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Distributional uncertainty

Ideal world: stochastic or statistical models are available

I risk evaluation based on specified models ⇐ risk measure ρ

I decisions and optimization

Reality: uncertainty is everywhere ⇐ uncertainty set F
I statistical uncertainty and data scarcity

I modeling limitations and misspecification

I measurement and mechanistic errors

The worst-case risk approach (WR)

ρWR(F) := sup
F∈F

ρ(F )

I We treat ρ as mappings from either distributions or rvs

Ruodu Wang (wang@uwaterloo.ca) Model Aggregation Methods 3/33

wang@uwaterloo.ca


Model uncertainty Model aggregation Equivalence Uncertainty models Empirical applications

Distributional uncertainty

Ideal world: stochastic or statistical models are available

I risk evaluation based on specified models ⇐ risk measure ρ

I decisions and optimization

Reality: uncertainty is everywhere ⇐ uncertainty set F
I statistical uncertainty and data scarcity

I modeling limitations and misspecification

I measurement and mechanistic errors

The worst-case risk approach (WR)

ρWR(F) := sup
F∈F

ρ(F )

I We treat ρ as mappings from either distributions or rvs

Ruodu Wang (wang@uwaterloo.ca) Model Aggregation Methods 3/33

wang@uwaterloo.ca


Model uncertainty Model aggregation Equivalence Uncertainty models Empirical applications

VaR and ES

ES0.95

VaR0.95

loss density

Value-at-Risk (VaR), α ∈ (0, 1)

VaRα :M0 → R,

VaRα(F ) = F−1(α)

= inf{x ∈ R : F (x) ≥ α}

(left-quantile)

Expected Shortfall (ES), α ∈ (0, 1)

ESα :M1 → R,

ESα(F ) =
1

1− α

∫ 1

α

VaRβ(F )dβ

(also: TVaR/CVaR/AVaR)
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Classical robust optimization

Distributionally robust optimization (DRO)

minimize over a ∈ A: sup
X∈X

ρ(f (a,X)) = ρWR(Fa,f )

I A: a set of admissible actions

I X : an uncertainty set of possible risk vectors, Rd -valued

I f : A× Rd → R a loss function

I Fa,f = {distribution of f (a,X) : X ∈ X}

I Example (portfolio selection): A ⊆ Rd and f (a, x) = a>x

I Various formulations of uncertainty sets in optimization

• Zhu-Fukushima’09 OR; Natarajan-Pachamanova-Sim’08 MS;

Ghaoui-Oks-Oustry’13 OR; Esfahani-Kuhn’18 MP; Gao-Kleywegt’22

MOR; Blanchet-Murthy’19 MOR; Li’18 OR; ...
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Our idea

The worst-case risk approach (WR)

Uncertainty set F + risk measure ρ =⇒ supF∈F ρ(F )

The model aggregation approach (MA)

Uncertainty set F =⇒ A conservative distribution F ∗ from F

uncertainty set F

worst-case risk value supF∈F ρ(F )

robust model F ∗ robust risk value ρ(F ∗)

WR output

MA output

optimization/decisions

simulation/calibration/analysis

WR, ρ

MA
ρ
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Questions

I How do we define a conservative distribution F ∗ from the

uncertainty set F?

I What are theoretical features of the MA approach over the

WR?

I How do the MA and WR approaches compare to each other,

what are the implications?

I How is the MA approach implemented in common settings of

uncertainty, optimization, and real-data applications?
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Progress

1 Model uncertainty and robust optimization

2 The model aggregation approach

3 Equivalence in model aggregation

4 Common settings of uncertainty models

5 Empirical applications
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Supremum of a set

An ordered set (M1,�)

I M1: the set of all finite-mean distributions

I �: a partial order on M1

G dominates F : F � G for all F ∈ F

Definition 1 (Supremum of a set)

For F ⊆M1, the supremum of F with respect to �, denoted by∨
F ∈M1, is the smallest distribution in M1 dominating F .

I F �
∨
F � G for all F ∈ F and all G ∈M1 dominating F .

