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A little bit of what I do

A random vector X = (X1, . . . ,Xn)

Assumptions

marginals may be known; dependence is unknown/arbitrary

Questions:

I properties of Ψ(X) for some Ψ : Rn → Rd

I P(X ∈ A) for some A ⊆ Rn

I “optimal” dependence structures of X

I statistical decisions based on X

Dates back to Fréchet-Hoeffding; has roots in Monge-Kantorovich

Ruodu Wang (wang@uwaterloo.ca) E-values and dependence 3/58

wang@uwaterloo.ca


E-values Properties E-BH procedure Simulation Further results Remarks

A little bit of what I do

Closely related problems

I Robust financial risk management

I Mass transportation

I Optimal scheduling

I Nash equilibria in resource allocation games

I Treatment effect analysis
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Multiple hypothesis testing

I A (large) set of p-values is only one vector: little hope to

test/verify the dependence model

I Efron’10, Large-scale Inference, p50-p51:

“independence among the p-values ... usually an unrealistic

assumption. ... even PRD [positive regression dependence] is

unlikely to hold in practice.”

I Benjamini-Yekutieli’01: arbitrarily dependent p-values

• Blanchard-Roquain’09, Barber-Candès’15, Fithan-Lei’20, ...

I Complicated/strange dependence arises when tests statistics

across experiments are generated by some adaptive procedure
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Some references to e-values

Vladimir Vovk

(Royal Holloway)

Aaditya Ramdas

(Carnegie Mellon)

Bin Wang

(CAS Beijing)

I Vovk-W., E-values: Calibration, combination, and applications.

arXiv:1912.06116, 2021, Annals of Statistics

I Vovk-Wang-W., Admissible ways of merging p-values under arbitrary

dependence. arXiv:2007.14208, 2020

I W.-Ramdas, False discovery rate control with e-values.

arXiv:2009.02824, 2020

Hypotheses testing with e-values: http://www.alrw.net/e/
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What is an e-value?

I A hypothesis H: a set of probability measures

Definition (e-variables and p-variables)

(1) An e-variable for testing H is a non-negative extended random

variable E : Ω→ [0,∞] that satisfies supH∈H
∫
E dH ≤ 1.

• Realized values of e-variables are e-values.

(2) A p-variable for testing H is a random variable P : Ω→ [0,∞)

that satisfies supH∈H H(P ≤ α) ≤ α for all α ∈ (0, 1).

• Realized values of p-variables are p-values.

I For simple hypothesis {P}: non-negative E with mean ≤ 1

I E-test: e(data) large =⇒ reject
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P-hacking

Typical scientific research

I Group A tests a medication; gets “promising but not

conclusive” results

I Group B continues with new data; even more promising

I Group C continues with new data ...

I Sweep all data together to recalculate p-value ⇒ p-hacking

Many problems

I Data dependence and random stopping

I Cherry-picking

I Competitive research

Ruodu Wang (wang@uwaterloo.ca) E-values and dependence 8/58

wang@uwaterloo.ca


E-values Properties E-BH procedure Simulation Further results Remarks

What is an e-value?

I A test supermartingale: a supermartingale X = (Xt) under

the null with X0 = 1

I Optional validity (Doob’s optional stopping theorem):

Xτ is an e-value for any stopping time τ

I Retrospective validity (Ville’s inequality):

P
(

sup
t≥0

Xt ≥
1

α

)
≤ α

I Bayes factors (simple hypothesis) and likelihood ratios:

e(data) =
Pr(data | Q)

Pr(data | P)

I Betting scores (Shafer-Vovk’19, Shafer’21)
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E for Expectation

requirement specific interpretation representative forms keyword

p-value

P

P(P ≤ α) ≤ α
for α ∈ (0, 1)

probability of a more

extreme observation
P(T ′ ≤ T (X)|X) (conditional)

probability

e-value

E

EP[E ] ≤ 1

and E ≥ 0

likelihood ratios,

stopped martingales,

and betting scores

EP
[
dQ
dP

∣∣∣X]
EP[Mτ |X]

