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A little bit of what | do

A random vector X = (X1,...,X,)

marginals may be known; dependence is unknown /arbitrary

» properties of W(X) for some W : R” — R
» P(X € A) for some A C R”

Questions:
» “optimal” dependence structures of X

» statistical decisions based on X

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich
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A little bit of what | do

Closely related problems

» Robust financial risk management

» Mass transportation

v

Optimal scheduling

v

Nash equilibria in resource allocation games

v

Treatment effect analysis
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Multiple hypothesis testing

v

A (large) set of p-values is only one vector: little hope to
test/verify the dependence model
» Efron’10, Large-scale Inference, p50-p51:
“independence among the p-values ... usually an unrealistic
assumption. ... even PRD [positive regression dependence] is
unlikely to hold in practice.”
> Benjamini-Yekutieli'01: arbitrarily dependent p-values
e Blanchard-Roquain'09, Barber-Candes’'15, Fithan-Lei'20, ...
» Complicated/strange dependence arises when tests statistics

across experiments are generated by some adaptive procedure
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Some references to e-values

,’/ (
Vladimir Vovk Aaditya Ramdas Bin Wang
(Royal Holloway) (Carnegie Mellon) (CAS Beijing)

» Vovk-W., E-values: Calibration, combination, and applications.
arXiv:1912.06116, 2021, Annals of Statistics

» Vovk-Wang-W., Admissible ways of merging p-values under arbitrary
dependence. arXiv:2007.14208, 2020

» W.-Ramdas, False discovery rate control with e-values.
arXiv:2009.02824, 2020

Hypotheses testing with e-values: http://www.alrw.net/e/
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What is an e-value?

> A hypothesis H: a set of probability measures

Definition (e-variables and p-variables)

(1) An e-variable for testing # is a non-negative extended random
variable E : Q — [0, oc] that satisfies supy o, [ EdH < 1.

o Realized values of e-variables are e-values.

(2) A p-variable for testing # is a random variable P : Q — [0, 00)
that satisfies supycy H(P < o) < « for all @ € (0, 1).

o Realized values of p-variables are p-values.

» For simple hypothesis {}: non-negative E with mean <1

> E-test: e(data) large = reject
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P-hacking

Typical scientific research

» Group A tests a medication; gets “promising but not

conclusive” results
» Group B continues with new data; even more promising
» Group C continues with new data ...
» Sweep all data together to recalculate p-value = p-hacking
Many problems
» Data dependence and random stopping
» Cherry-picking

» Competitive research

Ruodu Wang  (wang@uwaterloo.ca) E-values and dependence 8/58


wang@uwaterloo.ca

E-values
000000e00

What is an e-value?

> A test supermartingale: a supermartingale X = (X;) under
the null with Xg =1

» Optional validity (Doob’s optional stopping theorem):
X; is an e-value for any stopping time 7

» Retrospective validity (Ville's inequality):

1
P(supXt > ) <«
«

t>0
» Bayes factors (simple hypothesis) and likelihood ratios:

_ Pr(data | Q)
e(data) = m

» Betting scores (Shafer-Vovk'19, Shafer'21)
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E for Expectation

requirement

specific interpretation

representative forms

keyword

p-value P(P<a)<La probability of a m.ore P(T' < T(X)|X) (conditional)
P for o € (0,1) extreme observation probability
likelihood ratios P {d(@ }
e | w1z e[ | o
e vz_lue E d[ELl N ]6 stopped martingales, dP (conditional)
el s = and betting scores EP[M|X] expectation

An analogy of p-variables and e-variables for a simple hypothesis {P}

vV VvV VY VvYyy

X is data

T(X) is any test statistic

T’ is an independent copy of T(X) under P

Q is any probability measure

M is a test supermartingale under P and 7 a stopping time

(not to be confused with VanderWeele-Ding'17)
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Example in testing multiple hypotheses

Multi-armed bandit problems

>

v

K arms
null hypothesis k: arm k has mean reward at most 1

strategy (k¢): at time t > 1, pull arm k¢, obtain an iid reward
Xie,t =0
aim: quickly detect arms with mean > 1

e or maximize profit, minimize regret, etc ...
. t
running reward: My ; = Hj:l XijLik=ky
complicated dependence due to exploration/exploitation