I If such G exists, we say that F is bounded from above with

respect to �.
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Stochastic dominance

Most important orders of risk

I First-order stochastic dominance (FSD, usual stochastic order):

F �1 G ⇐⇒
∫
udF ≤

∫
udG for all increasing functions u

I Second-order stochastic dominance (SSD, increasing convex order):

F �2 G ⇐⇒
∫
udF ≤

∫
udG for all increasing convex u

F �1 G ⇐⇒ VaRα(F ) ≤ VaRα(G ) for all α ⇐⇒ G ≥ F

F �2 G ⇐⇒ ESα(F ) ≤ ESα(G ) for all α ⇐⇒ πF ≤ πG

I πF (x) =
∫∞
x

F (t)dt = EF [(X − x)+]

I F (x) = 1 + (πF (x))′+
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Conservative distributions with �1 and �2

Proposition 1

(i) For F ⊆M1 bounded from above with respect to �1,∨
1F = infF∈F F and (

∨
1F)−1 = sup

F∈F
F−1.

(ii) For F ⊆M1 bounded from above with respect to �2,∨
2F = 1 + (supF∈F πF )′+ and π∨

2 F = sup
F∈F

πF .

Proposition 2

For i ∈ {1, 2} and F ⊆M1,
∨

i convF =
∨

i F , where convF is

the convex hull of F . =⇒ no extra difficulty with non-convexity!
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WR and MA approaches

Define

ρWR(F) = sup
F∈F

ρ(F ) and ρMA(F) = ρ
(∨
F
)

(omitting �)

For the uncertainty described by Fa,f , two optimization approaches

min
a∈A

ρWR(Fa,f ) and min
a∈A

ρMA(Fa,f )

I WR: quite difficult to solve

• repeatedly computing ρ(f (a,X)) for every a and every X

• non-convexity of the uncertainty set causes problem

I MA: more tractable

• ρ is only computed once

• non-convexity is not a problem

• robust model available
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MA approach in robust optimization

MA for ES and �2: write β = 1/(1− α)

ESα(F ) = min
x∈R
{x + βπF (x)} (Rockafellar-Uyrasev’02 JBF)

ESWR
α (F) = sup

F∈F
ESα(F ) = sup

F∈F
min
x∈R
{x + βπF (x)}

ESMA
α (F) = ESα (

∨
2F) = min

x∈R
sup
F∈F
{x + βπF (x)}

min
a∈A

ESWR
α (Fa,f ) = min

a∈A
sup
X∈X

min
x∈R
{x + βE[(f (a,X)− x)+]}

min
a∈A

ESMA
α (Fa,f ) = min

a∈A,x∈R
sup
X∈X
{x + βE[(f (a,X)− x)+]}

I ESWR
α (F) ≤ ESMA

α (F) always hold

I Equivalence under some conditions of minimax theorems
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Progress

1 Model uncertainty and robust optimization

2 The model aggregation approach

3 Equivalence in model aggregation

4 Common settings of uncertainty models

5 Empirical applications
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Is the MA approach more prudent?

Fix an ordered set (M,�)

I ρ is consistent with �: F � G =⇒ ρ(F ) ≤ ρ(G )

I ρWR(F) ≤ ρMA(F) =⇒ MA is more prudent than WR

I Question: when does ρWR(F) = ρMA(F) hold?

Definition 2 (�-cEMA)

Let (M,�) be an ordered set. A mapping ρ :M→ R satisfies �-cEMA

if ρ (
∨
F) = supF∈F ρ(F ) holds for all convex sets F ⊆M bounded

from above.
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Characterization with �1-cEMA

Properties of risk measures

I Translation invariance (TI): ρ(FX+c) = ρ(FX ) + c for all c ∈ R, rv X

I Positive homogeneity (PH): ρ(FλX ) = λρ(FX ) for all λ > 0, rv X

I Lower semicontinuity (LS): lim infn→∞ ρ(Fn) ≥ ρ(F ) if Fn
d→ F

Theorem 1

(i) A mapping ρ :M1 → R satisfies TI, PH, LS and �1-cEMA if and

only if ρ = VaRα for some α ∈ (0, 1).

(ii) A mapping ρ :M1 → R satisfies TI, PH, LS and �2-cEMA if and

only if ρ = ESα for some α ∈ (0, 1).

I Sufficient if cEMA is imposed only for convex sets with two extreme

points
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Characterization with cEMA

Axiomatic characterizations of VaR (quantile): key axioms

I Chambers’09 MF: ordinal covariance + law invariance

I Kou-Peng’16 OR: elicitability + comonotonic additivity

I He-Peng’18 OR: surplus invariance + law invariance + PH

I Liu-W.’21 MOR: elicitability + tail relevance + PH

Axiomatic characterizations of ES: key axioms

I W.-Zitikis’21 MS: no reward for concentration

I Embrechts-Mao-Wang-W’21 MF: elicitability + Bayes risk

I Han-Wang-W.-Wu’21 wp: TI + concentration aversion
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EMA for arbitrary uncertainty sets

I �-EMA: ρ (
∨
F) = supF∈F ρ(F ) for F ⊆M bounded from above

I ρ(δ0) = 0, TI, LS and �1-EMA

⇐⇒ ρ(F ) = sup
α∈(0,1)

{VaRα(F )−h(α)} for some increasing h ...

