Optimal transport

Simultaneous Optimal Transport

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Economics Seminar, Bielefeld University November 30, 2021 (online)

Agenda

- Optimal transport
- 2 Simultaneous transport
- Technical properties
- Wasserstein distance
- 5 An equilibrium model
- 6 Future directions

Based on joint work with Zhenyuan Zhang (Stanford)

Transport theory

Optimal transport

•000000000

- ▶ Pure mathematics theory
- Important applications
 - economics
 - decision theory
 - finance
 - engineering
 - operations research
 - physics
- ▶ 1 Nobel Prize laureate
- 2 Fields medalists

Monge's formulation

▶ Monge's problem: find a transport map $T: X \rightarrow Y$ that attains

$$\inf \left\{ \int_{X} c(x, T(x)) \, \mathrm{d}\mu(x) \, \middle| \, T_{\#}\mu = \nu \right\}$$

where

- X and Y are two Polish spaces (main example: \mathbb{R}^d)
- Cost function $c: X \times Y \to [0, \infty]$ or $(-\infty, \infty]$
- probability measures $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ are given
- $T_{\#}\mu = \mu \circ T^{-1}$ is the push forward of μ by T
- ► Such T is an optimal transport map

Gaspard Monge 1746-1818

Le mémoire sur les déblais et les remblais (The note on land excavation and infill)

Kantorovich's formulation

- Monge's formulation may be ill-posed (e.g., point masses)
- ► Kantorovich's problem: find a probability measure $\pi \in \mathcal{P}(X \times Y)$ that attains

$$\inf\bigg\{\int_{X\times Y}c(x,y)\,\pi(\mathrm{d} x,\mathrm{d} y)\mid \pi\in\Pi(\mu,\nu)\bigg\},$$

where $\Pi(\mu,\nu)$ is the set of probability measures on $X\times Y$ with marginals μ and ν

- $X \times Y = \mathbb{R} \times \mathbb{R}$: copulas and dependence
- Discrete version: linear programming

Simultaneous transport Properties Wasserstein distance Equilibrium Extensions

Kantorovich's formulation

Optimal transport

0000000000

Leonid Kantorovich 1912-1986

Kernel formulation

Optimal transport

0000000000

▶ Kernel formulation: find a transport kernel $\kappa: X \to \mathcal{P}(Y)$ that attains

$$\inf \left\{ \int_{X \times Y} c(x,y) (\mu \otimes \kappa) (\mathrm{d} x,\mathrm{d} y) \mid \kappa \in \mathcal{K}(\mu,\nu) \right\}$$

where $\mathcal{K}(\mu, \nu)$ is the set of all stochastic kernels κ such that

$$\kappa_{\#}\mu := \int_{X} \kappa(x)\mu(\mathrm{d}x) = \nu$$

- $(\mu \otimes \kappa)(A) = \int_A \kappa(x, dy) \mu(dx)$
- $\blacktriangleright \ \mu \otimes \kappa = \pi \in \Pi(\mu, \nu)$
- $\kappa(x) = \nu$ for each $x \in X$: independent coupling

Equilibrium

Transport duality

Optimal transport

0000000000

If c is non-negative and lower semi-continuous, then duality holds

$$\min_{\pi \in \Pi(\mu,\nu)} \int_{X \times Y} c \, \mathrm{d}\pi = \sup \left(\int_X \phi \, \mathrm{d}\mu + \int_Y \psi \, \mathrm{d}\nu \right),$$

where the supremum runs over all pairs of bounded and continuous functions $\phi:X\to\mathbb{R}$ and $\psi:Y\to\mathbb{R}$ such that

$$\phi(x) + \psi(y) \leqslant c(x, y).$$

Economic interpretation

- $\triangleright x \in X$: the vector of characteristics of a worker
- \triangleright $y \in Y$: the vector of characteristics of a firm
- \triangleright g(x, y) the economic output (production) generated by worker x matched with firm y
- Social economic-output maximization

$$\sup \left\{ \int_{X \times Y} g \, \mathrm{d}\pi \mid \pi \in \Pi \left(\mu, \nu \right) \right\}$$

- ▶ Dual problem $g(x, y) \leq \phi(x) + \psi(y)$: social equilibrium
 - ϕ : the equilibrium wage function
 - ψ : the equilibrium profit function

On the cost function

Optimal transport

0000000000

Assume $X = Y = \mathbb{R}$.

▶ If c is submodular, i.e.,

$$c(x,y)+c(x',y')\leqslant c(x,y')+c(x',y)$$
 for $x\leqslant x'$ and $y\leqslant y',$

the optimal transport is comonotone. Examples:

- $c(x, y) = (y x)^2$
- $c(x,y) = -\mathbb{1}_{\{(x,y) \leq (x_0,y_0)\}}$
- c(x, y) = f(x) + g(y) + h(y x) where h is convex
- ▶ If c is supermodular, the optimal transport is antitone (counter-monotonic).
- ▶ $c(x, y) = \mathbb{1}_{\{y-x>d_0\}}$: probability of transport distance $> d_0$