My -, ..., Mk, are e-values for any stopping time 7
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9 Theoretical properties
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Calibration

» Admissible p-to-e calibrators
o Power calibrators: f,(p) = kp"~! for k € (0,1)
o Shafer's: f(p) =p~%/2 -1

e Averaging f: fol kpldk = %

» the only admissible e-to-p calibrator: e — e 1 A1

Sir Jeffreys

“Users of these tests speak of the 5 per cent. point [p-value
of 5%] in much the same way as | should speak of the K =
10~1/2 point [e-value of 10'/2], and of the 1 per cent. point
[p-value of 1%)] as I should speak of the K = 10~ point
[e-value of 10]." (Theory of Probability, p.435, 3rd Ed.)
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Calibration and combination

» The only admissible e-to-p calibrator: e — (1/e) A 1
» Very roughly: p ~1/e
» E-merging functions
e arithmetic average Mk: arbitrary dependent
e product Pk: independent, sequential
» Using p~1/e

e arithmetic average of e & harmonic average of p (Wilson'19)
e product of e ~ product of p (Fisher'48)
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E-merging functions

Suppose that F is a symmetric e-merging function. Then
F <X+ (1 —A)Mk for some X € [0,1], and F is admissible if and
only if F = X+ (1 — A)My with A = F(0).

» For any symmetric e-merging function F:
F(e) >1 = Mk(e) > F(e).

» Asymmetric e-merging: e — X - e for A € Ak where Ak is

the standard K-simplex

Vovk-W., E-values: Calibration, combination, and applications.
Annals of Statistics, 2021, Theorem 3.2
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Connection to p-merging

For any admissible p-merging function F and € € (0,1), there exist

(M1,...,Ak) € Ak and admissible calibrators fi, ..., fx such that
K 1
Flp) <e — Akt > —.
(p) <e Eé; kfk(Pk) > ;

If F is symmetric, then there exists an admissible calibrator f such
that

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.
arXiv: 2007.14208, 2020, Theorem 5.1
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Merging sequential e-values

E-variables E1, ..., Ex are sequential if Ex is an e-variable
conditional on Eq, ..., Ex_ for each k.

» E[Ex | E1,...,Ex 1] < 1forall ke {1,...,K}

» E-values ey, ..., ek are obtained by laboratories 1,..., K

> Laboratory k makes sure that its result e, is a valid e-value

given the previous results es, ..., ex_1

Definition (se-merging functions)

An se-merging function is an increasing Borel function
F : [0,00]X — [0, 0] such that F(E;, ..., Ex) is an e-variable for

all sequantial e-variables Eq, ..., Ek.

{e-merging} C {se-merging} C {ie-merging}

Ruodu Wang  (wang@uwaterloo.ca) E-values and dependence 17/58


wang@uwaterloo.ca

Properties
000000e000

Test martingales

v

Gaming system: a measurable function \ : [0,00)<K — [0, 1]

v

The test martingale associated with the gaming system s and
initial capital ¢ € [0,1] is the sequence Sy : [0,00)K — [0, 00)
defined by So = ¢ and

5k+1(e) = Sk(e)()\(el, R ek)ekH +1-— )\(el, ey ek))

fork=0,..., K—-1
» A martingale e-merging function is F = Sk for some test

martingale S.

v

F and S, are connected via

Sk(el,...,eK):F(el,...,ek,l,...,l).
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Test martingales

A martingale e-merging function is an se-merging function, and
each se-merging function is dominated by a martingale e-merging

function (with ¢ = 1).

> connection to testing via betting and confidence sequences
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Test martingales

» s =1 and c = 1: the test martingale S is given by

Sk(el,...,eK):el...ek,

and the corresponding martingale e-merging function is the
product
F(ei,...,ex) =e1...ek.
» The arithmetic mean

F(%---&K)ZW

corresponds to the test martingale

e1+---+e+K—k
e .

Sk(el, coog eK) =
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Combining sequential e-values

The general protocol
» Obtain sequential e-values ey, ..., e, ...

