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3 Axiomatization of quantiles and quantile maximization

4 Quantile-based risk sharing

Based on

I Liu-Schied-W. Distributional transforms, probability distortions, and their

applications. Mathematics of Operations Research, 2021

I Fadina-Liu-W. One axiom to rule them all: A minimalist axiomatization of

quantiles. SSRN: 3944312, 2022

I Embrechts-Liu-W., Quantile-based risk sharing. Operations Research, 2018

and some work in progress
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A Chinese phrase: Banmennongfu
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Expected utility theory

I M: a set of distributions on R

The von Neumann-Morgenstein expected utility: Uu :M→ R,

Uu(F ) =

∫
R
u(x)dF (x)

I u : R→ R is a utility function

I Uu is linear in the distribution function F

I Key axiom of independence: ∀H ∈M, λ ∈ (0, 1],

F � G ⇐⇒ λF + (1− λ)H � λG + (1− λ)H

I Axiomatized by Savage with subjective probability

I Challenged by e.g., the Allais and the Ellsberg paradoxes
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Dual utility theory

The dual utility of Yaari (assuming h is continuous): Dh :M→ R,

Dh(F ) =

∫
R
xd(h ◦ F )(x) =

∫ 1

0
F−1(t)dh(t)

I h : [0, 1]→ [0, 1] is a distortion (or perception) function

I Dh is linear in the (left) quantile function F−1

I Key axiom of dual independence: ∀H ∈M, λ ∈ (0, 1],

F � G ⇐⇒ F ⊕λ H � G ⊕λ H

where F ⊕λ H has quantile function λF−1 + (1− λ)H−1

I Scalability: X � Y ⇐⇒ aX � aY for all a > 0
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Rank-dependent utility theory

The rank dependent utility (RDU) of Quiggin Ru,h :M→ R:

Ru,h(F ) =

∫
R
u(x)d(h ◦ F )(x)

I u is a utility function

I h is a distortion function

I The cumulative prospect theory of Kahneman-Tversky

generalizes RDU
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Risk measures

A law-based risk measure ρ :M→ R

I represents regulatory capital

I Artzner-Delbaen-Eber-Heath’99 MF, Follmer-Schied’02 FS,

Frittelli-Rosazza Gianin’02 JBF

Key example: the Expected Shortfall (ES) for p ∈ (0, 1),

ESp(F ) =
1

1− p

∫ 1

p
F−1(t)dt

I ES0.975 is the standard market risk measure in Basel IV

I Axiomatized recently by W.-Zitikis’21 MS
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Two-step procedure

I Expected utility

F =⇒ Fu(X ) := F ◦ u−1 =⇒ E[F ◦ u−1] = Uu(F )

I Dual utility

F =⇒ h ◦ F =⇒ E[h ◦ F ] = Dh(F )

I RDU

F =⇒ h ◦ F ◦ u−1 =⇒ E[h ◦ F ◦ u−1] = Ru,h(F )

I ES

F =⇒ Fp := (F − p)+/(1− p) =⇒ E[Fp] = ESp(F )

� Step 1: transform F to another distribution F ′

� Step 2: compute the mean of F ′
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Progress

1 Background

2 Distributional transforms and probability distortions

3 Axiomatization of quantiles and quantile maximization

4 Quantile-based risk sharing
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Distributional transforms

I M0: the set of all distributions on R, represented by cdfs

I Mc : compactly supported; M⊆M0

Definition

A distributional transform T is a mapping from M to M0.

Definition

For a monotone function φ on R, the utility transform (UT)

generated by φ, denoted by T [φ] :M→M0, is defined as the

distribution of φ(X ) where X ∼ F .

I Treating distributions as measures: T [φ](F ) = F ◦ φ−1
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Probability distortions

I H: the set of all increasing g : [0, 1]→ [0, 1] with g(0) = 0

and g(1) = 1

I [F ]: the right-continuous version of F

Definition

For g ∈ H, the probability distortion (PD) generated by g , denoted

by Tg :M→M0, is defined as Tg (F ) = [g ◦ F ] (if well-defined).

I If g is right-continuous, then Tg (F ) = g ◦ F

Tg satisfies many properties

I ≤st-monotone, constant-preserving, lower semi-continuous, ...

