t, pull arm k;, get iid reward X, > 0

® optimized strategy

v

Aim: quickly detect arms with mean > 1

® or maximize profit, minimize regret, etc ...

v

Running reward: My ; = H;Zl XijLik=k}

v

Complicated dependence due to exploration/exploitation

v

M -, ..., Mg are e-values for any stopping time 7
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Selective inference

Basic framework

» K hypotheses Hy, ..., Hk

» K={1,...,K}

» Hy is null if P € Hy

» N C K: the set of (unknown) indices of null hypotheses

» Ky = |N|; if Ko/K =~ 1 then the signals are sparse
Examples

» Drug experiments; brain imaging; investment opportunities;

A/B tests; genome-wide association studies

Ruodu Wang  (wang@uwaterloo.ca) Dependence in Stochastic Modeling


wang@uwaterloo.ca

Selective inference
0000000080000

Selective inference

For a testing procedure D : [0,1]% — 2% or [0, 0o]K — 2K
» Rp: number of total discoveries (Rp = |D|)
» Fp: number of false discoveries (Fp = |D N N])
» False discovery proportion (FDP): Fp/Rp with 0/0 =0
» Benjamini-Hochberg'95: control the FDR E[Fp/Rp] < «
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BH procedure

BH procedure

The Benjamini-Hochberg (BH) procedure D(«) rejects hypotheses

with the smallest k* p-values, where

K
k*:max{kelC:i(k)ga}.

FDR dependence
BH'95 Ko independence
BY'01 K" PRDS
BY'01 EK%Q arbitrary

bk = Zszlj_l = log K. PRDS: positive regression dependence on a subset, e.g.,
jointly Gaussian test statistics with correlations > 0
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E-BH procedure

> e > -+ > k] order statistics of arbitrary e-values

E-BH procedure

The e-BH procedure G(a) : [0, 00]X — 2% for a: > 0 rejects

hypotheses with the largest k* e-values, where

. ke o
k —max{kEIC P oz}'

The e-BH procedure always has FDR at most Koo /K.

W.-Ramdas, False discovery rate control with e-values.
arXiv: 2009.02824, 2020, Theorem 5.1
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Combination and multiple testing

arbitrarily dependent  optimality | sequential/independent  optimality
Bonferroni Fisher
p-values . .
p. p robust averaging NO Simes NO
Lo K many others many others
e-values - . Vi product weakly
Ei,...,Ex arthmetic mean E martingale merging NO
FDR dependence
BH procedure %a independence/PRDS
BY procedure i %a arbitrary
e-BH procedure %a arbitrary

FDR procedures (Ky = #nulls, K = #hypotheses, £x = Zle k=1 =~ log K)
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Thank you for your attention!
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A multi-armed bandit problem

Problem setting

>

>

>

K arms each with a reward X >0
Pulling arm k produces an iid sample (X, X, ...) from Xk
Null hypotheses: E[X,] <1, k € £

Arms have to be pulled in order and previous arms cannot be

revisited
An arm can be pulled at most n times (budget)
Goal: detect non-null arms as quickly as possible

Example: investment opportunities; medical experiment
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A multi-armed bandit problem

The e-value e, j and the p-value p, ; are realized by, respectively,
J -1
Exj ::HX,-k and Py = <.max_Ek7,-> (p<1/e)
. =1,...J

Algorithm

> Select a p- or e-testing procedure D and start withe=p =1

» For arm k, stop at Ty such that either D produces a new

discovery or T = n

» Update e-values or p-values and move to arm k + 1

The final e-variables Eyx and p-variables P) are obtained by

Ek:Ek,Tk and Pk:Pk,Tk7 k:].,...,K.
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A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

AD data AD stopping FDR guarantee in
across arms rules Ty our experiments
e-BH YES YES valid at level aKy/K
BH NO NO not valid
BY YES YES valid at level aKy/K
cBH NO YES valid at level aKy/K

Consider BH, e-BH, BY and compliant BH (cBH) procedures

» BY: D(a1) where a1fk = a (Benjamini-Yekutieli'01)
» cBH: D(a2) where an(1 + log(1/a2)) = o (Su'18)
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A multi-armed bandit problem

Data generating process
» More promising arms come first: arm k is non-null with
probability (K — k +1)/(K + 1), 6 € [0,1]
» The expected number of non-nulls in this setting is 6/2
> s, ~ Expo(u) is the strength of signal for arm k

» Conditional on sy,

XE, XS XK = exp (Zk + skl ey — 1/2)
where Zt, ..., ZK are iid standard normal.