⇐⇒ benchmark-adjusted VaR (Bignozzi-Burzoni-Munari’20 JRI)

I ρ(δ0) = 0, TI and �2-EMA

⇐⇒ ρ(F ) = sup
α∈[0,1)

{ESα(F )−g(α)} for some increasing g ...

⇐⇒ benchmark-adjusted ES (Burzoni-Munari-W.’22 JBF)

I ES does not satisfy �2-EMA
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Moment uncertainty

Mean-variance uncertainty set

Fµ,σ =
{
F ∈M2 : E[F ] = µ and Var(F ) = σ2

}
I Let F 1

µ,σ =
∨

1Fµ,σ and F 2
µ,σ =

∨
2Fµ,σ

I Robust distributions are explicit

F 1
µ,σ(x) =

(x − µ)2

σ2 + (x − µ)2
, x ≥ µ

F 2
µ,σ(x) =

1

2

(
1 +

x − µ√
(x − µ)2 + σ2

)
, x ∈ R

I Many risk measures ρ admit explicit formulas for ρMA(Fµ,σ)

Ruodu Wang (wang@uwaterloo.ca) Model Aggregation Methods 20/33

wang@uwaterloo.ca


Model uncertainty Model aggregation Equivalence Uncertainty models Empirical applications

MA for robust portfolio optimization

I Mean and covariance uncertainty set

Fw,µ,Σ = {Fw>X : E[X] = µ, Cov(X) = Σ}

I The robust portfolio selection equivalence (Popescu’07 OR)

min
w∈W

ρ
(∨
Fw,µ,Σ

)
= min

w∈W
ρ
(∨
F
w>µ,

√
w>Σw

)
I ρ satisfies TI and PI =⇒ second-order conic program, for �i ,

min
w∈W

ρMA
(
F
w>µ,

√
w>Σw

)
= min

w∈W

{
w>µ +

√
w>Σw ρ

(
F i

0,1

)}
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Univariate Wasserstein uncertainty

I F0: a reference model

I For p ≥ 1, the `p-Wasserstein distance between F and F0:

Wp(F ,F0) =

(∫ 1

0
|F−1(s)− F−1

0 (s)|pds
)1/p

I Wasserstein uncertainty set for ε ≥ 0

Fp,ε(F0) = {F ∈Mp : Wp(F ,F0) ≤ ε}

I Denote by

F 1
p,ε|F0

=
∨
1

Fp,ε(F0) and F 2
p,ε|F0

=
∨
2

Fp,ε(F0)
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Conservative distribution for Wasserstein uncertainty

Theorem 2

Suppose that ε > 0, p ≥ 1 and F0 ∈Mp.

(a) The left quantile of F 1
p,ε|F0

is given by uniquely solving

(∫ 1

α

(
(F 1

p,ε|F0
)−1(α)− F−1

0 (s)
)p

+
ds

)1/p

= ε, α ∈ (0, 1).

(b) For p > 1, the left quantile of F 2
p,ε|F0

is given by

(F 2
p,ε|F0

)−1(α) = F−1
0 (α) +

(
1− 1

p

)
(1− α)−1/pε, α ∈ (0, 1).
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Multivariate Wasserstein uncertainty

I The `p-Wasserstein distance on Rd , a, p ≥ 1

W d
a,p(F ,G ) = inf

X∼F , Y∼G
(E[‖X− Y‖pa ])1/p

I Uncertainty set for the portfolio loss w>X, ε ≥ 0

Fw,a,p,ε(F0) =
{
Fw>Z : W d

a,p(FZ,F0) ≤ ε
}
, F0 ∈Mp(Rd)

Theorem 3

For ε ≥ 0 and a, p > 1, FX ∈Mp(Rd) and w ∈ Rd such that w>w 6= 0,

we have

Fw,a,p,ε(FX) = Fp,‖w‖bε(Fw>X),

where b satisfies 1/a + 1/b = 1.
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Performance of MA with finite uncertainty set

