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Model uncertainty
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Distributional uncertainty

Ideal world: stochastic or statistical models are available
> risk evaluation based on specified models < risk measure p
» decisions and optimization

Reality: uncertainty is everywhere < uncertainty set F
» statistical uncertainty and data scarcity
» modeling limitations and misspecification

» measurement and mechanistic errors
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Distributional uncertainty

Ideal world: stochastic or statistical models are available
> risk evaluation based on specified models < risk measure p
» decisions and optimization

Reality: uncertainty is everywhere < uncertainty set F
» statistical uncertainty and data scarcity
» modeling limitations and misspecification
» measurement and mechanistic errors

The worst-case risk approach (WR)

pVR(F) == sup p(F)
FeF

» We treat p as mappings from either distributions or rvs
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VaR and ES

loss density

Value-at-Risk (VaR), « € (0,1)
VaR, : My — R,

VaR, (F) = F ()

1 1
= inf{x e R: F(x) > a} BSa(F) = 17—, /a VaRg(F)ds

(also: TVaR/CVaR/AVaR)

(left-qua ntile))
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Classical robust optimization

Distributionally robust optimization (DRO)

minimize over a € A:  sup p(f(a, X)) = pVR(Far)
Xex

v

A: a set of admissible actions

> X: an uncertainty set of possible risk vectors, R9-valued

» f:AxRY — R aloss function

> Far = {distribution of f(a,X): X € X'}

» Example (portfolio selection): A C R? and f(a,x) = a'x
> Various formulations of uncertainty sets in optimization

® Zhu-Fukushima'09 OR; Natarajan-Pachamanova-Sim’'08 MS;
Ghaoui-Oks-Oustry’13 OR; Esfahani-Kuhn'18 MP; Gao-Kleywegt'22
MOR; Blanchet-Murthy'19 MOR; Li'18 OR; ...
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Our idea

The worst-case risk approach (WR)

Uncertainty set F + risk measure p = supgc 7 p(F)
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Our idea

The worst-case risk approach (WR)
Uncertainty set F + risk measure p = supgc 7 p(F)
The model aggregation approach (MA)

Uncertainty set /' = A conservative distribution F* from F

Ruodu Wang  (wang@uwaterloo.ca) Model Aggregation Methods 6/33


wang@uwaterloo.ca

Model uncertainty
[ee]eY To)

Our idea

The worst-case risk approach (WR)
Uncertainty set F + risk measure p = supgc 7 p(F)
The model aggregation approach (MA)

Uncertainty set /' = A conservative distribution F* from F

WR output |

y{werst—case risk value supgc /)(F)] !
M ””””””” (o ra—— o)
robust model F robust risk value p(F*)

I
I
| i MA output

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1

{simuIation/caIibration/analysis]
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Questions

» How do we define a conservative distribution F* from the
uncertainty set F?

» What are theoretical features of the MA approach over the
WR?

» How do the MA and WR approaches compare to each other,
what are the implications?

» How is the MA approach implemented in common settings of

uncertainty, optimization, and real-data applications?
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Model aggregation
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Progress

© The model aggregation approach
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Supremum of a set

An ordered set (M, <)
» M;: the set of all finite-mean distributions
» =: a partial order on M1

G dominates F: F X G forall F € F

Definition 1 (Supremum of a set)
For F C M3, the supremum of F with respect to =<, denoted by
\/ F € Mj, is the smallest distribution in M; dominating F.

» FX\/F =G forall Fe€ F and all G € M; dominating F.

> If such G exists, we say that F is bounded from above with

respect to <.

A
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Stochastic dominance

Most important orders of risk

> First-order stochastic dominance (FSD, usual stochastic order):
F %1 G <= [udF < [udG for all increasing functions u

> Second-order stochastic dominance (SSD, increasing convex order):
F =<5 G < f udF < fudG for all increasing convex u

F=1G = VaR,(F) < VaR,(G) for all « = G>F
F=G — ES.(F) < ES,(G) for all « — T < TG

> r(x) = [ F()dt = Be[(X — x).]