(conditional)

expectation

An analogy of p-variables and e-variables for a simple hypothesis {P}

I X is data

I T (X) is any test statistic

I T ′ is an independent copy of T (X) under P
I Q is any probability measure

I M is a test supermartingale under P and τ a stopping time

(not to be confused with VanderWeele-Ding’17)
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Example in testing multiple hypotheses

Multi-armed bandit problems

I K arms

I null hypothesis k : arm k has mean reward at most 1

I strategy (kt): at time t ≥ 1, pull arm kt , obtain an iid reward

Xkt ,t ≥ 0

I aim: quickly detect arms with mean > 1

• or maximize profit, minimize regret, etc ...

I running reward: Mk,t =
∏t

j=1 Xk,j1{kj=k}

I complicated dependence due to exploration/exploitation

I M1,τ , . . . ,MK ,τ are e-values for any stopping time τ
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Calibration

I Admissible p-to-e calibrators

• Power calibrators: fκ(p) = κpκ−1 for κ ∈ (0, 1)

• Shafer’s: f (p) = p−1/2 − 1

• Averaging fκ:
∫ 1

0
κpκ−1dκ = 1−p+p ln p

p(− ln p)2

I the only admissible e-to-p calibrator: e → e−1 ∧ 1

Sir Jeffreys

“Users of these tests speak of the 5 per cent. point [p-value

of 5%] in much the same way as I should speak of the K =

10−1/2 point [e-value of 101/2], and of the 1 per cent. point

[p-value of 1%] as I should speak of the K = 10−1 point

[e-value of 10].” (Theory of Probability, p.435, 3rd Ed.)
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Calibration and combination

I The only admissible e-to-p calibrator: e → (1/e) ∧ 1

I Very roughly: p ∼ 1/e

I E-merging functions

• arithmetic average MK : arbitrary dependent

• product PK : independent, sequential

I Using p ∼ 1/e

• arithmetic average of e ≈ harmonic average of p (Wilson’19)

• product of e ≈ product of p (Fisher’48)
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E-merging functions

Theorem 1

Suppose that F is a symmetric e-merging function. Then

F ≤ λ+ (1− λ)MK for some λ ∈ [0, 1], and F is admissible if and

only if F = λ+ (1− λ)MK with λ = F (0).

I For any symmetric e-merging function F :

F (e) > 1 =⇒ MK (e) ≥ F (e).

I Asymmetric e-merging: e 7→ λ · e for λ ∈ ∆K where ∆K is

the standard K -simplex

Vovk-W., E-values: Calibration, combination, and applications.

Annals of Statistics, 2021, Theorem 3.2
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Connection to p-merging

Theorem 2

For any admissible p-merging function F and ε ∈ (0, 1), there exist

(λ1, . . . , λK ) ∈ ∆K and admissible calibrators f1, . . . , fK such that

F (p) ≤ ε ⇐⇒
K∑

k=1

λk fk(pk) ≥ 1

ε
.

If F is symmetric, then there exists an admissible calibrator f such

that

F (p) ≤ ε ⇐⇒ 1

K

K∑
k=1

f (pk) ≥ 1

ε
.

Vovk-Wang-W., Admissible ways of merging p-values under arbitrary dependence.

arXiv: 2007.14208, 2020, Theorem 5.1
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Merging sequential e-values

E-variables E1, . . . ,EK are sequential if Ek is an e-variable

conditional on E1, . . . ,Ek−1 for each k.

I E[Ek | E1, . . . ,Ek−1] ≤ 1 for all k ∈ {1, . . . ,K}
I E-values e1, . . . , eK are obtained by laboratories 1, . . . ,K

I Laboratory k makes sure that its result ek is a valid e-value

given the previous results e1, . . . , ek−1

Definition (se-merging functions)

An se-merging function is an increasing Borel function

F : [0,∞]K → [0,∞] such that F (E1, . . . ,EK ) is an e-variable for

all sequantial e-variables E1, . . . ,EK .

