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Transport theory

» Pure mathematics theory

» Important applications N [’} W,

® economics \

® decision theory

® finance

® engineering

® operations research
® physics

» 1 Nobel Prize laureate
A={x: T(x)E B}

» 2 Fields medalists

Ruodu Wang  (wang@uwaterloo.ca) Simultaneous Optimal Transport 3/62


wang@uwaterloo.ca

Optimal transport
0®00000000

Monge's formulation

» Monge's problem: find a transport map 7 : X — Y that

attains

inf { /X c(x, T(x)) du(x)

Ty = V}
where

® X and Y are two Polish spaces (main example: R?)

® Cost function ¢ : X x Y — [0, 00] or (—o0, 0]

® probability measures i € P(X) and v € P(Y) are given
® Tup=po T tisthe push forward of u by T

» Such T is an optimal transport map
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Monge's formulation

Gaspard-l\-/longe-"
1746-1818

Le mémoire sur les déblais et les remblais

( The note on land excavation and infill )
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Kantorovich's formulation

» Monge's formulation may be ill-posed (e.g., point masses)

» Kantorovich's problem: find a probability measure
m € P(X x Y) that attains

ot { [ ctuy)ataxay) | 7 e

where TM(u, ) is the set of probability measures on X x Y

with marginals y and v
» X XY =R xR : copulas and dependence

> Discrete version: linear programming
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Kantorovich's formulation

U1
Y2

»

X2

Ys

Leonid Kantorovich Resource allocation
1912-1986
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Kernel formulation

» Kernel formulation: find a transport kernel s : X — P(Y)

that attains
inf{ | ctenne miaxan | n e K u)}
XxY

where KC(p, v) is the set of all stochastic kernels s such that
ot 1= /X KGO dx) =

> (1@ K)(A) = [4r(x,dy)u(dx)
> ,u®f£:7r€ﬂ(,u,1/)

» k(x) = v for each x € X: independent coupling
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Transport duality

If c is non-negative and lower semi-continuous, then duality holds

min / cdm = sup </ qbdu—l—/de),
meN(p,v) Jxxy X Y

where the supremum runs over all pairs of bounded and continuous
functions ¢ : X — R and ¢ : Y — R such that

B(x) +¥(y) < c(x,y).
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Economic interpretation

>

x € X: the vector of characteristics of a worker

v

y € Y: the vector of characteristics of a firm

v

g(x,y) the economic output (production) generated by
worker x matched with firm y

v

Social economic-output maximization

sup{/ gdw]wEI‘l(p,y)}
XxY

Dual problem g(x,y) < ¢(x) + ¥(y): social equilibrium

v

® ¢: the equilibrium wage function
® q): the equilibrium profit function
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On the cost function

Assume X = Y = R.

» If c is submodular, i.e.,

c(x,y)+e(X,y') <clx,y)+c(x,y) forx <x"andy <y,

the optimal transport is comonotone. Examples:

° C(Xay) = (y—X)2
* (6 ¥) = ~Lin<iom)
® c(x,y) =1(x)+ g(y) + h(y — x) where h is convex

» If ¢ is supermodular, the optimal transport is antitone

(counter-monotonic).

> c(x,y) = 1{y_x>q,): probability of transport distance > do
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Probabilistic formulation

For random variables L ~ o and R ~ v

> Classic optimal transport (OT)

inf  E[c(L,R)]

L~p, R~y

> Martingale optimal transport (MOT) require: ft <cx V

inf  E[c(L,R)]: L=E[R|L]
L~p, R~y

> Supermartingale optimal transport (SMOT) require: [ =gsq V

inf E[c(L,R)]: L>E[R|L]

Ly, R~y

> Directional optimal transport (DOT) require: p =g V

in); Elc(L,R)]: LR

~,

MOT: Beiglbdck/Henry-Labordere/Penkner'13 F&S; Beiglbock/Juillet'16 AoP
SMOT: Nutz/Stebegg'18 AoP; DOT: Nutz/W.'21 AAP
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Simultaneous transport

» deN, H:(Ml)-"aud) E73()<)d' V:(Vlv"'ayd) E,]D(\/)d
> A transport plan from p to v sends p; to v; for all
J€{1,...,d} simultaneously

» The set of all Monge transports from p to v
T(v) = {T: X = ¥ | Ty = v}

» The set of all transport kernels x such that Kup = v

MJ)VJ

”DQ

» Existence not guaranteed; Kantorovich formulation unclear

All equalities and inequalities are component-wise
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Motivating example 1: rocket planning

m Mars bases and n space stations

several types of resources to be transported by rockets
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Motivating example 1: rocket planning