> F(x) =1+ (me(x))%
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Conservative distributions with <; and <

(i) For F C My bounded from above with respect to <1,

FEF

(i) For F C M bounded from above with respect to <2,

Vo F =14 (supper 7r;:)/+ and my, F= I?UE)__?TF.
€

Proposition 2
Fori e {1,2} and F C My, \/;convF = \/; F, where conv.F is

the convex hull of F. = no extra difficulty with non-convexity!
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WR and MA approaches

Define

PVR(F) = sup p(F) and PMAF) =p(\/F)  (omiting )
FeF

For the uncertainty described by ¢, two optimization approaches

: WR : MA
F. d F.
min p"(Far) and - min pT(Far)

» WR: quite difficult to solve
® repeatedly computing p(f(a, X)) for every a and every X
® non-convexity of the uncertainty set causes problem
» MA: more tractable
® pis only computed once
® non-convexity is not a problem

® robust model available
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MA approach in robust optimization

MA for ES and =<;: write 8 =1/(1— «)

Esa(F) = milg {X aF ,87TF(X)} (Rockafellar-Uyrasev'02 JBF)
IS

ESVR(F) = sup ESy(F) = supmin {x + Brr(x)}

FeF FeFx€ER
ESMA(F) = ES, (V, F) = minsup {x + Brr(x)}
x€RFcF
min BS,(Far) = min sup min {x + SE[(f(a, X) - x).}
in ESMA = o E[(f(a, X) —
min B8 ™ (Far) = min _ sup {x+ BE[(F(a,X) —x).]}

» ESYR(F) < ESMA(F) always hold

» Equivalence under some conditions of minimax theorems
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Progress

© Equivalence in model aggregation
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Is the MA approach more prudent?

Fix an ordered set (M, <)
> pis consistent with <: F <X G = p(F) < p(G)
» pWVR(F) < pMA(F) = MA is more prudent than WR

» Question: when does p"VE(F) = pMA(F) hold?
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Is the MA approach more prudent?

Fix an ordered set (M, <)
> pis consistent with <: F <X G = p(F) < p(G)
» pWVR(F) < pMA(F) = MA is more prudent than WR

» Question: when does p"VE(F) = pMA(F) hold?

Definition 2 (X-cEMA)
Let (M, =) be an ordered set. A mapping p : M — R satisfies <-cEMA
if p(\/ F) = supgcr p(F) holds for all convex sets 7 C M bounded

from above.
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Characterization with <;-cEMA

Properties of risk measures
> Translation invariance (TI): p(Fx+c) = p(Fx)+c forall c € R, rv X
> Positive homogeneity (PH): p(Fax) = Ap(Fx) for all A >0, rv X

> Lower semicontinuity (LS): liminf,_.o p(F,) > p(F) if F, 4 F

(i) A mapping p : My — R satisfies Tl, PH, LS and <1-cEMA if and
only if p = VaR,, for some o € (0,1).

(i) A mapping p : My — R satisfies T, PH, LS and <,-cEMA if and
only if p = ES,, for some « € (0,1).

» Sufficient if cEMA is imposed only for convex sets with two extreme
points
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Characterization with cEMA

Axiomatic characterizations of VaR (quantile): key axioms

> Chambers’09 MF: ordinal covariance + law invariance

» Kou-Peng'l6 OR: elicitability + comonotonic additivity

» He-Peng'18 OR: surplus invariance + law invariance + PH

> Liu-W."21 MOR: elicitability + tail relevance + PH
Axiomatic characterizations of ES: key axioms

> W.-Zitikis'21 MS: no reward for concentration

> Embrechts-Mao-Wang-W'21 MF: elicitability + Bayes risk

» Han-Wang-W.-Wu'21 wp: Tl 4 concentration aversion
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EMA for arbitrary uncertainty sets

> =<-EMA: p(\/ F) = supgcr p(F) for F C M bounded from above

> p(60) =0, TI, LS and =;-EMA

< p(F) = sup {VaR,(F)—h(a)} for some increasing h ...
a€e(0,1)