Probabilistic formulation

Optimal transport

000000000

For random variables $L \sim \mu$ and $R \sim \nu$

► Classic optimal transport (OT)

$$\inf_{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)]$$

► Martingale optimal transport (MOT)

$$\inf_{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)] : L = \mathbb{E}[R|L]$$

Supermartingale optimal transport (SMOT)

require: $\mu \succeq_{ssd} \nu$

require: $\mu \prec_{cx} \nu$

Extensions

$$\inf_{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)] : L \geqslant \mathbb{E}[R|L]$$

▶ Directional optimal transport (DOT)

require: $\mu \leq_{\rm st} \nu$

12/62

$$\inf_{L \sim \mu, R \sim \nu} \mathbb{E}[c(L, R)] : L \leqslant R$$

MOT: Beiglböck/Henry-Labordère/Penkner'13 F&S; Beiglböck/Juillet'16 AoP

- Simultaneous transport

Simultaneous transport

Optimal transport

- $\bullet d \in \mathbb{N}, \ \mu = (\mu_1, \dots, \mu_d) \in \mathcal{P}(X)^d, \ \nu = (\nu_1, \dots, \nu_d) \in \mathcal{P}(Y)^d$
- ▶ A transport plan from μ to ν sends μ_i to ν_i for all $j \in \{1, \dots, d\}$ simultaneously
- ▶ The set of all Monge transports from μ to ν

$$\mathcal{T}(\mu,\nu) = \{T : X \to Y \mid T_{\#}\mu = \nu\}$$

▶ The set of all transport kernels κ such that $\kappa_{\#}\mu = \nu$

$$\mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \bigcap_{j=1}^d \mathcal{K}(\mu_j, \nu_j)$$

Existence not guaranteed; Kantorovich formulation unclear

All equalities and inequalities are component-wise

Motivating example 1: rocket planning

Optimal transport

m Mars bases and n space stations several types of resources to be transported by rockets

Motivating example 1: rocket planning

Optimal transport

- ▶ Each base j supplies $\mu_A(j)$ units of A and $\mu_B(j)$ units of B
- ▶ Each station k needs $\nu_A(k)$ units of A and $\nu_B(k)$ units of B
- Assume supply-demand clearance

$$\sum_{j=1}^{m} \mu_{A}(j) = \sum_{k=1}^{n} \nu_{A}(k) = \sum_{j=1}^{m} \mu_{B}(j) = \sum_{k=1}^{n} \nu_{B}(k) = 1$$

- A transport plan is an arrangement to send resources from bases to stations to meet their needs
- ► Single trips: cannot transport among stations or among bases
- ► Transport costs: rockets and fuel (propellant)
- $ightharpoonup \mathcal{T}((\mu_A, \mu_B), (\nu_A, \nu_B))$: one base supplies only one station

Ruodu Wang

 Simultaneous transport 0000 0000000
 Properties 000000000
 Wasserstein distance 00000000
 Equilibrium 000000
 Extensions 000000

Motivating example 1: rocket planning

Optimal transport

Figure: Simultaneous transport in the Monge setting; red and blue represent different types of resources

Transport several types of products from factories to retailers

- Kernel setting $\mathcal{K}(\mu, \nu)$
- Allowing one factory to supply multiple retailers

Assumptions

- supply-demand clearance
- products are bundled and can only divided proportionally
 - e.g., personnel, skills, boxed packages, cargo specification

Motivating example 2: product distribution

Figure: Simultaneous transport in the kernel setting

Cost

Optimal transport

How do we model the cost?

- ▶ Cost function $c: X \times Y \to [0, +\infty]$
- ▶ Classic setting: for $T \in \mathcal{T}(\mu, \nu)$ or $\kappa \in \mathcal{K}(\mu, \nu)$,

$$C(T) = \int_{X} c(x, T(x)) \mu(dx)$$
$$C(\kappa) = \int_{X \times Y} c \, d(\mu \otimes \kappa)$$

- \triangleright Simultaneous transport: what should take the place of μ ?
- ▶ Baseline measure $\eta \in \mathcal{M}(X)$, $\eta \ll \bar{\mu}$ (no transport \Rightarrow no cost)

Cost

Optimal transport

▶ Transport cost for $T \in \mathcal{T}(\mu, \nu)$ or $\kappa \in \mathcal{K}(\mu, \nu)$,

$$C_{\eta}(T) = \int_{X} c(x, T(x)) \eta(\mathrm{d}x)$$
$$C_{\eta}(\kappa) = \int_{X \times Y} c \, \mathrm{d}(\eta \otimes \kappa)$$

- \triangleright η may not be linear in μ , e.g., petrol cost is nonlinear in weights
- If $\mathcal{T}(\mu,\nu)$ or $\mathcal{K}(\mu,\nu)$ is empty, then the cost is set to ∞
- Special case: $\eta = \bar{\mu}$
- Optimal transport:

$$\inf_{T \in \mathcal{T}(\mu, \nu)} \mathcal{C}_{\eta}(T) \quad \text{or} \quad \inf_{\kappa \in \mathcal{K}(\mu, \nu)} \mathcal{C}_{\eta}(\kappa)$$

Optimal transport

Scenario-based risk measures (W.-Ziegel'21 F&S)