» Set « =0.05 and 8 = 0.5
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A multi-armed bandit problem

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is
computed over an average of 500 trials. Default values: K =500, n =50 and p = 1.

(a) Default (b) K = 2000 (c) n=10
R B% TD FDP% R B% TD FDP%| R B% TD FDP%
eBH 744 1142 732 158 |297.6 11.39 2932 148 |47.7 3.99 473 0.83
BH 77.0 1144 753 213 |307.8 11.41 3014 2.07 | 49.3 4.01 487 1.06
BY 70.6 10.06 70.4 031 |281.2 9.95 280.4 026 |384 277 384 0.08
cBH 711 10.16 70.8 0.36 |284.5 10.15 2835 0.36 |39.2 285 392 0.11

(d) n=100 (&) p=05 Fp=2
R B% TD FDP% R B% TD FDP% R B% TD FDP%
e-BH 79.1 1348 77.9 1.50 435 577 429 1.54 97.4 16.46 95.9 1.54
BH 813 1350 795 213 46.3 5.80 453 213 99.3 16.47 97.2 2.07
BY 76.4 1236 76.1 0.35 39.6 466 39.5 0.27 943 1523 94.1 0.29
cBH 76.7 1244 764 041 40.1 474 400 0.35 946 1532 943 0.35
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Calibration and combination

» Admissible p-to-e calibrators
® Power calibrators: f,(p) = kp"~! for k € (0,1)
® Shafer's: f(p) =p~ /2 -1

® Averaging f: fol kp"ldk = opteinp

p(—In p)?

» The only admissible e-to-p calibrator: e — (1/e) A 1

» Very roughly: p ~1/e
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E-merging functions

E-merging functions
» arithmetic average M: arbitrary dependence

» product Pk: independence

Suppose that F is a symmetric e-merging function. Then

F <X+ (1 - A\)Mg for some X € [0,1], and F is admissible if and
only if F = A+ (1 — \)Mx with X = F(0).

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021, Theorem 3.2
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Connection to p-merging

For any admissible p-merging function F and € € (0,1), there exist
(A1,..., k) € Ak (standard symplex) and admissible calibrators
fi,...,fk s.t.

K

Fp)<e ZAkfk(Pk) >
k=1

a |

If F is symmetric, then there exists an admissible calibrator f s.t.

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
Annals of Statistics, 2021, Theorem 5.1
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Compliant procedures

An e-testing procedure G is said to be compliant at level « € (0,1)

if every rejected e-value ey satisfies

» The base e-BH procedure is compliant and it dominates all

other compliant procedures
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Compliant procedures

Proposition 1
Any compliant e-testing procedure at level o has FDR at most

aKoy/K for arbitrary configurations of e-values.

Proof. Let G be a compliant e-testing procedure. The FDP of G satisfies

Fg _|G(E)nN]| _ 3 Likeoey _ > Likegen ke _ 3 aky
— — K b

Rg V1 keN K keN

Rg RgVv1
where the first inequality is due to compliance. As E[E,] <1 for k € N,

Fg aEk CVK()
2[w)= ZElw]= %
keN

we have
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Compliant procedures

» General compliant p-testing procedures do not have this

property even if p-values are independent

» For independent p-values, a compliant p-testing procedure at
« has a weaker FDR guarantee a(1 + log(1/a)) > a (Su'18)

Compliance is useful in
» data-driven structured settings
> post-selection testing
> group testing

» multi-armed bandit problems
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Boosting

For each k € IC, take a boosting factor by > 1 such that

max xP(abkEx > x) < « if e-values are PRDS
xeEK/K

E[T(abkEy)] < otherwise (AD)

and let e, = byey.
» [E and P are computed under the null distribution of Ej
» Composite null: require for all probability measures in Hj

> by =1 is always valid

v

Non-linear boosting is also possible

» € may not have the same order as e.
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E-BH procedure

Example.