{e-merging} ⊂ {se-merging} ⊂ {ie-merging}
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Test martingales

I Gaming system: a measurable function λ : [0,∞)<K → [0, 1]

I The test martingale associated with the gaming system s and

initial capital c ∈ [0, 1] is the sequence Sk : [0,∞)K → [0,∞)

defined by S0 = c and

Sk+1(e) = Sk(e)
(
λ(e1, . . . , ek)ek+1 + 1− λ(e1, . . . , ek)

)
for k = 0, . . . ,K − 1

I A martingale e-merging function is F = SK for some test

martingale S .

I F and Sk are connected via

Sk(e1, . . . , eK ) = F (e1, . . . , ek , 1, . . . , 1).
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Test martingales

Theorem 3

A martingale e-merging function is an se-merging function, and

each se-merging function is dominated by a martingale e-merging

function (with c = 1).

I connection to testing via betting and confidence sequences
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Test martingales

I s = 1 and c = 1: the test martingale S is given by

Sk(e1, . . . , eK ) = e1 . . . ek ,

and the corresponding martingale e-merging function is the

product

F (e1, . . . , eK ) = e1 . . . eK .

I The arithmetic mean

F (e1, . . . , eK ) =
e1 + · · ·+ eK

K

corresponds to the test martingale

Sk(e1, . . . , eK ) =
e1 + · · ·+ ek + K − k

K
.
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Combining sequential e-values

The general protocol

I Obtain sequential e-values e1, . . . , et , . . .

I Decide a predictable λ1, . . . , λt , · · · ∈ [0, 1]

I Compute the martingale (E0 = 1)

Et = Et−1(1− λt + λtet) =
t∏

s=1

(1− λs + λses)

I Optimal choice of λt : (Waudby-Smith)-Ramdas’20

I The Kelly criterion
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Testing multiple hypotheses

Basic framework

I K hypotheses H1, . . . ,HK

I K = {1, . . . ,K}

I Hk is null if P ∈ Hk

I N ⊆ K: the set of (unknown) indices of null hypotheses

I K0 = |N |; if K0/K ≈ 1 then the signals are sparse

Two settings

I Hk is associated with p-value pk

• pk is realization of Pk (p-variable for P if k ∈ N )

I Hk is associated with e-value ek

• ek is realization of Ek (e-variable for P if k ∈ N )

Ruodu Wang (wang@uwaterloo.ca) E-values and dependence 23/58

wang@uwaterloo.ca


E-values Properties E-BH procedure Simulation Further results Remarks

Testing multiple hypotheses

I A p-testing procedure D : [0, 1]K → 2K gives the indices of

rejected hypotheses based on observed p-values

I An e-testing procedure D : [0,∞]K → 2K gives the indices of

rejected hypotheses based on observed e-values

For a p- or e-testing procedure D:

I RD: number of total discoveries (RD = |D|)
I FD: number of false discoveries (FD = |D ∩ N |)
I False discovery proportion (FDP): FD/RD with 0/0 = 0

I Benjamini-Hochberg’95: control the FDR E[FD/RD] ≤ α

FDRD = E
[
FD
RD

]
= E

[
FD
RD
| RD > 0

]
P(RD > 0)
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The BH procedure

Three input ingredients:

(a) K realized p-values p1, . . . , pK associated to H1, . . . ,HK ,

respectively

(b) an FDR level α ∈ (0, 1)

(c) (optional) dependence information or assumption on p-values,

such as independence, PRDS1 or no information

1PRDS: positive regression dependence on a subset, e.g., jointly Gaussian test

statistics with correlations ≥ 0
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The BH procedure

BH procedure

The (base) Benjamini-Hochberg (BH) procedure D(α) rejects

hypotheses with the smallest k∗ p-values, where

k∗ = max

{
k ∈ K :

Kp(k)

k
≤ α

}
with the convention max(∅) = 0.