- \triangleright \mathcal{X} the space of random variables on Ω and $\mu_1, \ldots, \mu_d \in \mathcal{P}(\Omega)$
- ▶ A μ -based risk measure $\rho: \mathcal{X} \to \mathbb{R}$ is such that $\rho(L)$ is determined by the distribution of L under μ
 - d=1: law-invariant under μ
- ▶ Define $\mathcal{X}_{\mu}(L) = \{R \in \mathcal{X} : R_{\#}\mu = L_{\#}\mu\}$
- $ightharpoonup R_{\#}\mu = L_{\#}\mu$ means $R \stackrel{\text{law}}{=} L$ under each μ_i for $i = 1, \ldots, d$
- Any μ -based risk measure is constant on each $\mathcal{X}_{\mu}(L)$

Motivating example 3: risk measures

▶ For $\eta \ll \bar{\mu}$, the mapping

Optimal transport

$$\rho(L) = \sup \left\{ \mathbb{E}^{\eta}[R] : R \in \mathcal{X}_{\mu}(L) \right\}, \quad L \in \mathcal{X}$$

is a μ -based risk measure (coherent distortion if d=1)

- d = 1: Kusuoka'01 representation of coherent risk measures
- The optimization problem

$$\rho(L) = \sup \left\{ \mathbb{E}^{\eta}[R] : R_{\#} \boldsymbol{\mu} = L_{\#} \boldsymbol{\mu} \right\}$$

is a Monge transport problem with cost c(x,y)=-y, baseline measure η , and $oldsymbol{
u}=L_{\#}oldsymbol{\mu}$

Equilibrium

Optimal transport

Motivating example 4: cost-efficient payoffs

- $\triangleright \eta$ is a pricing measure
- d agents need to jointly purchase a payoff R
- Agent j needs R to have a distribution ν_i and uses model μ_i
- Problem: find the cheapest R

$$\min \left\{ \mathbb{E}^{\eta}[R] : R_{\#} \mu = \nu \right\}$$

ightharpoonup d = 1: Fréchet-Hoeffding; Dybvig'88 JB

Optimal transport

Motivating example 5: Markovian embedding

- ▶ An \mathbb{R}^d -valued Markov process $\xi = (\xi_t)_{t=1,...,T}$
- ξ has marginal distributions $\mu_1, \ldots, \mu_T \in \mathcal{P}(\mathbb{R}^d)$
- ▶ The Markov kernel κ_t of ξ : $(\xi_{t+1} \mid \xi_t = x) \stackrel{\text{law}}{\sim} \kappa_t(x)$
- ▶ Time-homogeneity: $\kappa = \kappa_t$ does not depend on t
- $\kappa \in \mathcal{K}(\mu_t, \mu_{t+1}) \text{ for } t = 1, \ldots, T-1$
- $ightharpoonup \kappa \in \mathcal{K}(\mu,
 u)$ with $\mu = (\mu_1, \dots, \mu_{T-1})$ and $u = (\mu_2, \dots, \mu_T)$
 - with fixed marginals, each κ corresponds to a time-homogeneous Markov process

- Technical properties

Inequalities

Optimal transport

- $ightharpoonup \Delta_d$: the standard simplex in \mathbb{R}^d
- ▶ Each κ transports each $\lambda \cdot \mu$ to $\lambda \cdot \nu$ for $\lambda \in \Delta_d$

$$\mathcal{K}(oldsymbol{\mu},oldsymbol{
u})\subseteqigcap_{oldsymbol{\lambda}\in\Delta_d}\mathcal{K}(oldsymbol{\lambda}\cdotoldsymbol{\mu},oldsymbol{\lambda}\cdotoldsymbol{
u})$$

$$\inf_{\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathcal{C}_{\boldsymbol{\eta}}(\kappa) \geqslant \sup_{\boldsymbol{\lambda} \in \Delta_d} \inf_{\kappa \in \mathcal{K}(\boldsymbol{\lambda} \cdot \boldsymbol{\mu}, \boldsymbol{\lambda} \cdot \boldsymbol{\nu})} \mathcal{C}_{\boldsymbol{\eta}}(\kappa) \geqslant \inf_{\kappa \in \mathcal{K}(\bar{\boldsymbol{\mu}}, \bar{\boldsymbol{\nu}})} \mathcal{C}_{\boldsymbol{\eta}}(\kappa)$$

not sharp in general

Equilibrium

Inequalities

Optimal transport

- ▶ d = 2
- $\tilde{\mu}_1 = (\mu_1 \mu_2)_+$, and similar

$$\inf_{\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathcal{C}_{\eta}(\kappa) \geqslant \inf_{\substack{\kappa \in \mathcal{K}(\boldsymbol{\mu}, \tilde{\nu}_1) \\ \boldsymbol{\mu} \leqslant \tilde{\mu}_1}} \mathcal{C}_{\eta}(\kappa) + \inf_{\substack{\kappa \in \mathcal{K}(\boldsymbol{\mu}, \tilde{\nu}_2) \\ \boldsymbol{\mu} \leqslant \tilde{\mu}_2}} \mathcal{C}_{\eta}(\kappa)$$