» For A € (0,1)
Ex = AP,
where Py is standard uniform if k € N
> Yo < (Ma)/0-2)
» A=1/2 =y, <a?/2
> o =0.05 \=1/2

* by ~6.32 (AD)
* by ~ 8.94 (PRDS)
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E-BH procedure

Example.

» For 6 > 0,
E, = &X0/2,

where X is standard normal if k € AN
» a=0.050=3
* b~ 137 (AD)
* b~ 7.88 (PRDS)
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Correlated z-tests

>

Xe ~N(0,1) if k e N
Xe ~N(6,1) if kg N, 6 <0

v

v

Xi,..., Xk are jointly Gaussian

v

E-values from likelihood ratios

Ek = exp(éXk — 52/2)

v

P-values from Neyman-Pearson tests

P = O(Xk)

v

Set § = -3
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Correlated z-tests

Table: Simulation results for correlated z-tests, where p; ; is the correlation between two test
statistics X; and Xj for i # j. Each cell gives the number of rejections and, in parentheses, the

realized FDP (in %). Each number is computed over an average of 1,000 trials.

(a) Independent and positively correlated tests, K = 1000, Ko = 800

pij =0 pij =05
a=10% a=5% a=2% a=10% a=5% a=2%
BH 177.3 (8.01) 148.7 (4.07) 115.0 (1.63) | 180.0 (7.00) 144.8 (3.64) 109.8 (1.50)
-BH PRDS | 171.8 (7.07) 147.6 (3.95) 114.6 (1.62) | 170.2 (5.71) 142.5 (3.35) 108.0 (1.50)
BY 1011 (1.10) 78.8 (0.57) 53.2(0.22) | 96.6 (1.03) 76.7 (0.50) 55.0 (0.20)
eBHAD |100.4 (1.41) 85.4 (0.68) 54.6 (0.24) | 103.1 (1.32) 81.4 (0.70) 56.6 (0.28)
base e BH | 97.5 (1.00) 70.6 (0.43) 36.9 (0.11)| 91.9 (0.97) 69.1 (0.45) 43.6 (0.16)
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Correlated z-tests

(b) Independent tests with large number of hypotheses

K = 20,000, Ko = 10,000 K = 20,000, Ko = 19,000

a=10% a=5% a=2% a=10% a=5% a=2%
BH 9567 (5.00) 8564 (2.49) 7164 (1.00) | 681.3 (9.58) 520.2 (4.79) 357.7 (1.93)
e-BH PRDS | 9092 (3.60) 8330 (2.13) 7124 (0.98) | 681.3 (9.58) 509.3 (4.54) 312.1 (1.40)
BY 5056 (0.48) 4818 (0.24) 3417 (0.10) | 254.1 (0.89) 177.6 (0.46) 103.1 (0.19)
eBH AD |6811 (0.80) 5809 (0.44) 4384 (0.18)|271.0 (1.02) 159.5 (0.39) 51.4 (0.07)
base e BH | 6426 (0.64) 5234 (0.31) 3509 (0.10) | 224.8 (0.69) 109.2 (0.21) 16.4 (0.01)

(c) Negatively correlated tests, K = 1000, Ko = 800.
pij=—1/(K—-1) pij = —0.5L);_j=1}

a=10% a=5% a=2% a=10% a=5% a=2%
BH 177.7 (8.14) 149.0 (4.09) 115.2 (1.61) | 177.2 (8.10) 148.8 (4.00) 115.3 (1.62)
e-BH PRDS | 172.0 (7.13) 147.9 (3.98) 114.9 (1.59) [171.5 (7.13) 147.7 (3.89) 114.9 (1.61)
BY 101.2 (1.08) 78.8 (0.52) 53.3 (0.20) |101.3 (1.11) 78.8 (0.56) 53.2 (0.22)
eBHAD |100.7 (1.38) 85.5 (0.65) 54.6 (0.22) |100.8 (1.40) 85.6 (0.69) 54.6 (0.24)
base e-BH | 97.8 (0.98) 70.7 (0.40) 37.2 (0.11)| 97.6 (0.99) 70.7 (0.41) 36.7 (0.12)
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