Decide a predictable A1, ..., A, --- € [0,1]

v

v

Compute the martingale (Ep = 1)

t
Er=Er1(1— Ae+ Arer) = [J(1— As + Ases)

s=1

v

Optimal choice of A;: (Waudby-Smith)-Ramdas’20

v

The Kelly criterion
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© The e-BH procedure
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Testing multiple hypotheses

Basic framework
» K hypotheses Hy, ..., Hk
» K={1,...,K}
> Hy is null if P € Hy
» N C K: the set of (unknown) indices of null hypotheses
» Ko = |N|; if Ko/K = 1 then the signals are sparse
Two settings
» Hy is associated with p-value py
e py is realization of Py (p-variable for P if k € \)
» H, is associated with e-value e

o ¢ is realization of Ey (e-variable for P if k € N)
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Testing multiple hypotheses

» A p-testing procedure D : [0, 1] — 2 gives the indices of
rejected hypotheses based on observed p-values
» An e-testing procedure D : [0, 00]X — 2K gives the indices of

rejected hypotheses based on observed e-values
For a p- or e-testing procedure D:
» Rp: number of total discoveries (Rp = |D|)
» Fp: number of false discoveries (Fp = |[DNN)
» False discovery proportion (FDP): Fp/Rp with 0/0 =0
» Benjamini-Hochberg'95: control the FDR E[Fp/Rp] < «
Fp

FDRp =E
o=z

]:E[zmpm]w%w)
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The BH procedure

Three input ingredients:

(a) K realized p-values py, ..., pk associated to Hi,..., Hg,
respectively
(b) an FDR level a € (0,1)

(c) (optional) dependence information or assumption on p-values,

such as independence, PRDS?! or no information

LPRDS: positive regression dependence on a subset, e.g., jointly Gaussian test
statistics with correlations > 0
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The BH procedure

BH procedure

The (base) Benjamini-Hochberg (BH) procedure D(«) rejects

hypotheses with the smallest k* p-values, where

Kp(«
k*—max{kElC:k()Sa}
with the convention max(2) = 0.
FDR dependence
BH'95 Ko independence
BY'01 K PRDS
Ko .

BY'01 €K7a arbitrary (AD)

Ruodu Wang  (wang@uwaterloo.ca) E-values and dependence 26/58


wang@uwaterloo.ca

E-BH procedure
00000@000000000

E-BH procedure

Three input ingredients:

(a) K realized raw e-values ey, ..., ek associated to Hi,. .., Hk,

respectively
(b) an FDR level a € (0,1)
(c) (optional) distributional information or assumption on e-values
The e-BH procedure can be described in two steps
(1) (optional) boost the raw e-values using information in (c)

(2) apply the base e-BH procedure to the boosted e-values and

level o
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E-BH procedure

> €f,..., e, raw or boosted e-values

> efl] > 2 e['K]: order statistics

» The rough relation e ~ 1/p = use 1/e

E-BH procedure

The base e-BH procedure G() : [0, 00]X — 2K for a > 0 rejects

hypotheses with the largest k; (raw or boosted) e-values, where

ke(
k::max{kElC:[klzl}.
K e

Ruodu Wang  (wang@uwaterloo.ca) E-values and dependence 28/58


wang@uwaterloo.ca

E-BH procedure
0000000@0000000

E-BH procedure

Theorem 4

The (full) e-BH procedure has FDR at most Koa/K. In particular,
the base e-BH procedure G(«) directly applied to arbitrary raw
e-values has FDR at most Koo/ K.

nice cases general (AD)
p-BH/BY Ko penalty
K
K
e-BH boosting ?Ooz

W.-Ramdas, False discovery rate control with e-values.
arXiv: 2009.02824, 2020, Theorem 5.1
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Compliant procedures

An e-testing procedure G is said to be compliant at level « € (0,1)

if every rejected e-value ey satisfies

» The base e-BH procedure is compliant and it dominates all

other compliant procedures
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Compliant procedures

Proposition 1
Any compliant e-testing procedure G at level a has FDR at most

aKo/K for arbitrary configurations of e-values.