Figure: shaded $\tilde{\mu}_1$ covers shaded $\tilde{\nu}_1$; grey $\tilde{\mu}_2$ covers grey $\tilde{\nu}_2$

Inequalities

Optimal transport

- \blacktriangleright Both inequalities are sharp if μ is mutually singular
- ▶ Transport problem is back to d = 1 if
 - μ is mutually singular, or
 - μ and ν both have identical components
- ► Generally, there is no symmetry between X and Y

The role of η

If
$$c'(x,y) = c(x,y) + \phi(x) + \psi(y) \cdot \frac{\mathrm{d}\mu}{\mathrm{d}\eta}(x)$$
, then
$$\int_{X \times Y} c' \, \mathrm{d}(\eta \otimes \kappa) = \int_{X \times Y} c \, \mathrm{d}(\eta \otimes \kappa) + \underbrace{\int_{X} \phi \, \mathrm{d}\eta + \int_{Y} \psi^{\top} \mathrm{d}\nu}_{\text{does not depend on } \kappa}$$

Classic setting (d=1): if $c(x,y) = \phi(x) + \psi(y)$ then $\int c d(\mu \otimes \kappa)$ does not depend on κ

Example

Optimal transport

- X = Y = [0,1]
- Assume $\mathcal{K}(\mu, \nu)$ is nonempty

Figure: An example of densities of μ and ν , d=2

Examples

Optimal transport

- $c(x,y) = (x-y)^2$
- take $\phi(x) = x^2$, $\psi_1(y) = -y$, $\psi(y) = y^2$

Decomposition holds

$$c(x,y) = \phi(x) + \underbrace{\psi_1(y) \frac{\mathrm{d}\mu_1}{\mathrm{d}\bar{\mu}}(x)}_{-2xy} + \psi(y)$$

$$\implies \int c d(\bar{\mu} \otimes \kappa) = \int_X x^2 \bar{\mu}(dx) - \int_Y y \nu_1(dy) + \int_Y y^2 \bar{\nu}(dy)$$

- ▶ all transports have the same cost
- no optimal comonotone transport
- the two inequalities are not sharp

Existence

Optimal transport

Definition 1 (Shen-Shen-Wang-W.'19 F&S)

Let $\mu \in \mathcal{P}(X)^d$ and $\nu \in \mathcal{P}(Y)^d$.

- ▶ Write $\mu \succeq_h \nu$ (heterogeneity) if there exist $\mu \gg \mu$ and $\nu \gg \nu$ such that $d\mu/d\mu \geqslant_{cx} d\nu/d\nu$ where \geqslant_{cx} is the convex order.
- $ightharpoonup \mu$ is jointly atomless if there exist $\mu \gg \mu$ and a random variable L such that under μ , L is continuously distributed and independent of $\mathrm{d}\mu/\mathrm{d}\mu$.
- ightharpoonup d = 1 recovers classic non-atomicity
- ▶ called conditional atomless by Shen-Shen-Wang-W.'19
- $\blacktriangleright \mu, \nu$ can be chosen as $\bar{\mu}, \bar{\nu}$

Existence

Proposition 1 (Torgersen'91; Shen-Shen-Wang-W.'19)

Let $\mu \in \mathcal{P}(X)^d$ and $\nu \in \mathcal{P}(Y)^d$.

- (i) The set $\mathcal{K}(\mu, \nu)$ is nonempty if and only if $\mu \succeq_h \nu$.
- (ii) Assume that μ is jointly atomless. The set $\mathcal{T}(\mu, \nu)$ is nonempty if and only if $\mu \succ_h \nu$.
 - $\blacktriangleright \mathcal{K}(\mu, \nu), \mathcal{K}(\nu, \eta)$ nonempty $\Longrightarrow \mathcal{K}(\mu, \eta)$ nonempty

Joint non-atomicity

Remarks.

Optimal transport

- ▶ Let $\mu' = \mathrm{d}\mu/\mathrm{d}\bar{\mu}$ and $\nu' = \mathrm{d}\nu/\mathrm{d}\bar{\nu}$
- $ightharpoonup \mathcal{K}(\mu, \nu), \, \mathcal{K}(\nu, \mu)$ nonempty $\iff \mu' \stackrel{\mathrm{law}}{=} \nu'$ (wrt $\bar{\mu}$ and $\bar{\nu}$ resp.)
- $ightharpoonup \mathcal{K}(\mu,
 u)$ nonempty and μ identical $\Longrightarrow
 u$ identical
- $lacktriangleright \mathcal{K}(\mu,
 u)$ nonempty and μ equivalent $\Longrightarrow
 u$ equivalent
- $ightarrow \mathcal{K}(\mu,
 u)$ nonempty and u mutually singular $\Longrightarrow \mu$ mutually singular
- ightharpoonup
 u identical $\Longrightarrow \mathcal{K}(\mu, \nu)$ nonempty for all μ
- $ightharpoonup \mu$ mutually singular $\Longrightarrow \mathcal{K}(\mu, \nu)$ nonempty for all ν

Equilibrium

Joint non-atomicity

Optimal transport

Definition 2 (Delbaen'21 F&S)