<= benchmark-adjusted VaR (Bignozzi-Burzoni-Munari'20 JRI)

> p(60) =0, Tl and <,-EMA

<= p(F) = sup {ES.(F)—g(a)} for some increasing g ...
a€l0,1)

<= benchmark-adjusted ES (Burzoni-Munari-W.'22 JBF)

» ES does not satisfy <,-EMA
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Progress

@ Common settings of uncertainty models

Ruodu Wang  (wang@uwaterloo.ca) Model Aggregation Methods 19/33


wang@uwaterloo.ca

Uncertainty models
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Moment uncertainty

Mean-variance uncertainty set
Fuo = {F € Mz : E[F] = p and Var(F) = 02}

1 _ 2 _
> Let F,, = V1 Fu,o and Fio= W
» Robust distributions are explicit

F;i,o-(x) _ (X — H)Z

=17 >
o+ (x — p)?’ X=#

1 X — [
F2.()==(1+ , x€R
M70'( ) 2( /(X_M)Z_‘_OQ)
» Many risk measures p admit explicit formulas for pM4(F, )
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0@000

MA for robust portfolio optimization

» Mean and covariance uncertainty set
Fwpus = {Furx - E[X] = p, Cov(X) =1}
» The robust portfolio selection equivalence (Popescu’'07 OR)

» p satisfies Tl and Pl = second-order conic program, for <;,

. MA _ T 5 i
P (P v = i, {W o+ VWTEW  (R)
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Univariate Wasserstein uncertainty

> Fo: a reference model

» For p > 1, the ¢,-Wasserstein distance between F and Fo:

W, (F, Fo) = </ |F~1 O—l(s)|"ds>l/p

» Wasserstein uncertainty set for ¢ > 0
Fpe(Fo) ={F € Mp: W,(F,Fp) <€}

» Denote by

2
Foctr =\ Foclfo) and Foog, =/ FpelFo)
2
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Conservative distribution for Wasserstein uncertainty

Suppose that € >0, p > 1 and Fy € M,,.

(a) The left quantile of F; (|, s given by uniquely solving

(/al ((F;,elFo)_l(a) - F51(5)>ids) e —¢ ac(0,1).

(b) For p > 1, the left quantile of Fg,eIFo is given by

(F375|F0)71(O‘) = Fo_l((%) + (1 = ;) (1-— Oz)fl/pe, a € (0,1).

v
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Multivariate Wasserstein uncertainty

> The ¢,-Wasserstein distance on RY, a,p>1

d ; _ p1\1/P
Wio(F.G) =, jnf_(BIIX=YI2)

=
» Uncertainty set for the portfolio loss w' X, € > 0

]:W’Q’P’E(FO) = {FWTZ : Wa({p(FZ7 FO) S 6} ) FO S Mp(Rd)

Fore >0 and a,p > 1, Fx € Mp(R?) and w € RY such that w'w # 0,

we have

]:w.,a,p,e(FX) — ]:p,Hwac(FwTX)v

where b satisfies 1/a+ 1/b=1.
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© Empirical applications
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Performance of MA with finite uncertainty set

v

Daily losses of AAPL from Jan 1, 2019 to Aug 1, 2021
Fit the data with normal (F,), t (F;), logistic (Fig) models

v

» F: the empirical distribution

Uncertainty set: F = {F, Fy, Fi, Fig }

v

mmmm
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WR and MA for ES

09 091 092 093 094 095 096 097 098 099 09 091 092 093 094 095 096 097 098 099

ES for individual models, via WR and via MA
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MA approach in robust portfolio selection

> Daily losses of X; (AAPL), X, (AMZN), X3 (EBAY), X; (GOOGL)
and Xs (INTC) from Jan 1, 2019 to Aug 1, 2021

» W={we[0,1]":w'l=1 w'E[X] < —r}

> Portfolio selection under uncertainty F, = {F,7x : Fx € F}

; WR ; MA
ameT T g e )