» Each base j supplies pa(j) units of A and pg(j) units of B
» Each station k needs va(k) units of A and vg(k) units of B

> Assume supply-demand clearance

> nali) = ZVA ZNBU) => ve(k)=1
j=1

j=1 k=1
> A transport plan is an arrangement to send resources from
bases to stations to meet their needs
» Single trips: cannot transport among stations or among bases
» Transport costs: rockets and fuel (propellant)
» T((na,pB), (va,vB)): one base supplies only one station
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Motivating example 1: rocket planning

INNEEN]

N/

Figure: Simultaneous transport in the Monge setting; red and blue

represent different types of resources
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Motivating example 2: product distribution

Transport several types of products from factories to retailers
» Kernel setting (e, v)
» Allowing one factory to supply multiple retailers
Assumptions

» supply-demand clearance
» products are bundled and can only divided proportionally

® e.g., personnel, skills, boxed packages, cargo specification
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Motivating example 2: product distribution

‘4\

Figure: Simultaneous transport in the kernel setting
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How do we model the cost?
» Cost function ¢ : X X Y — [0, +00]

» Classic setting: for T € T(p,v) or k € K(,v),
o(T) = /X b TN
Clr) = /Xxycd(/u}@ﬁ)

v

Simultaneous transport: what should take the place of 17

v

Choose j1 := % 7:1 i?

v

Baseline measure n € M(X), n < fi (no transport = no cost)
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v

Transport cost for T € T(u,v) or k € K(p,v),
€(T) = | <l TC)a()
Cy(r) = / cd(n ® k)
XxY

> 1 may not be linear in p, e.g., petrol cost is nonlinear in
weights
> If T(w,v) or (e, v) is empty, then the cost is set to co

v

Special case: n = [

v

Optimal transport:

inf  Cp(T inf  C
TE’;D(,LL,I/) 77( ) or RGIICT;L,I/) 77(’{)
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Motivating example 3: risk measures

Scenario-based risk measures (W.-Ziegel'21 F&S)

» X the space of random variables on Q and p1, ..., uq € P(Q)

» A p-based risk measure p : X — R is such that p(L) is
determined by the distribution of L under p

® d = 1: law-invariant under p

Define X,(L) ={R € X : Ryp = Lyp}

v

Ryp = Lyp means R ' | under each wifori=1,...,d

v

v

Any p-based risk measure is constant on each X),(L)
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Motivating example 3: risk measures

» For n < [, the mapping
p(L) =sup{E"[R]: R € Xu(L)}, LeX

is a p-based risk measure (coherent distortion if d = 1)

® d = 1: Kusuoka'0l representation of coherent risk measures

» The optimization problem

p(L) = sup{E"[R] : Ryp = Lyp}

is a Monge transport problem with cost ¢(x,y) = —y,

baseline measure 1, and v = Ly
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Motivating example 4: cost-efficient payoffs

> 7 is a pricing measure

» d agents need to jointly purchase a payoff R

v

Agent j needs R to have a distribution v; and uses model y;

v

Problem: find the cheapest R

min {E"[R] : Ryp = v}

v

d = 1: Fréchet-Hoeffding; Dybvig'88 JB
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Motivating example 5: Markovian embedding

v

An R?-valued Markov process & = (&t)e=1,..7

v

¢ has marginal distributions p1, ..., ur € P(RY)

law

The Markov kernel k; of & (&¢41 | & = x) '~ Ke(x)

v

v

Time-homogeneity: kK = k; does not depend on t

v

k€ K(pe,peyr) fort=1,..., T —1

v

k€ ’C(Ha’/) with r= (:ula---v.uT—l) and v = (/‘Q""?MT)
® with fixed marginals, each x corresponds to a

time-homogeneous Markov process
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Inequalities

» Ay: the standard simplex in RY

» Each k transports each A - pto A - v for A € Ay

K(p,v) C ﬂ K- p,A-v)
AEA

inf  C > su inf Ch(k) > inf C,(k
KEX(p,v) n(ﬁ) )\EEdHGIC(Xp,,XV) 77( ) KEKX(,7) 77( )

> not sharp in general
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Inequalities

Q.