Let $(\Omega, \mathcal{G}, \mu)$ be a measure space. We say that (\mathcal{G}, μ) is atomless conditionally to the sub- σ -field $\mathcal{F} \subseteq \mathcal{G}$, if for all $A \in \mathcal{G}$ with $\mu(A) > 0$, there exists $A' \subseteq A$, $A' \in \mathcal{G}$, such that

$$\mathbb{E}^{\mu}[\mathbb{1}_A|\mathcal{F}]>0 \implies 0<\mathbb{E}^{\mu}[\mathbb{1}_{A'}|\mathcal{F}]<\mathbb{E}^{\mu}[\mathbb{1}_A|\mathcal{F}].$$

Lemma 1 (Delbaen'21)

Let μ be any strictly positive convex combination of $\mu \in \mathcal{P}(X)^d$. Then μ is jointly atomless if and only if $(\mathcal{B}(X), \mu)$ is atomless conditionally to $\sigma(\mathrm{d}\mu/\mathrm{d}\mu)$.

Kantorovich formulation

Define

Optimal transport

$$\Pi_{\eta}(\boldsymbol{\mu}, \boldsymbol{
u}) = \{ \eta \otimes \kappa \mid \kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{
u}) \}$$

▶ If $\eta \sim \bar{\mu}$, it is

$$\left\{\pi \in \mathcal{P}(X \times Y) \mid \pi_X = \eta, \int_X \frac{\mathrm{d}\boldsymbol{\mu}}{\mathrm{d}\eta}(x)\pi(\mathrm{d}x,\mathrm{d}y) = \boldsymbol{\nu}(\mathrm{d}y)\right\}$$

where π_X is the first marginal of π

- Omit η if $\eta = \bar{\mu}$: $\Pi(\mu, \nu) = \Pi_{\bar{\mu}}(\mu, \nu)$
- Cost

$$\mathcal{C}(\pi) := \int_{X \times Y} c \, \mathrm{d}\pi = \mathcal{C}_{\eta}(\kappa)$$

 \blacktriangleright π no longer has specified second marginal, unless η is a linear function of μ

Equilibrium

Monge vs Kantorovich

Theorem 1

Optimal transport

Suppose that X and Y are compact, μ is jointly atomless, and c is continuous. Then

$$\inf_{\kappa \in \mathcal{K}(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathcal{C}_{\eta}(\kappa) = \inf_{T \in \mathcal{T}(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathcal{C}_{\eta}(T).$$

Remarks on joint non-atomicity.

- lacktriangledown classic non-atomicity $(d=1) \Longleftrightarrow \exists$ uniform rv joint non-atomicity $\Longleftrightarrow \exists$ uniform rv independent of $\mathrm{d}m{\mu}/\mathrm{d}ar{\mu}$
- In both settings of non-atomicity
 - \exists Monge transport $\iff \exists$ Kantorovich transport
 - Monge infimum Kantorovich infimum

Duality

Optimal transport

Theorem 2

Suppose that X,Y are compact, $\eta \sim \bar{\mu}$, and $c: X \times Y \to [0,+\infty]$ is lower semi-continuous. Duality holds as

$$\min_{\pi \in \Pi_{\eta}(\mu, \nu)} \int_{X \times Y} c \, \mathrm{d}\pi = \sup_{(\phi, \psi) \in \Phi_c} \int_X \phi \, \mathrm{d}\eta + \int_Y \psi^\top \, \mathrm{d}\nu,$$

where

$$\Phi_c = \left\{ (\phi, \psi) \in C(X) \times C(Y)^d \mid \phi(x) + \psi(y) \cdot \frac{\mathrm{d} \mu}{\mathrm{d} \eta}(x) \leqslant c(x, y) \right\}.$$

- d=1 and $\eta=\bar{\mu}$: classic duality (but with compactness)
- duality holds for $X=Y=\mathbb{R}^N$ if $\mathrm{d}\eta/\mathrm{d}\bar{\mu}$ is bounded

Ruodu Wang

Uniqueness of the transport

ho $\mu' = \mathrm{d} \mu/\mathrm{d} \bar{\mu}$ and $\nu' = \mathrm{d} \nu/\mathrm{d} \bar{\nu}$

Theorem 3

Optimal transport

Suppose that both $\Pi(\mu, \nu)$ and $\Pi(\nu, \mu)$ are nonempty and μ' is injective on the support of μ .

- (i) There exist a unique $\pi \in \Pi(\mu, \nu)$ and a unique $\tilde{\pi} \in \Pi(\nu, \mu)$.
- (ii) $\pi(A \times B) = \tilde{\pi}(B \times A)$ for all $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$.
- (iii) $\pi(\{(x,y) \mid \mu'(x) \neq \nu'(y)\}) = 0.$

Remarks.