FDR dependence

BH’95

BY’01

K0

K
α

independence

PRDS

BY’01 `K
K0

K
α arbitrary (AD)
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E-BH procedure

Three input ingredients:

(a) K realized raw e-values e1, . . . , eK associated to H1, . . . ,HK ,

respectively

(b) an FDR level α ∈ (0, 1)

(c) (optional) distributional information or assumption on e-values

The e-BH procedure can be described in two steps

(1) (optional) boost the raw e-values using information in (c)

(2) apply the base e-BH procedure to the boosted e-values and

level α
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E-BH procedure

I e ′1, . . . , e
′
K : raw or boosted e-values

I e ′[1] ≥ · · · ≥ e ′[K ]: order statistics

I The rough relation e ∼ 1/p ⇒ use 1/e

E-BH procedure

The base e-BH procedure G(α) : [0,∞]K → 2K for α > 0 rejects

hypotheses with the largest k∗e (raw or boosted) e-values, where

k∗e = max

{
k ∈ K :

ke ′[k]

K
≥ 1

α

}
.
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E-BH procedure

Theorem 4

The (full) e-BH procedure has FDR at most K0α/K. In particular,

the base e-BH procedure G(α) directly applied to arbitrary raw

e-values has FDR at most K0α/K.

nice cases general (AD)

p-BH/BY
K0

K
α penalty

e-BH boosting
K0

K
α

W.-Ramdas, False discovery rate control with e-values.

arXiv: 2009.02824, 2020, Theorem 5.1
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Compliant procedures

An e-testing procedure G is said to be compliant at level α ∈ (0, 1)

if every rejected e-value ek satisfies

ek ≥
K

αRG
.

I The base e-BH procedure is compliant and it dominates all

other compliant procedures
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Compliant procedures

Proposition 1

Any compliant e-testing procedure G at level α has FDR at most

αK0/K for arbitrary configurations of e-values.

Proof. For each k ∈ G (i.e., rejected),

Ek ≥
K

αRG
⇐⇒ 1

RG
≤ αEk

K

The FDP of G satisfies

FG
RG

=
|G ∩ N |

RG
=
∑
k∈N

1{k∈G}

RG
≤
∑
k∈N

1{k∈G}αEk

K
≤
∑
k∈N

αEk

K
.

As E[Ek ] ≤ 1 for k ∈ N ,

E
[
FG
RG

]
≤
∑
k∈N

E
[
αEk

K

]
≤ αK0

K
.
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Compliant procedures

I General compliant p-testing procedures do not have this

property even if p-values are independent

I For independent p-values, a compliant p-testing procedure at

α has a weaker FDR guarantee α(1 + log(1/α)) > α (Su’18)

Compliance is useful in

I data-driven structured settings

I post-selection testing

I group testing

I multi-armed bandit problems
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Boosting

Define T (x) as the largest value in (K/K) ∪ {0} dominated by x :

T (x) =
K

dK/xe
1{x≥1} with T (∞) = K .

From

k∗e = max

{
k ∈ K : αe ′[k] ≥

K

k

}
,

I αEk can be safely replaced by T (αEk)

I It suffices to require T (αEk)/α to be an e-value
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Boosting

For each k ∈ K, take a boosting factor bk ≥ 1 such that

max
x∈K/K

xP(αbkEk ≥ x) ≤ α if e-values are PRDS

E[T (αbkEk)] ≤ α otherwise (AD)

and let e ′k = bkek .

I E and P are computed under the null distribution of Ek

I Composite null: require for all probability measures in Hk

I bk = 1 is always valid

I Non-linear boosting is also possible

I e′ may not have the same order as e.
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Boosting

Example.

I For λ ∈ (0, 1)

Ek = λPλ−1
k ,

where Pk is standard uniform if k ∈ N

I yα ≤ (λλα)1/(1−λ)

I λ = 1/2 =⇒ yα ≤ α2/2

I α = 0.05, λ = 1/2

• bk ≈ 6.32 (AD)

• bk ≈ 8.94 (PRDS)
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Boosting

Example.