> F is modelled by empirical mean-variance or the Wasserstein

distance from the fitted t-distribution

» Power distortion risk measure

1
p(F):/ ks"~1VaR¢(F)ds, k>1
0
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Wealth processes (mean-variance)

1 1
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MA with <, MA with <,
MA with < MA with =,
17 16
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0 50 100 150 200 250 300 o 50 100 150 200 250 300
Trade times Trade times

Wealth evolution under mean-variance uncertainty (rp = 0.0015)
Left: kK = 2; Right: kK =20

Ruodu Wang  (wang@uwaterloo.ca) Model Aggregation Methods 29/33


wang@uwaterloo.ca

Empirical applications
[eeleleY Tolele}

Wealth processes (Wasserstein with benchmark t-model)

Wealth

Wealth

200 250 300

o
] 50 100 150
Trade times

o.
0 50 100 150 200 250 300
Trade times

Wealth evolution under Wasserstein uncertainty (e = 0.01, rp = 0.0015)
Left: kK = 2; Right: kK =20
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Concluding remarks

» Both MA and WR are natural to interpret

» MA is motivated by robust distributional models
® can be used for calibration, analysis, and simulation
® can be applied without a specified risk measure
® WR gives the risk value instead of the risk model

» MA robust risk value is easier to compute than WR
® works well with non-convex F
® explicit formulas often available
® handles moment and Wasserstein uncertainty nicely

® casy to optimize

» MA axiomatically characterizes VaR and ES
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Future work

» Using other partial orders, e.g., fractional or multivariate

stochastic dominance
® Miiller-Scarsini-Tsetlin-Winkler'17 MS; Huang-Tzeng-Zhao'20 MS

» Using a prior measure on F for asymmetric treatment of

models

> Applying MA to many other settings of uncertainty
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Empirical applications

Thank you for your kind attention
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EMA for arbitrary uncertainty sets

> =<-EMA: p(V F) = supgcz p(F) for F C M bounded from above
> p(dg) =0, Tl, LS and <1-EMA <=

p(F) = sup {VaR.(F)— h(a)}
a€(0,1)

for some increasing h : (0,1) — [0, co] with h(0+) =0
® benchmark-adjusted VaR of Bignozzi-Burzoni-Munari’20 JRI
> p(do) = 0, Tl and <»-EMA <

p(F) = sup {ESq(F)—g(a)}
a€l0,1)

for some increasing g : [0,1) — [0, oo] with g(0+) = 0 such that
h:a— (1—a)g(a)is concave on [0,1) with h(1—) > 0.
® benchmark-adjusted ES of Burzoni-Munari-W.'22 JBF
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Some common risk measures

The Range Value-at-Risk (RVaR) is defined as

1 B
RVaR, 45(F) = ——— | VaRg(F)ds, 0<a<fB<1
76 ﬁ*a

The power-distorted (PD) risk measure is defined as
1
PD,(F) = / ks"“1VaR4(F)ds, k >1
0

The expectile, denoted by ex,, is defined as the unique solution

t = exo(F) € R to the following equation,

aE[(X — t)4] = (1 — Q)E[(X — t)_], X ~F e M,
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Robust risk measures with MA and WR method

Table: WR and MA under uncertainty induced by Fg ;.

p pWE pNA P
1 1 ¢
ESq lfu -« Lm T§;ds 130
RVaRq, s = =0 ids -
VaRa 1fi1 TE%; -
PD k=1 V7l (k+1/2) Vm(k=1) T(k+1/2)
k k—1 T (k) 2k—1 T (k)
a—1/2 1 a—1/2
R a(l—a) exa(FOsl) Voa(l—a)

I is the gamma function; (RVaRaﬂ)lL/[QA and (VaRa)ZgA are not reported because
RVaR,, g and VaR, are not =<»-consistent; exo((]-'(:)l 1) can be numerically computed
but it does not admit an explicit formula
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Wealth processes (Wasserstein with normal benchmark)

Wealth evolution under Wasserstein uncertainty (e = 0.01, rp = 0.0015)
Left: kK = 2; Right: kK =20
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