I ≤icx-monotone ⇐⇒ g is convex

Ruodu Wang (wang@uwaterloo.ca) Distortion, quantile and risk sharing 11/30

wang@uwaterloo.ca


Background Distributional transforms Quantile axiomatics Risk sharing

Examples of distributional transforms

I Tail transform: T (F ) = (F − p)+/(1− p) for some p ∈ (0, 1) [PD]

I Distorted power transform: T (F ) = F γ for γ > 0 [PD]

I Scale-location transform: T (F ) is the distribution of aX + b, where

X ∼ F , for a ∈ R+ and b ∈ R [UT]

I Super-quantile transform: T (F ) has a quantile function given by

p 7→ ESp(F )

I Lorenz curve: T (F ) : x 7→
∫ x

0
F−1(t)dt∫ 1

0
F−1(t)dt

on [0, 1]

I Convolution transform: T (F ) : x 7→
∫
F (x − y)G (dy) for a fixed

G ∈M0

I Weighted transform: T (F ) has density w(x)f (x)∫
R w(y)f (y)dy

where f is the

density of F
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A characterization of probability distortions

I G∗: the set of continuous and increasing functions on R

I L and R stand for left- and right-continuous ones

Theorem

For a mapping T :Mc →Mc ,

(i) T commutes with T [φ] for all φ ∈ G∗ if and only if T = Tg

for some g ∈ H;

(ii) T commutes with T [φ] for all φ ∈ GL if and only if T = Tg

for some g ∈ HR .

I Commuting with UT characterizes PD

I (Non-linear) scaling does not matter ⇒ PD users
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A characterization of utility transforms

Theorem

For a mapping T :Mc →Mc ,

(i) T commutes with Tg for all g ∈ H if and only if T = T [φ] for

some φ ∈ G∗.

(ii) T commutes with Tg for all g ∈ HR if and only if T = T [φ]

for some φ ∈ GL;

I Commuting with PD characterizes UT

I Probability reweighting does not matter ⇒ UT users
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RDU transforms

I G�± = {φ : R→ R | φ is strictly monotone, continuous, φ(R) = R}

I T is G-semi-covariant if for each φ ∈ G, there exist ψ, η ∈ G such

that T [φ] ◦ T = T ◦ T [ψ] and T ◦ T [φ] = T [η] ◦ T

Theorem

A mapping T :Mc →Mc is G∗-semi-covariant if and only if

T = Tg ◦ T [ξ] for some g ∈ H and ξ ∈ G�±.

I Fix g ∈ H, ξ ∈ G�± and φ ∈ G∗; T = Tg ◦ T [ξ]

T [φ] ◦ Tg ◦ T [ξ] = Tg ◦ T [φ] ◦ T [ξ] = Tg ◦ T [ξ] ◦ T [ξ−1] ◦ T [φ] ◦ T [ξ]

I Each (non-linear) scaling on input translates into a scaling on the

output ⇒ RDU transform users
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2 Distributional transforms and probability distortions

3 Axiomatization of quantiles and quantile maximization

4 Quantile-based risk sharing
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Axiomatization of quantiles

A mapping ρ :M→ R is

I a left quantile if for some α ∈ (0, 1],

ρ(F ) = F−1
L (α) := inf{x ∈ R : F (x) ≥ α}

I a right quantile if for some p ∈ [0, 1),

ρ(F ) = F−1
R (α) := inf{x ∈ R : F (x) > α}

Axiomatic characterizations of quantiles (VaR) as law-based mappings

I Chambers’09 MF: ordinal-covariance + monotonicity + semi-continuity

I Kou-Peng’16 OR: elicitability + comonotonic-additivity + ...

I He-Peng’18 OR: surplus-invariance + positive homogeneity + ...

I Liu-W.’21 MOR: elicitability + tail-relevance + ...
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Axiomatization of quantiles

Definition

For a mapping ρ :M→ R and a set G of measurable functions,

we say that ρ is G-ordinal if ρ ◦ T [φ] = φ ◦ ρ for all φ ∈ G.

I G� = {φ : R→ R | φ is strictly increasing and continuous}

Theorem (Chambers’09 MF)

A mapping ρ :Mc → R is G�-ordinal, lower semi-continuous, and

increasing if and only if ρ is a left quantile.

I Replacing “lower” by “upper” =⇒ right quantiles
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Axiomatization of quantiles

Theorem

A mapping ρ :M→ R withMc ⊆M ⊆M0 is G∗-ordinal if and
only if it is a left or right quantile.

I Only one axiom

I No continuity

I No monotonicity

I General domains

I Ordinality alone characterizes quantiles
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Quantile intervals and medians

Other results

I GL-ordinality ⇐⇒ ρ is a left quantile

I GR -ordinality ⇐⇒ ρ is a right quantile

If M has only continuous quantile functions

I G∗±-ordinality ⇐⇒ ρ is the median

ρ :M→ I where I is the set of closed intervals in R

I G∗-ordinality ⇐⇒ ρ is a quantile interval

I G∗±-ordinality ⇐⇒ ρ is an equal-tailed quantile interval

I minimal G∗-ordinality ⇐⇒ ρ is a quantile singleton

I minimal G∗±-ordinality ⇐⇒ ρ is the median interval

Ruodu Wang (wang@uwaterloo.ca) Distortion, quantile and risk sharing 20/30

wang@uwaterloo.ca


Background Distributional transforms Quantile axiomatics Risk sharing

Quantile maximization

I � is a law-based preference on X (bounded random variables)

I G-invariance of �:

X � Y =⇒ φ(X ) � φ(Y ) for all φ ∈ G

Theorem

A law-based total preorder � on X with certainty equivalents is

G∗-invariant if and only if it is a quantile maximizer.