Proof. For each k € G (i.e., rejected),
K 1 aEk
E, > e — < 25K
K= aRg Rg = K
The FDP of G satisfies

Fg _1G0N] _ 3 Likeoy > Likegyorbe _ > aky
Rg Rg K 7k€./\f K

keEN Rg kEN
As E[E,] < 1for ke N,

Fg aEk OéKo
2[5)= el =%
keN
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Compliant procedures

» General compliant p-testing procedures do not have this

property even if p-values are independent
» For independent p-values, a compliant p-testing procedure at
« has a weaker FDR guarantee a(1 + log(1/a)) > a (Su'18)
Compliance is useful in
» data-driven structured settings
> post-selection testing
> group testing

» multi-armed bandit problems
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Boosting

Define T(x) as the largest value in (K/K)U {0} dominated by x:

T(x) = =11 with T(o0) = K.

[K/ |
From
* / K
ke = max{kElC . Oée[k] > k},

» «aEj can be safely replaced by T(«Ek)

» It suffices to require T(aEk)/c to be an e-value
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Boosting

For each k € IC, take a boosting factor by > 1 such that

max xP(abkEx > x) < « if e-values are PRDS
xeK/K

E[T(abkEy)] < otherwise (AD)

and let e, = byey.
» [E and P are computed under the null distribution of Ej
» Composite null: require for all probability measures in Hj

> by =1 is always valid

v

Non-linear boosting is also possible
/
> e’ may not have the same order as e.
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Boosting

Example.
» For A € (0,1)
Ex = AP,
where Py is standard uniform if k € N
> Yo < (V)N
» A=1/2 =y, <a?/2
» a=0.05, A=1/2

e b, ~6.32 (AD)
e by~ 8.94 (PRDS)
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Boosting

Example.

» For 6 >0,
E, = &X0/2,

where X is standard normal if k € N
» «=0.05,6=3

e b~ 1.37 (AD)
o b~ 7.88 (PRDS)
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Progress

@ Simulation illustrations
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A multi-armed bandit problem

Problem setting

>

>

K arms each with a reward X >0
Pulling arm k produces an iid sample (X}, X¥,...) from Xk
Null hypotheses: E[X,] <1, k € £

Arms have to be pulled in order and previous arms cannot be

revisited
An arm can be pulled at most n times (budget)
Goal: detect non-null arms as quickly as possible

Example: investment opportunities; medical experiment
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A multi-armed bandit problem

The e-value e, j and the p-value p, ; are realized by, respectively,

Algorithm

> Select a p- or e-testing procedure D and start withe=p =1

» For arm k, stop at Ty such that either D produces a new

discovery or T = n

» Update e-values or p-values and move to arm k + 1

The final e-variables Ex and p-variables Pj are obtained by

Ek:Ek,Tk and Pk:Pk,Tk7 k:].,...,K.
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Table: Conditions for the validity of the testing algorithm

AD data AD stopping FDR guarantee in
across arms rules Ty our experiments
e-BH YES YES valid at level aKy/K
BH NO NO not valid
BY YES YES valid at level aKy/K
cBH NO YES valid at level aKy/K

Consider BH, e-BH, BY and compliant BH (cBH) procedures
» BY: D(a1) where a1fk = a (Benjamini-Yekutieli'01)
» cBH: D(an) where an(1 + log(1/a2)) = o (Su'18)
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A multi-armed bandit problem

Data generating process

>

More promising arms come first: arm k is non-null with
probability (K — k +1)/(K + 1), 8 € [0,1]

The expected number of non-nulls in this setting is 6/2
sk ~ Expo(p) is the strength of signal for arm k

Conditional on sy,

Xt Xk B XK = exp (Zk + skl kerc\ny — 1/2>

where Z1, ... ZK are iid standard normal

Set a = 0.05 and 8 = 0.5 (= Koa/K =~ 3.75%)
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A multi-armed bandit problem

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is

computed over an average of 500 trials. Default values: K =500, n =50 and = 1.