I Daily losses of AAPL from Jan 1, 2019 to Aug 1, 2021

I Fit the data with normal (Fn), t (Ft), logistic (Flg) models

I F̂ : the empirical distribution

I Uncertainty set: F = {F̂ ,Fn,Ft,Flg}
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WR and MA for ES
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MA approach in robust portfolio selection

I Daily losses of X1 (AAPL), X2 (AMZN), X3 (EBAY), X4 (GOOGL)

and X5 (INTC) from Jan 1, 2019 to Aug 1, 2021

I W = {w ∈ [0, 1]n : w>1 = 1, w>E[X] ≤ −r0}

I Portfolio selection under uncertainty Fw = {Fw>X : FX ∈ F}

min
w∈W

ρWR(Fw), min
w∈W

ρMA(Fw),

I F is modelled by empirical mean-variance or the Wasserstein

distance from the fitted t-distribution

I Power distortion risk measure

ρ(F ) =

∫ 1

0

ksk−1VaRs(F )ds, k ≥ 1
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Wealth processes (mean-variance)
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Wealth processes (Wasserstein with benchmark t-model)
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Concluding remarks

I Both MA and WR are natural to interpret

I MA is motivated by robust distributional models

• can be used for calibration, analysis, and simulation

• can be applied without a specified risk measure

• WR gives the risk value instead of the risk model

I MA robust risk value is easier to compute than WR

• works well with non-convex F
• explicit formulas often available

• handles moment and Wasserstein uncertainty nicely

• easy to optimize

I MA axiomatically characterizes VaR and ES
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Future work

I Using other partial orders, e.g., fractional or multivariate

stochastic dominance
• Müller-Scarsini-Tsetlin-Winkler’17 MS; Huang-Tzeng-Zhao’20 MS

I Using a prior measure on F for asymmetric treatment of

models

I Applying MA to many other settings of uncertainty
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Thank you

Thank you for your kind attention
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EMA for arbitrary uncertainty sets

I �-EMA: ρ (
∨
F) = supF∈F ρ(F ) for F ⊆M bounded from above

I ρ(δ0) = 0, TI, LS and �1-EMA ⇐⇒

ρ(F ) = sup
α∈(0,1)

{VaRα(F )− h(α)}

for some increasing h : (0, 1)→ [0,∞] with h(0+) = 0

• benchmark-adjusted VaR of Bignozzi-Burzoni-Munari’20 JRI

I ρ(δ0) = 0, TI and �2-EMA ⇐⇒

ρ(F ) = sup
α∈[0,1)

{ESα(F )− g(α)}

for some increasing g : [0, 1)→ [0,∞] with g(0+) = 0 such that

h : α 7→ (1− α)g(α) is concave on [0, 1) with h(1−) > 0.

• benchmark-adjusted ES of Burzoni-Munari-W.’22 JBF
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Some common risk measures

The Range Value-at-Risk (RVaR) is defined as

RVaRα,β(F ) =
1

β − α

∫ β

α
VaRs(F )ds, 0 ≤ α < β ≤ 1

The power-distorted (PD) risk measure is defined as

PDk(F ) =

∫ 1

0
ksk−1VaRs(F )ds, k ≥ 1

The expectile, denoted by exα, is defined as the unique solution

t = exα(F ) ∈ R to the following equation,

αE[(X − t)+] = (1− α)E[(X − t)−], X ∼ F ∈M1
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Robust risk measures with MA and WR method

Table: WR and MA under uncertainty induced by F0,1.

ρ ρWR ρMA
�1

ρMA
�2

ESα
√

α
1−α

1
1−α

∫ 1
α

√
s

1−s
ds

√
α

1−α

RVaRα,β
√

α
1−α

1
β−α

∫ β
α

√
s

1−s
ds -

VaRα
√

α
1−α

√
α

1−α -

PDk
k−1√
2k−1

√
πΓ(k+1/2)

Γ(k)

√
π(k−1)
2k−1

Γ(k+1/2)
Γ(k)

exα
α−1/2√
α(1−α)

exα(F 1
0,1) α−1/2√

α(1−α)

Γ is the gamma function; (RVaRα,β)MA
�2

and (VaRα)MA
�2

are not reported because

RVaRα,β and VaRα are not �2-consistent; exα(F1
0,1) can be numerically computed

but it does not admit an explicit formula
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Wealth processes (Wasserstein with normal benchmark)
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Wealth evolution under Wasserstein uncertainty (ε = 0.01, r0 = 0.0015)

Left: k = 2; Right: k = 20
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