=2

>

> fi3 = (g1 — p2)+, and similar

inf  Cph(k) > inf Cy(k)+ inf Cy(k)

KEK(p,v) REK(p,71) KEK(p,72)
< fin M
M1
V1

A\

2 - V2 N

Figure: shaded ji; covers shaded 74; grey jip covers grey i,
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Inequalities

» Both inequalities are sharp if @ is mutually singular
» Transport problem is back to d =1 if
® 4 is mutually singular, or

® 41 and v both have identical components

> Generally, there is no symmetry between X and Y
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The role of n

If ¢'(x,y) = c(x,¥) + (x) + 9(y) - §(x), then

| camon=[ cimon+ [ oam+ [ vTa

N
does not depend on &

Classic setting (d = 1): if c(x,y) = ¢(x) +¢(y) then [ cd(p® k)
does not depend on &k
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» X =Y =]0,1]
» 1 = i = Lebesgue, dyuq/dii = 2x, v arbitrary

» Assume K(p, V) is nonempty

Figure: An example of densities of 1 and v, d = 2
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EES

> c(xy) = (x—y)?
> take ¢(x) = x%, ¥1(y) = —y, ¥(y) =
Decomposition holds

clx,3) = 06) + 131 T2 () +0()

—_———
—2xy

— /Cd(ﬁ@m):/szﬁ(dx)—/yyul(dy)—i—/yyzﬂ(dy)

» all transports have the same cost
» no optimal comonotone transport
> the two inequalities are not sharp
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Existence

Definition 1 (Shen-Shen-Wang-W.'19 F&S)
Let o € P(X)? and v € P(Y)“.

» Write p =1, v (heterogeneity) if there exist 4 > p and v > v
such that dp/dp >cx dv/dv where > is the convex order.

> p is jointly atomless if there exist © > @ and a random

variable L such that under u, L is continuously distributed and

independent of dg/dpu.

» d =1 recovers classic non-atomicity
> called conditional atomless by Shen-Shen-Wang-W."19
> u, v can be chosen as i, v
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Existence

Proposition 1 (Torgersen'91; Shen-Shen-Wang-W.'19)
Let p € P(X)? and v € P(Y)“.

(i) The set K(w,v) is nonempty if and only if p =y v.
(i) Assume that p is jointly atomless. The set T (w,v) is

nonempty if and only if p =y, v.

» K(w,v), K(v,n) nonempty = K(p,n) nonempty
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Joint non-atomicity

Remarks.

Let p’ =dp/dfi and v/ = dv/dv

v

v

K(w,v), K(v, p) nonempty < p/ ta (wrt @2 and 7 resp.)

v

K(w,v) nonempty and p identical = v identical

v

K(w,v) nonempty and p equivalent = v equivalent

v

K(p,v) nonempty and v mutually singular = p mutually

singular

v

v identical = K(u,v) nonempty for all p

v

p mutually singular = K(p, v) nonempty for all v
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Joint non-atomicity

Definition 2 (Delbaen’'21 F&S)

Let (€2,G, ) be a measure space. We say that (G, u) is atomless
conditionally to the sub-o-field 7 C G, if for all A € G with
wu(A) > 0, there exists A C A, A’ € G, such that

EH[1AlF] >0 = 0 < EX[1a|F] < EF[1alF].

Lemma 1 (Delbaen’'21)

Let . be any strictly positive convex combination of p € P(X)?.
Then p is jointly atomless if and only if (B(X), ) is atomless

conditionally to o(dp/dpu).

\
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Kantorovich formulation

>

Define
rl??(l"’?’/) = {77@5 ’ k€ ’C(MV)}

If 5 ~ i, it is

v

{ﬂ' EPXXY)|nmx =n, /x i’;(x)ﬂ'(dx,dy) = V(dy)}

where 7wx is the first marginal of 7

Omit n if n = fi: N(p,v) = Na(p,v)
» Cost

v

Cr) = /Xxycdﬂ—Cn(n)

» 7 no longer has specified second marginal, unless 7 is a linear
function of p
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Monge vs Kantorovich

Suppose that X and Y are compact, p is jointly atomless, and c is

continuous. Then

inf  C = inf Cy(T).
nEIICrEu,u) n(li) TG’;D(,UI,I/) 77( )

Remarks on joint non-atomicity.

» classic non-atomicity (d = 1) <= 3 uniform rv
joint non-atomicity <= 3 uniform rv independent of dp/dfu
> In both settings of non-atomicity

® J Monge transport <= 3 Kantorovich transport

® Monge infimum = Kantorovich infimum
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Suppose that X, Y are compact, n ~ [i, and ¢ : X x Y — [0, +o0]

is lower semi-continuous. Duality holds as

min / cdr = sup /¢d77+/'l,deu
€My (1,v) JXx Y (p ) €D,

where

= {(éf)ﬂ/’) € C(X)xC(Y) | ¢(x) +9(y) - ?;(X) < C(X,y)}-

v

» d =1 and n = [i: classic duality (but with compactness)
» duality holds for X = Y = RN if dp/dji is bounded
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Uniqueness of the transport

» p' =dp/di and v = dv/do

Theorem 3

Suppose that both NM(w,v) and NM(v, w) are nonempty and p' is
injective on the support of p.