- μ' injective $\iff \mathcal{B}(X) = \sigma(\mu') \implies \mu$ not jointly atomless
- ▶ d = 1: $\mu' = 1$ injective $\iff X = \{x\}$

Proof of the uniqueness

Optimal transport

Figure: Idea of the proof in case d=2. The transports are divided into shaded (I_1^1,J_1^1) and unshaded parts (I_2^1,J_2^1) ; π must be supported in the gray area

Uniqueness of the transport

Example 1

$$X = Y = [0, 1], \ \mu_2 = \nu_2 = \text{Unif, } d\mu_1 = 2xdx, \ d\nu_1 = |2 - 4x|dx$$

- $\blacktriangleright \mu'_1$ strictly increasing
- a transport kernel

$$\kappa(x) = \frac{1}{2}\delta_{(1+x)/2} + \frac{1}{2}\delta_{(1-x)/2}$$

- $\blacktriangleright \Pi(\mu,\nu), \Pi(\nu,\mu)$ nonempty
- unique transport kernel
- ▶ no Monge, $\mathcal{T}(\mu, \nu) = \emptyset$

Optimal transport

- Wasserstein distance

Optimal transport

- ▶ X = Y equipped with a metric ρ ; $p \ge 1$
- Define

$$\mathcal{P}(X)_{p,\rho} = \left\{ \mu \in \mathcal{P}(X) \mid \exists x_0 \in X, \int_X \rho(x,x_0)^p \mu(\mathrm{d}x) < \infty \right\}$$

▶ Classic Wasserstein distance between μ and ν in $\mathcal{P}(X)_{p,\rho}$

$$\mathcal{W}_{p}(\mu,\nu) = \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{X^{2}} \rho^{p} d\pi\right)^{1/p}$$

- Example: $X = \mathbb{R}^d$, $\rho = \text{Euclidean}$ and p = 2
- Wasserstein distance between μ and ν in $\mathcal{P}(X)_{p,\rho}^d$?

Equilibrium

$\eta = \bar{\mu}$

Optimal transport

▶ For $\mu, \nu \in \mathcal{P}(X)_{p,\rho}^d$, define the "Wasserstein distance"

$$\mathcal{W}_{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \left(\inf_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \int_{X^{2}} \rho^{p} d\pi\right)^{1/p}$$

- ► Triangle inequality OK; symmetry NO
 - not a metric on $\mathcal{P}(X)_{p,\rho}^d$
- ▶ Find $\mathcal{E} \subseteq \mathcal{P}(X)_{p,\varrho}^d$ such that $\mathcal{W}_p(\mu,\nu) = \mathcal{W}_p(\nu,\mu)$ on \mathcal{E}

Theorem 4

Let $\mu \in \mathcal{P}(X)^d$ and $\nu \in \mathcal{P}(Y)^d$. Suppose that both $\Pi(\mu, \nu)$ and $\Pi(\nu,\mu)$ are nonempty. Then

$$\inf_{\pi\in\Pi(\mu,\nu)}\int_{X\times Y}c(x,y)\pi(\mathrm{d} x,\mathrm{d} y)=\inf_{\tilde\pi\in\Pi(\nu,\mu)}\int_{Y\times X}c(x,y)\tilde\pi(\mathrm{d} y,\mathrm{d} x).$$

$$\Pi(\mu,
u)$$
, $\Pi(
u, \mu)$ nonempty $\iff \mu' \stackrel{\mathrm{law}}{=}
u'$

▶ If X = Y and c is symmetric, then

$$\mathcal{I}_{\mathsf{c}}(\mu, oldsymbol{
u}) := \inf_{\pi \in \Pi(\mu, oldsymbol{
u})} \mathcal{C}(\pi) = \inf_{ ilde{\pi} \in \Pi(oldsymbol{
u}, oldsymbol{\mu})} \mathcal{C}(ilde{\pi}) = \mathcal{I}_{\mathsf{c}}(oldsymbol{
u}, oldsymbol{\mu})$$

 $\triangleright \mathcal{W}_{p}(\mu, \nu) = \mathcal{W}_{p}(\nu, \mu)$

Optimal transport

- An equivalence relation: $\mu \simeq
 u$ if $ar{\mu} \circ (\mu')^{-1} = ar{
 u} \circ (
 u')^{-1}$
 - ullet both $\Pi(\mu,
 u)$ and $\Pi(
 u,\mu)$ are nonempty
- $m{ ilde{\mathcal E}_P}$: equivalent class under \simeq where $P=ar\mu\circ(\mu')^{-1}\in\mathcal P(\mathbb R_+)^d$
- $ightharpoonup \mathcal{W}_p(\mu,
 u)$ is indeed a distance on each \mathcal{E}_P
- ▶ For $\kappa \in \mathcal{K}(\mu, \nu)$,

$$\int_{\mathcal{X}^2} c \,\mathrm{d}(\bar{\mu} \otimes \kappa) = \frac{1}{d} \sum_{j=1}^d \int_{\mathcal{X}^2} c \,\mathrm{d}(\mu_j \otimes \kappa)$$

$$\implies \mathcal{W}_p(\mu, \nu)^p \geqslant \frac{1}{d} \sum_{i=1}^d \mathcal{W}_p(\mu_j, \nu_j)^p$$

Optimal transport

Degenerate cases

▶ μ identical and ν identical \Longrightarrow the optimal transport from μ_1 to ν_1 is optimal from μ to ν

$$\implies \mathcal{W}_p(\boldsymbol{\mu}, \boldsymbol{\nu})^p = \frac{1}{d} \sum_{j=1}^d \mathcal{W}_p(\mu_j, \nu_j)^p = \mathcal{W}_p(\mu_1, \nu_1)^p$$