I For δ > 0,

Ek = eδXk−δ2/2,

where Xk is standard normal if k ∈ N
I α = 0.05, δ = 3

• b ≈ 1.37 (AD)

• b ≈ 7.88 (PRDS)
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A multi-armed bandit problem

Problem setting

I K arms each with a reward X k ≥ 0

I Pulling arm k produces an iid sample (X k
1 ,X

k
2 , . . . ) from X k

I Null hypotheses: E[Xk ] ≤ 1, k ∈ K

I Arms have to be pulled in order and previous arms cannot be

revisited

I An arm can be pulled at most n times (budget)

I Goal: detect non-null arms as quickly as possible

I Example: investment opportunities; medical experiment
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A multi-armed bandit problem

The e-value ek,j and the p-value pk,j are realized by, respectively,

Ek,j :=

j∏
i=1

X k
i and Pk,j :=

(
max

i=1,...,j
Ek,i

)−1

(p ≤ 1/e)

Algorithm

I Select a p- or e-testing procedure D and start with e = p = 1

I For arm k, stop at Tk such that either D produces a new

discovery or Tk = n

I Update e-values or p-values and move to arm k + 1

The final e-variables Ek and p-variables Pk are obtained by

Ek = Ek,Tk
and Pk = Pk,Tk

, k = 1, . . . ,K .
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A multi-armed bandit problem

Table: Conditions for the validity of the testing algorithm

AD data AD stopping FDR guarantee in

across arms rules Tk our experiments

e-BH YES YES valid at level αK0/K

BH NO NO not valid

BY YES YES valid at level αK0/K

cBH NO YES valid at level αK0/K

Consider BH, e-BH, BY and compliant BH (cBH) procedures

I BY: D(α1) where α1`K = α (Benjamini-Yekutieli’01)

I cBH: D(α2) where α2(1 + log(1/α2)) = α (Su’18)
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A multi-armed bandit problem

Data generating process

I More promising arms come first: arm k is non-null with

probability θ(K − k + 1)/(K + 1), θ ∈ [0, 1]

I The expected number of non-nulls in this setting is θ/2

I sk ∼ Expo(µ) is the strength of signal for arm k

I Conditional on sk ,

X k
1 , . . . ,X

k
n

iid∼ X k = exp
(
Z k + sk1{k∈K\N} − 1/2

)
where Z 1, . . . ,ZK are iid standard normal

I Set α = 0.05 and θ = 0.5 (⇒ K0α/K ≈ 3.75%)
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A multi-armed bandit problem

Table: R = #{rejected hypothesis}, B% = %(unused budget), TD = #{true discoveries}. Each number is

computed over an average of 500 trials. Default values: K = 500, n = 50 and µ = 1.

(a) Default

R B% TD FDP%

e-BH 74.4 11.42 73.2 1.58

BH 77.0 11.44 75.3 2.13

BY 70.6 10.06 70.4 0.31

cBH 71.1 10.16 70.8 0.36

(b) K = 2000

R B% TD FDP%

297.6 11.39 293.2 1.48

307.8 11.41 301.4 2.07

281.2 9.95 280.4 0.26

284.5 10.15 283.5 0.36

(c) n = 10

R B% TD FDP%

47.7 3.99 47.3 0.83

49.3 4.01 48.7 1.06

38.4 2.77 38.4 0.08

39.2 2.85 39.2 0.11

(d) n = 100

R B% TD FDP%

e-BH 79.1 13.48 77.9 1.50

BH 81.3 13.50 79.5 2.13

BY 76.4 12.36 76.1 0.35

cBH 76.7 12.44 76.4 0.41

(e) µ = 0.5

R B% TD FDP%

43.5 5.77 42.9 1.54

46.3 5.80 45.3 2.13

39.6 4.66 39.5 0.27

40.1 4.74 40.0 0.35

(f) µ = 2

R B% TD FDP%

97.4 16.46 95.9 1.54

99.3 16.47 97.2 2.07

94.3 15.23 94.1 0.29

94.6 15.32 94.3 0.35
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Correlated z-tests

I Xk ∼ N(0, 1) if k ∈ N

I Xk ∼ N(δ, 1) if k 6∈ N , δ < 0

I X1, . . . ,XK are jointly Gaussian

I E-values from likelihood ratios

Ek = exp(δXk − δ2/2)

I P-values from Neyman-Pearson tests

Pk = Φ(Xk)

I Set δ = −3
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Correlated z-tests

Table: Simulation results for correlated z-tests, where ρi,j is the correlation between two test

statistics Xi and Xj for i 6= j . Each cell gives the number of rejections and, in parentheses, the

realized FDP (in %). Each number is computed over an average of 1,000 trials.