(a) Default (b) K = 2000 (c)n=10

R B% TD FDP% R B% TD FDP%| R B% TD FDP%
e-BH 744 1142 732 158 |2976 1139 2932 148 |47.7 399 473 0.83
BH 77.0 11.44 753 213 |307.8 1141 3014 2.07 |493 401 487 1.06
By 70.6 10.06 70.4 031 |281.2 9.95 2804 026 |384 277 384 0.08
cBH 711 10.16 708 0.36 |2845 10.15 2835 0.36 |39.2 285 392 0.11

(d) n =100 () p=05 (f) p=2

R B% TD FDP% R B% TD FDP% R B% TD FDP%
e-BH 79.1 1348 779 150 435 577 429 154 97.4 1646 959 1.54
BH 81.3 1350 795 213 463 580 453 213 99.3 16.47 97.2 2.07
BY 764 1236 76.1 0.35 39.6 466 395 0.27 943 1523 941 0.29
cBH 76.7 1244 76.4 041 40.1 474 400 0.35 946 1532 943 035
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Correlated z-tests

>

X ~N(0,1) if k e N
X ~N(6,1) if kg N, 6 <0

v

> Xi,..., Xk are jointly Gaussian

v

E-values from likelihood ratios

Ex = exp(6Xx — 6%/2)

v

P-values from Neyman-Pearson tests
Pr = &(Xk)

» Set § = -3
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Correlated z-tests

Table: Simulation results for correlated z-tests, where p; ; is the correlation between two test
statistics X; and Xj for i # j. Each cell gives the number of rejections and, in parentheses, the

realized FDP (in %). Each number is computed over an average of 1,000 trials.

(a) Independent and positively correlated tests, K = 1000, Ko = 800

pij =0 pij =05
a=10% a=5% a=2% a=10% a=5% a=2%
BH 177.3 (8.01) 148.7 (4.07) 115.0 (1.63) | 180.0 (7.00) 144.8 (3.64) 109.8 (1.50)
-BH PRDS | 171.8 (7.07) 147.6 (3.95) 114.6 (1.62) | 170.2 (5.71) 142.5 (3.35) 108.0 (1.50)
BY 101.1 (1.10) 78.8 (0.57) 53.2 (0.22) | 96.6 (1.03) 76.7 (0.50) 55.0 (0.20)
eBHAD |100.4 (1.41) 854 (0.68) 54.6 (0.24)|103.1 (1.32) 81.4 (0.70) 56.6 (0.28)
base e BH | 97.5 (1.00) 70.6 (0.43) 36.9 (0.11)| 91.9 (0.97) 69.1 (0.45) 43.6 (0.16)
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(b) Independent tests with large number of hypotheses

K = 20,000, Ko = 10,000 K = 20,000, Ko = 19,000
a=10% a=5% a=2% a=10% a=5% a=2%
BH 9567 (5.00) 8564 (2.49) 7164 (1.00) | 681.3 (9.58) 520.2 (4.79) 357.7 (1.93)
e-BH PRDS | 9092 (3.60) 8330 (2.13) 7124 (0.98) | 681.3 (9.58) 509.3 (4.54) 312.1 (1.40)
BY 5956 (0.48) 4818 (0.24) 3417 (0.10) | 254.1 (0.89) 177.6 (0.46) 103.1 (0.19)
e-BH AD 6811 (0.80) 5809 (0.44) 4384 (0.18) |271.0 (1.02) 159.5 (0.39) 51.4 (0.07)
base e-BH | 6426 (0.64) 5234 (0.31) 3509 (0.10) | 224.8 (0.69) 109.2 (0.21) 16.4 (0.01)
(c) Negatively correlated tests, K = 1000, Ko = 800.
pij=—1/(K-1) pij = —0.51ji_ji=1
a=10% a=5% a=2% a=10% a=5% a=2%
BH 177.7 (8.14) 149.0 (4.09) 115.2 (1.61) [177.2 (8.10) 148.8 (4.00) 115.3 (1.62)
e-BH PRDS | 172.0 (7.13) 147.9 (3.98) 114.9 (1.59) | 171.5 (7.13) 147.7 (3.89) 114.9 (1.61)
BY 101.2 (1.08) 78.8 (0.52) 53.3 (0.20) | 101.3 (1.11) 78.8 (0.56) 53.2 (0.22)
e-BH AD 109.7 (1.38) 85.5 (0.65) 54.6 (0.22) | 109.8 (1.40) 85.6 (0.69) 54.6 (0.24)
base e-BH 97.8 (0.98) 70.7 (0.40) 37.2(0.11)| 97.6 (0.99) 70.7 (0.41) 36.7 (0.12)
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Weighted e-BH