(i) There exist a unique m € M(p,v) and a unique T € M(v, ).
(i) (A x B) = #(B x A) for all (A, B) € B(X) x B(Y).
(iii) = ({(x,y) | /' (x) # V'()}) = 0.

Remarks.
» p/ injective <= B(X) = o(p') = p not jointly atomless

» d =1: p/ =1 injective <= X = {x}
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Proof of the uniqueness

) ! ! B
| j | |
| | |
| I dlRRR
1 | . y
N ‘ ‘ 2
RN NN < N \:
nsmN — O\
\\\\\ ; AN LW
N ) // ! NN | \\ 7
N | / n R NN gL\ 2
RN 4 /2N i a
i i i i n
| | |

Figure: Idea of the proof in case d = 2. The transports are divided into
shaded (I, J}) and unshaded parts (1}, J3); @ must be supported in the

gray area
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Uniqueness of the transport

Example 1

X =Y =[0,1], p2 = vp = Unif, dug = 2xdx, dv; = |2 — 4x|dx
> u} strictly increasing
1%} dpuy

> a transport kernel

1 1 I N f---

K(X) = 50(14x)/2T50(1-x)/2 | |

2 2 ! :
> N(p,v), N(v, p) nonempty | |
> unique transport kernel 77777 777777
» no Monge, T (u,v) =10 0 '
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Wasserstein distance

» X =Y equipped with a metric p; p > 1
> Define
P(X)p,p = {u € P(X) | Ixo € X, / p(x, x0)Pu(dx) < oo}
X
>

Classic Wasserstein distance between £ and v in P(X), ,

1/p
— inf p
Wolit,v) <7f€||'|rzu,V) /X2p dﬂ)

Example: X = RY, p = Euclidean and p =2

v

v

Wasserstein distance between p and v in P(X)gyp?
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Wasserstein distance

| 4 n= ﬁ
For p,v € P(X)g,p, define the "Wasserstein distance”

1/p
Wp(p,v) = inf / pPdr
7rel—l(l"‘v’/) X2

Triangle inequality OK; symmetry NO

v

v

® not a metric on P(X)3 ,

Find € C P(X)gm such that Wy(u,v) = Wy(v, ) on €

v
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Wasserstein distance

Theorem 4

Let p € P(X)? and v € P(Y)9. Suppose that both M(u,v) and
M(v, p) are nonempty. Then

inf / c(x,y)m(dx,dy) = inf / c(x, y)w(dy, dx).
meN(pw) Jxxy 7eN(v,pn) Jy xx

MN(p,v), N(v, u) nonempty < '’ law

» If X =Y and c is symmetric, then

Ze(p,v) = TreHZL 7V)C(7T) = %erllrg;j 7“)C(7T) =Zc(v,p)

> WP(“? V) = WP(Vv /*l')
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Wasserstein distance

>

An equivalence relation: p ~ v if io (u')7!

® both M(w,v) and M(v, p) are nonempty

v

Ep: equivalent class under ~ where P = fio (p/)~! € P(R, )¢

v

Wy (p, v) is indeed a distance on each Ep

v

For k € K(p,v),
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Wasserstein distance

Degenerate cases

>, identical and v identical = the optimal transport from p1

to vy is optimal from p to v

d

1
= W)’ = 2> Walw )" = Wp(u, 11)°
j=1

» d =1= M(y,v), Ny, ) nonempty = W, is the classic
Wasserstein distance on P(X),,,

» p mutually singular = Wy(p,v)P = %27:1 Wo(pj, vj)P
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Wasserstein distance

» Decompose (P-a.s.) i = [ ji,P(dz) where {Nz}zeRi is given
by fiz({x € X : p/ = z}) = 1
» Similarly 7 = [ 7,P(dz)

For p,v € Ep and k € K(p,v), the following are equivalent:

(i) K is an optimal transport from p to v;

(i) k is an optimal transport from [i, to U, for each P-a.s. z;

(i) Cg fRd (fiz, 77) P(dz).
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Wasserstein distance

> Let k, be an optimal transport from i, to , for each z

> Define k(x) := ki (x)(x) = & is optimal and

Tc(p,v) = /d Z(fiz, v,)P(dz)

R$

Wl = | Wplfe, 7 P(c) J

» For 1 < p < oo, (Ep,Wp) is a Polish space

» Topology induced by W, is yet unclear
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Wasserstein distance

Corollary 1

Let p,v € Ep, X =R and c : R? — [0, 0] be submodular. Then

1
Zw) = [ | er (0.6, o)t Plaz),

where F; 1, G, are the distribution functions of ji, v, respectively.