I A quantle maximizer: X � Y ⇐⇒ R(X ) � R(Y ) where

R = λQL
α or λQR

α for some λ ∈ R and α below

I QL
α(X ) = inf{x ∈ R : P(X ≤ x) ≥ α}, α ∈ (0, 1]

I QR
α (X ) = inf{x ∈ R : P(X ≤ x) > α}, α ∈ [0, 1)
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Quantile-based risk sharing

Given a risk X ∈ X shared by n agents, the set of allocations is

An(X ) =

{
(X1, . . . ,Xn) ∈ X n :

n∑
i=1

Xi = X

}

What is a “canonical form” of an optimal (sensible) allocation?

If we assume the preferences of the agents are “similar”

I Xi = aiX + side payments for some
∑n

i=1 ai = 1?

I Xi = 1Ai
X + side payments for some

⋃n
i=1 Ai = Ω?
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Quantile-based risk sharing

Theorem

For quantile maximizers QR
α1
, . . . ,QR

αn
with α :=

∑n
i=1 αi < 1, a

Pareto-optimal allocation (X ∗1 , . . . ,X
∗
n ) of X is given by

X ∗i = (X − z)1Ai
+ ci , i = 1, . . . , n.

for some partition (A1, . . . ,An) of Ω and z , c1, . . . , cn ∈ R, where z

is large enough.

I If X ≤ 0, an optimal allocation can be chosen as

X ∗i = X1Ai
, i = 1, . . . , n.

I No equilibrium condition:
∑n

i=1 αi ≥ 1
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Optimal allocations

A1 A2 A3 A4 A5 A6
10

−X (ω)

A1 A2 A3 A4 A5 A6
10

−X−
3 (ω)

−X+
3 (ω)

I Ω = [0, 1], n = 6, X (ω) = ω2 − ω
I A positively dependent allocation: X+

i = X/n, i ∈ [n]

• the area between two dotted curves; utility maximizers

I A negatively dependent allocation: X−i = X1Ai
, i ∈ [n]

• the area between two dashed lines; quantile maximizers
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Optimal allocations

quantile maximizers

agent i : QR
αi

(Xi )

vertical cut

(X1A1
, . . . ,X1An )

roulette

negative dependence

utility maximizers

agent i : E[ui (Xi )]

horizontal cut

(X/n, . . . ,X/n)

coinsurance

positive dependence
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Quantile inequalities

Assume α :=
∑n

i=1 αi < 1

I For any (X1, . . . ,Xn) ∈ X n,

n∑
i=1

QR
αi

(Xi ) ≤ QR
α

(
n∑

i=1

Xi

)
n∑

i=1

QL
1−αi

(Xi ) ≥ QL
1−α

(
n∑

i=1

Xi

)
I For any X ∈ X ,

max
(X1,...,Xn)∈An(X )

n∑
i=1

QR
αi

(Xi ) = QR
α (X )

min
(X1,...,Xn)∈An(X )

n∑
i=1

QL
1−αi

(Xi ) = QL
1−α(X )
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Quantile-based risk sharing

The allocation is optimal in settings of

I competitive equilibria

I RVaR (including VaR and ES)

I heterogenous beliefs

(Embrechts-Liu-Mao-W.’20 MP)

6

-
10

1

α β α+ β

Distortion functions of VaRα (red),

ESβ (green) and RVaRα,β (blue)
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Block rewards of Bitcoin mining

I Each Bitcoin miner i ∈ {1, . . . , n} has a computational

contribution xi mining a block

• pi = xi/
∑n

j=1 xj : the percentage contribution

I The Bitcoin reward protocol

• randomly assigns the block to miner i with probability pi
• x̃i = 1Ai with P(Ai ) = pi
• axiomatized by Leshno-Strack’20 AER-I

I Mining pool: proportional reward within a

group

I Individual miners vs mining pools

• quantile maximizer vs utility maximizer

• decentralization vs centralization
m1 m2 m3 m4 pool

Ω

1
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Thank you

Thank you for your kind attention

Based on joint work with

Peng Liu

(U Essex)

Alexander Schied

(Waterloo)

Tolulope Fadina

(U Essex)

Paul Embrechts

(ETH Zurich)

Haiyan Liu

(Michigan State)

Working papers series on the theory of risk measures

http://sas.uwaterloo.ca/~wang/pages/WPS1.html
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