Take wy,...,wx > 0 such that wy + - + wx = K: One can
> use (wier, ..., wkek) as the input e-values
> boost via
max xP(abgEx > x) < wya if e-values are PRDS
xEK/K

E[T(abkEyk)] < wya otherwise (AD)

» use random (wx,...,wg) independent of the e-values with

E[wi 4 --- 4+ wk] = K (prior information)

The same applies for compliant e-testing procedures
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A class of e-testing procedures

» An increasing transform ¢ : [0, 00] — [0, 00] is strictly

increasing and continuous with ¢(o0) = oo and ¢(0) < 1

E-testing procedure G(¢)

Define G(¢) by rejecting k; , hypotheses with the largest e-values,
where kZ , = max {k € K : ko(eyq)/K > 1}.

e

> ¢:tr— at = base e-BH

Ruodu Wang  (wang@uwaterloo.ca) E-values and dependence 48/58


wang@uwaterloo.ca

Further results
000®0000

A class of e-testing procedures

Theorem 5

Fix @ € (0,1) and K. For any increasing transform ¢, if G(¢)
satisfies

F
E[ Q(cb)] .
Rg(e)

for arbitrary configurations of e-values, then G(¢) C G(«).

» The base e-BH procedure is optimal among G(¢) with the
same FDR guarantee
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Applying e-BH to p-values

> A decreasing transform % : [0, 1] — [0, o0] is a strictly

decreasing and continuous function with ¢(0) = oo

P-testing procedure D(v))

Define D()) by rejecting k;; hypotheses with the largest e-values,
where ki = max {k € K : ki(p(y)/K > 1} .

» 1 : p+— a/p = base BH

» equivalent to step-up methods of Benjamini-Yekutieli'01
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E-BH for p-values

For arbitrary p-values and a decreasing transform 1), the testing

procedure D(1)) satisfies

Foy) ] Ko
o[0] ko,
Rp(y) K

where

iy = tren;?;(’C tp~Y(t)  if p-values are PRDS,

K—
Z¢_ Z

“YK/j) otherwise (AD).
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E-BH for p-values

» For ¢ : p— a/p,
K Kp(k)
Y(Pk)) = n & g S
> D(¢) = D(a)

v

If p-values are PRDS, then z;, = a (Benjamini-Hochberg'95)

v

Otherwise (Benjamini-Yekutieli'01)
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E-BH for p-values

(PRDS) t + tip~*(t) is decreasing on [1,00) = z, =" }(1) (D)

Proposition 3
Fix @ € (0,1) and K. For any decreasing transform 1, if D(1))

F
E [D(w)} <«

satisfies

Rp(y)
for arbitrary configurations of PRDS p-values, then ¥~(1) < a.
Moreover, if 1) satisfies (D), then D(v)) C D(«).

» For PRDS p-values, the BH procedure is the most powerful
among all D(¢) satisfying (D) with the same FDR guarantee.
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Some features of e-BH

The e-BH procedure
(1) works for AD e-values;

(2) requires no information on the configuration of the input

e-values, and works well for weighted e-values;

(3) allows for power boosting if partial distributional information is

available on some e-values;

(4) gives rise to a class of p-testing procedure which include both

BH and BY as special cases;

(5) is optimal among a class of e-testing procedures under AD
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Advantages of e-values

» Validity for arbitrary dependence = expectation
» Validity for optional stopping times = martingale

> Any p-value can be realized by sup of a continuous-time test

martingale

E-values are a useful tool even if one is only interested in p-values )

» Easy to combine
» Flexible to stop/continue (online testing; unfixed sample size)

» Non-asymptotic and often model-free

Ramdas-Ruf-Larsson-Koolen'20, Shafer-Shen-Vereshchagin-Vevk'11
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Future work

» E-values in risk management

e model-free e-backtesting risk measures

» FDR and other false discovery methods with p/e-values

Every monotone and symmetric p-testing procedure D with a-FDR

for arbitrary dependence (like BY) is dominated by e-BH at level «

applied to some calibrators.
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Thank you for your attention
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