(a) Independent and positively correlated tests, K = 1000, K0 = 800

ρij = 0 ρij = 0.5

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 177.3 (8.01) 148.7 (4.07) 115.0 (1.63) 180.0 (7.00) 144.8 (3.64) 109.8 (1.50)

e-BH PRDS 171.8 (7.07) 147.6 (3.95) 114.6 (1.62) 170.2 (5.71) 142.5 (3.35) 108.0 (1.50)

BY 101.1 (1.10) 78.8 (0.57) 53.2 (0.22) 96.6 (1.03) 76.7 (0.50) 55.0 (0.20)

e-BH AD 109.4 (1.41) 85.4 (0.68) 54.6 (0.24) 103.1 (1.32) 81.4 (0.70) 56.6 (0.28)

base e-BH 97.5 (1.00) 70.6 (0.43) 36.9 (0.11) 91.9 (0.97) 69.1 (0.45) 43.6 (0.16)
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Correlated z-tests

(b) Independent tests with large number of hypotheses

K = 20, 000, K0 = 10, 000 K = 20, 000, K0 = 19, 000

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 9567 (5.00) 8564 (2.49) 7164 (1.00) 681.3 (9.58) 520.2 (4.79) 357.7 (1.93)

e-BH PRDS 9092 (3.60) 8330 (2.13) 7124 (0.98) 681.3 (9.58) 509.3 (4.54) 312.1 (1.40)

BY 5956 (0.48) 4818 (0.24) 3417 (0.10) 254.1 (0.89) 177.6 (0.46) 103.1 (0.19)

e-BH AD 6811 (0.80) 5809 (0.44) 4384 (0.18) 271.0 (1.02) 159.5 (0.39) 51.4 (0.07)

base e-BH 6426 (0.64) 5234 (0.31) 3509 (0.10) 224.8 (0.69) 109.2 (0.21) 16.4 (0.01)

(c) Negatively correlated tests, K = 1000, K0 = 800.

ρij = −1/(K − 1) ρij = −0.51{|i−j |=1}

α = 10% α = 5% α = 2% α = 10% α = 5% α = 2%

BH 177.7 (8.14) 149.0 (4.09) 115.2 (1.61) 177.2 (8.10) 148.8 (4.00) 115.3 (1.62)

e-BH PRDS 172.0 (7.13) 147.9 (3.98) 114.9 (1.59) 171.5 (7.13) 147.7 (3.89) 114.9 (1.61)

BY 101.2 (1.08) 78.8 (0.52) 53.3 (0.20) 101.3 (1.11) 78.8 (0.56) 53.2 (0.22)

e-BH AD 109.7 (1.38) 85.5 (0.65) 54.6 (0.22) 109.8 (1.40) 85.6 (0.69) 54.6 (0.24)

base e-BH 97.8 (0.98) 70.7 (0.40) 37.2 (0.11) 97.6 (0.99) 70.7 (0.41) 36.7 (0.12)
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Weighted e-BH

Take w1, . . . ,wK ≥ 0 such that w1 + · · ·+ wK = K : One can

I use (w1e1, . . . ,wKeK ) as the input e-values

I boost via

max
x∈K/K

xP(αbkEk ≥ x) ≤ wkα if e-values are PRDS

E[T (αbkEk)] ≤ wkα otherwise (AD)

I use random (w1, . . . ,wK ) independent of the e-values with

E[w1 + · · ·+ wK ] = K (prior information)

The same applies for compliant e-testing procedures
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A class of e-testing procedures

I An increasing transform φ : [0,∞]→ [0,∞] is strictly

increasing and continuous with φ(∞) =∞ and φ(0) < 1

E-testing procedure G(φ)

Define G(φ) by rejecting k∗e,φ hypotheses with the largest e-values,

where k∗e,φ = max
{
k ∈ K : kφ(e[k])/K ≥ 1

}
.