- ▶ $d = 1 \Longrightarrow \Pi(\mu, \nu), \Pi(\nu, \mu)$ nonempty $\Longrightarrow \mathcal{W}_p$ is the classic Wasserstein distance on $\mathcal{P}(X)_{p,\rho}$
- μ mutually singular $\Longrightarrow \mathcal{W}_p(\mu,\nu)^p = \frac{1}{d} \sum_{j=1}^d \mathcal{W}_p(\mu_j,\nu_j)^p$

Optimal transport

- ▶ Decompose (*P*-a.s.) $\bar{\mu} = \int \bar{\mu}_{\mathbf{z}} P(\mathrm{d}\mathbf{z})$ where $\{\mu_{\mathbf{z}}\}_{\mathbf{z} \in \mathbb{R}^d_+}$ is given by $\bar{\mu}_{\mathbf{z}}(\{x \in X : \mu' = z\}) = 1$
- ► Similarly $\bar{\nu} = \int \bar{\nu}_{\mathbf{z}} P(\mathrm{d}\mathbf{z})$

Theorem 5

For $\mu, \nu \in \mathcal{E}_P$ and $\kappa \in \mathcal{K}(\mu, \nu)$, the following are equivalent:

- (i) κ is an optimal transport from μ to ν ;
- (ii) κ is an optimal transport from $\bar{\mu}_z$ to $\bar{\nu}_z$ for each P-a.s. z;
- (iii) $C_{\bar{\mu}}(\kappa) = \int_{\mathbb{R}^d_+} \mathcal{I}_c(\bar{\mu}_z, \bar{\nu}_z) P(\mathrm{d}z).$

Equilibrium

Optimal transport

- ▶ Let κ_z be an optimal transport from $\bar{\mu}_z$ to $\bar{\nu}_z$ for each z
- ▶ Define $\kappa(x) := \kappa_{\mu'(x)}(x) \Longrightarrow \kappa$ is optimal and

$$\mathcal{I}_{c}(\mu,
u) = \int_{\mathbb{R}^{d}_{+}} \mathcal{I}_{c}(\bar{\mu}_{z}, \bar{\nu}_{z}) P(\mathrm{d}z)$$

$$\mathcal{W}_{p}(\mu, \nu)^{p} = \int_{\mathbb{R}^{d}_{+}} \mathcal{W}_{p}(\bar{\mu}_{z}, \bar{\nu}_{z})^{p} P(\mathrm{d}z)$$

- ▶ For $1 \leqslant p < \infty$, $(\mathcal{E}_P, \mathcal{W}_p)$ is a Polish space
- ▶ Topology induced by W_p is yet unclear

Corollary 1

Let $\mu, \nu \in \mathcal{E}_P$, $X = \mathbb{R}$ and $c : \mathbb{R}^2 \to [0, \infty]$ be submodular. Then

$$\mathcal{I}_c(\boldsymbol{\mu}, \boldsymbol{\nu}) = \int_{\mathbb{R}^d_+} \int_0^1 c(F_{\mathbf{z}}^{-1}(t), G_{\mathbf{z}}^{-1}(t)) \mathrm{d}t \, P(\mathrm{d}\mathbf{z}),$$

where F_{z}^{-1} , G_{z}^{-1} are the distribution functions of μ_{z} , ν_{z} respectively.

If $\rho = \text{Euclidean on } \mathbb{R}$, then

$$\mathcal{W}_p(\mu,\nu)^p = \int_{\mathbb{R}^d} \int_0^1 |F_{\mathsf{z}}^{-1}(t) - G_{\mathsf{z}}^{-1}(t)|^p \mathrm{d}t \, P(\mathrm{d}\mathsf{z})$$

Extensions

Optimal transport

- 6 An equilibrium model

An equilibrium model

Assume $\eta \sim \sum_{i=1}^{d} \mu_i$, X and Y are compact, and $g: X \times Y \to [-\infty, \infty)$ is upper semi-continuous

Duality holds

$$\max_{\pi \in \Pi_{\eta}(\mu, \nu)} \int_{X \times Y} g \, \mathrm{d}\pi = \inf_{(\phi, \psi) \in \Phi_g} \int_X \phi \, \mathrm{d}\eta + \int_Y \psi^\top \, \mathrm{d}\nu,$$

where

$$\Phi_{g} = \left\{ (\phi, \psi) \in C(X) \times C^{d}(Y) : \ \phi(x) + \psi(y) \frac{\mathrm{d} \mu}{\mathrm{d} \eta}(x) \geqslant g(x, y) \right\}$$

An equilibrium model

Optimal transport

- $ightharpoonup x \in X$ represents worker labels (characteristics)
- ▶ $y \in Y$ represent firms
- $ightharpoonup \eta$: the distribution of the workers labelled with $x \in X$
 - discrete $\eta(x) = 1/n$: each worker has their own label
- d types of skills
 - workers with the same label have the same skills
- $\blacktriangleright \mu_i$: supply of type-*i* skill provided by the workers
 - discrete $\mu_i(x)$: type-i skill provided by each worker label x
 - $\mu' = \mathrm{d}\mu/\mathrm{d}\eta$: (per-worker) skill vector
- $\triangleright \nu_i$: demand of type-i skill from the firms
 - discrete $\nu_i(y)$: type-i skill demanded by each firm y