If p = Euclidean on R, then

1
Walwr = [ [ 1F70 - 6 pac paz)
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© An equilibrium model
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An equilibrium model

> Assume 7 ~ 27:1 wi, X and Y are compact, and

g : X XY — [—00,00) is upper semi-continuous

Duality holds

max dr = inf /¢dn+/ P dv,
ﬂeﬂn(u,u)Axyg (pp)ede J x Y

where

bg = {(cﬁ, p) € C(X) x CUY): ¢(x) +1P(y)((¥;(><) > g(Xm)}

Ruodu Wang  (wang@uwaterloo.ca) Simultaneous Optimal Transport 53/62


wang@uwaterloo.ca

Equilibrium
00®0000

An equilibrium model

» x € X represents worker labels (characteristics)

» y € Y represent firms

v

7: the distribution of the workers labelled with x € X

e discrete 7(x) = 1/n: each worker has their own label

v

d types of skills

® workers with the same label have the same skills

v

wi: supply of type-i skill provided by the workers

e discrete ui(x): type-i skill provided by each worker label x
® ' =dp/dn: (per-worker) skill vector

v

vi: demand of type-i skill from the firms

e discrete v;(y): type-i skill demanded by each firm y
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An equilibrium model

» Assume that demand and supply of each skill are equal

® 4 and v are normalized

v

A matching is k € K(p,v); m=n® kK

v

g(x,y): the production of firm y hiring worker x (per unit)
* total production: [ gdm
» w: X — R: wage function

® w(x) is the wage of worker x

v

p: Y — RY: profit-per-skill function
® assumption: profit is linear in skills employed
® if firm y employs a skill vector q € R, its profit is p(y) - q
® the profit generated from hiring worker x is p(y) - p/(x)

» (w,p): a social plan
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An equilibrium analysis

The total profit of all firms is

/ p(y) - p'(x)dm(dx,dy) = / pldv.
XxY Y

For worker x, their objective is to choose a firm to maximize their

wage

*_

yx = argmax {g(x,y) —p(y) - #'(x)} .
YeyY
For firm y, its objective is to hire workers to maximize its profit

x; = argmax {g(x, y) — w(x)} .
xeX
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An equilibrium analysis

For a social plan (w, p) and a matching x € K(u,v), an

equilibrium is attained if

(a) the social plan is optimal
w(x) = max {g(x,y) = p(y) - ()}

p(y) - 1'(xy) = max {g(x,y) = w(x)}

(b) the total production covers the total wage plus the total profit
/ gdﬂ}/wdn+/pTdu
XxY X Y
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An equilibrium analysis

() w(x) +p(y) - ' (x) = g(x.y)

/wd77+/pTdu2/ gdm
X Y XxY

—
—
+(b) = /Wd77+/pTdu:/ gdm
X Y XxXY
—

duality holds and attained

+ integrate

» Equilibrium exists <= duality holds and attained

> Discrete setting: equilibrium exists <= duality holds
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@ Future directions
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Homogeneous Gaussian Markov process

Proposition 2

Suppose that j1; = N(0,02), 0; >0, t =1,..., T. If there exists a
time-homogeneous Markov process with the above marginals, then
the mapping t — o is increasing log-concave or decreasing

log-convex. If T < 3, then the above condition is also sufficient.

» General result?
» Optimal Markov process?

» Existence and optimality of simultaneous transport between

two vectors of Gaussian measures on RV?
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Future directions

» infinite dimension d =0

® 1 has no dominating measure

» multi-marginal transports T T
> capacities instead of probabilities L, v nonlinear
» nonlinear cost in the probability 7 nonlinear
» constrained transport shrink K(p,v), T(p,v)
® martingale simultaneous transport
® directional simultaneous transport
> Imperfect matching problems Kyl 2> V

® requires u(X) = v(Y) instead of u(X) = v(Y)
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Thank you for your attention!

Based on (on-going) joint work with

Zhenyuan Zhang
(Stanford)
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