I φ : t 7→ αt =⇒ base e-BH
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A class of e-testing procedures

Theorem 5

Fix α ∈ (0, 1) and K. For any increasing transform φ, if G(φ)

satisfies

E
[
FG(φ)

RG(φ)

]
≤ α

for arbitrary configurations of e-values, then G(φ) ⊆ G(α).

I The base e-BH procedure is optimal among G(φ) with the

same FDR guarantee

Ruodu Wang (wang@uwaterloo.ca) E-values and dependence 49/58

wang@uwaterloo.ca


E-values Properties E-BH procedure Simulation Further results Remarks

Applying e-BH to p-values

I A decreasing transform ψ : [0, 1]→ [0,∞] is a strictly

decreasing and continuous function with ψ(0) =∞

P-testing procedure D(ψ)

Define D(ψ) by rejecting k∗ψ hypotheses with the largest e-values,

where k∗ψ = max
{
k ∈ K : kψ(p(k))/K ≥ 1

}
.

I ψ : p 7→ α/p =⇒ base BH

I equivalent to step-up methods of Benjamini-Yekutieli’01
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E-BH for p-values

Proposition 2

For arbitrary p-values and a decreasing transform ψ, the testing

procedure D(ψ) satisfies

E
[
FD(ψ)

RD(ψ)

]
≤ K0

K
zψ,

where

zψ = max
t∈K/K

tψ−1(t) if p-values are PRDS,

zψ = ψ−1(1) +
K−1∑
j=1

K

j(j + 1)
ψ−1(K/j) otherwise (AD).
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E-BH for p-values

I For ψ : p → α/p,

ψ(p(k)) ≥ K

k
⇐⇒

Kp(k)

k
≤ α.

I D(ψ) = D(α)

I If p-values are PRDS, then zψ = α (Benjamini-Hochberg’95)

I Otherwise (Benjamini-Yekutieli’01)

zψ = α +
K−1∑
j=1

α

j + 1
= α`K
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E-BH for p-values

(PRDS) t 7→ tψ−1(t) is decreasing on [1,∞) =⇒ zψ = ψ−1(1) (D)

Proposition 3

Fix α ∈ (0, 1) and K. For any decreasing transform ψ, if D(ψ)

satisfies

E
[
FD(ψ)

RD(ψ)

]
≤ α

for arbitrary configurations of PRDS p-values, then ψ−1(1) ≤ α.

Moreover, if ψ satisfies (D), then D(ψ) ⊆ D(α).

I For PRDS p-values, the BH procedure is the most powerful

among all D(ψ) satisfying (D) with the same FDR guarantee.
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Some features of e-BH

The e-BH procedure

(1) works for AD e-values;

(2) requires no information on the configuration of the input

e-values, and works well for weighted e-values;

(3) allows for power boosting if partial distributional information is

available on some e-values;

(4) gives rise to a class of p-testing procedure which include both

BH and BY as special cases;

(5) is optimal among a class of e-testing procedures under AD
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Advantages of e-values

I Validity for arbitrary dependence ⇒ expectation

I Validity for optional stopping times ⇒ martingale

I Any p-value can be realized by sup of a continuous-time test

martingale

E-values are a useful tool even if one is only interested in p-values

I Easy to combine

I Flexible to stop/continue (online testing; unfixed sample size)

I Non-asymptotic and often model-free

Ramdas-Ruf-Larsson-Koolen’20, Shafer-Shen-Vereshchagin-Vovk’11
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Future work

I E-values in risk management

• model-free e-backtesting risk measures

I FDR and other false discovery methods with p/e-values

Conjecture

Every monotone and symmetric p-testing procedure D with α-FDR

for arbitrary dependence (like BY) is dominated by e-BH at level α

applied to some calibrators.
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Thank you for your attention

Working paper series on e-values: http://www.alrw.net/e/
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