An equilibrium model

Optimal transport

- Assume that demand and supply of each skill are equal
 - ullet μ and u are normalized
- ▶ A matching is $\kappa \in \mathcal{K}(\mu, \nu)$; $\pi = \eta \otimes \kappa$
- ▶ g(x, y): the production of firm y hiring worker x (per unit)
 - total production: $\int g \, \mathrm{d}\pi$
- ▶ $w: X \to \mathbb{R}$: wage function
 - w(x) is the wage of worker x
- ▶ $\mathbf{p}: Y \to \mathbb{R}^d$: profit-per-skill function
 - assumption: profit is linear in skills employed
 - if firm y employs a skill vector $\mathbf{q} \in \mathbb{R}^d_+$, its profit is $\mathbf{p}(y) \cdot \mathbf{q}$
 - the profit generated from hiring worker x is $\mathbf{p}(y) \cdot \mu'(x)$
- ► (w, p): a social plan

An equilibrium analysis

Optimal transport

The total profit of all firms is

$$\int_{X\times Y} \mathbf{p}(y) \cdot \boldsymbol{\mu}'(x) \mathrm{d}\pi(\mathrm{d}x,\mathrm{d}y) = \int_{Y} \mathbf{p}^{\top} \mathrm{d}\boldsymbol{\nu}.$$

For worker x, their objective is to choose a firm to maximize their wage

$$y_x^* = rg \max_{y \in Y} \left\{ g(x, y) - \mathbf{p}(y) \cdot \boldsymbol{\mu}'(x) \right\}.$$

For firm y, its objective is to hire workers to maximize its profit

$$x_y^* = \arg\max_{x \in X} \left\{ g(x, y) - w(x) \right\}.$$

Equilibrium

0000000

An equilibrium analysis

Optimal transport

For a social plan (w, \mathbf{p}) and a matching $\kappa \in \mathcal{K}(\mu, \nu)$, an equilibrium is attained if

(a) the social plan is optimal

$$w(x) = \max_{y \in Y} \left\{ g(x, y) - \mathbf{p}(y) \cdot \mu'(x) \right\}$$

$$\mathbf{p}(y) \cdot \mu'(x_y^*) = \max_{x \in X} \{ g(x, y) - w(x) \}$$

(b) the total production covers the total wage plus the total profit

$$\int_{X\times Y} g \, \mathrm{d}\pi \geqslant \int_X w \, \mathrm{d}\eta + \int_Y \mathbf{p}^\top \mathrm{d}\boldsymbol{\nu}$$

An equilibrium analysis

Optimal transport

(a)
$$\Longrightarrow w(x) + \mathbf{p}(y) \cdot \mu'(x) \geqslant g(x, y)$$

+ integrate $\Longrightarrow \int_X w \, \mathrm{d}\eta + \int_Y \mathbf{p}^\top \mathrm{d}\nu \geqslant \int_{X \times Y} g \, \mathrm{d}\pi$
+ (b) $\Longrightarrow \int_X w \, \mathrm{d}\eta + \int_Y \mathbf{p}^\top \mathrm{d}\nu = \int_{X \times Y} g \, \mathrm{d}\pi$
 $\Longrightarrow \text{duality holds and attained}$

- ► Equilibrium exists ←⇒ duality holds and attained
- ▶ Discrete setting: equilibrium exists ←⇒ duality holds

Equilibrium

000000

Extensions

Optimal transport

- 6 Future directions

Homogeneous Gaussian Markov process

Proposition 2

Suppose that $\mu_t = \mathrm{N}(0, \sigma_t^2)$, $\sigma_t > 0$, $t = 1, \ldots, T$. If there exists a time-homogeneous Markov process with the above marginals, then the mapping $t \mapsto \sigma_t$ is increasing log-concave or decreasing log-convex. If $T \leqslant 3$, then the above condition is also sufficient.

- ► General result?
- Optimal Markov process?
- Existence and optimality of simultaneous transport between two vectors of Gaussian measures on \mathbb{R}^N ?

Future directions

Optimal transport

infinite dimension

 $d=\infty$

Extensions

- ullet μ has no dominating measure
- multi-marginal transports

 μ^1,\ldots,μ^n

capacities instead of probabilities

 μ , u nonlinear

nonlinear cost in the probability

 η nonlinear

constrained transport

- shrink $\mathcal{K}(\mu,
 u)$, $\mathcal{T}(\mu,
 u)$
- martingale simultaneous transport
- directional simultaneous transport
- Imperfect matching problems

$$\kappa_{\#}\mu \geqslant \nu$$

• requires $\mu(X) \geqslant \nu(Y)$ instead of $\mu(X) = \nu(Y)$

Simultaneous transport Properties Wasserstein distance Equilibrium Extensions

Thank you

Optimal transport

Thank you for your attention!

Based on (on-going) joint work with

Zhenyuan Zhang (Stanford)

