[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

E-backtesting

Ruodu Wang <http://sas.uwaterloo.ca/~wang>

Department of Statistics and Actuarial Science University of Waterloo

Finance Innovations & AI Seminar, Canadian Imperial Bank of Commerce November 2023 (online)

Ruodu Wang [\(wang@uwaterloo.ca\)](wang@uwaterloo.ca) and the extra state of the extra state [E-backtesting](#page-52-0) the extra state in the 1/50

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Agenda

[Risk forecasts and backtests](#page-2-0)

[E-values](#page-11-0)

[Model-free e-statistics](#page-18-0)

[E-backtesting](#page-29-0)

[Simulation and data analysis](#page-39-0)

based on joint work with Qiuqi Wang (Georgia State) and Johanna Ziegel (Bern)

VaR and ES

Value-at-Risk (VaR), $p \in (0, 1)$ $VaR_p: L⁰ \rightarrow \mathbb{R}$, $VaR_p(X) = q_p(X)$

 $= \inf\{x \in \mathbb{R} : \mathbb{P}(X \leq x) \geq p\}$

(left-quantile)

Expected Shortfall (ES), $p \in (0, 1)$ $ES_p: L^1 \to \mathbb{R}$, $ES_p(X) = \frac{1}{1-p}$ \mathfrak{c}^1 $\mathsf{VaR}_q(X)$ d q (also: TVaR/CVaR/AVaR)

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 0 00000000 [Risk forecasts and backtests](#page-2-0)

COQOOO

00000000

0000000000

00000000000000

Some recent work on VaR vs ES

- **Axiomatic characterizations**
	- VaR: Kou/Peng' 16 OR; He/Peng' 18 OR; Liu/W.'21 MOR
	- ES: W./Zitikis'21 MS; Embrechts/Mao/Wang/W.'21 MF
- Risk sharing
	- Embrechts/Liu/W.'18 OR; Embrechts/Liu/Mao/W.'20 MP
- Robustness, optimization, calibration
	- Emberchts/Schied/W.'22 OR; Li/W.'23 JE
- Forecasting and backtesting ES
	- Fissler/Ziegel'16 AOS; Nolde/Ziegel'17 AOAS; Du/Escanciano'17 MS; Moldenhauer/Pitera'17 JRisk; Banulescu-Radu/Hurlin/Leymarie/Scaillet'21 MS; Bayer/Dimitriadis'22 JFEC; Hoga/Demetrescu'22 MS

COQOOO

00000000

0000000000

00000000000000

Features in backtesting risk measures I

After each period (e.g., one trading day), a new observation comes in, and a risk forecast is announced by a financial institution (bank). Hypothesis testing methods are designed to assess the risk forecasts.

Negated log-returns (in %) of the NASDAQ Composite index from Jan 16, 1996 to Dec 31, 2021

Fitted (AR(1)-GARCH(1, 1)) or empirical ES_{0.975} forecasts with moving window of 500

Ruodu Wang [\(wang@uwaterloo.ca\)](wang@uwaterloo.ca) [E-backtesting](#page-0-0) 5/50

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 000000000 [Risk forecasts and backtests](#page-2-0)

 0000000

00000000

0000000000

00000000000000

Features in backtesting risk measures II

Challenges

- The risks are neither independent nor identically distributed
- The predictions are even less clearly structured
- The regulator does not necessarily know or trust the underlying model used by the bank to produce a risk prediction
	- Only limited information is supplied by the bank, and the bank may make mistakes on models it provide.

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) [Risk forecasts and backtests](#page-2-0)

Some examples

The firm is expanding the business

The firm has a business cycle

The firm has a poor forecast quality

Question: How do we evaluate the ES forecasts (the true ES is not known)?

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 0000000000 [Risk forecasts and backtests](#page-2-0)

COQOOO

00000000

0000000000

00000000000000

Features in backtesting risk measures III

The regulator is concerned about underestimation of the risk measure, whereas overestimation (being conservative) is less of a concern.

Example from Lehman Brothers (2008)

- underestimated default/credit risks
- hid the true their leverage and debt

Example from Silicon Valley Bank (2023)

- \bullet underestimated interest rate risk
- **•** basically no risk management

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) [Risk forecasts and backtests](#page-2-0)

Backtesting risk measures

- \bullet Risk measure ρ to backtest
- **o** Define

$$
\mathcal{F}_{t-1} := \sigma(L_s : s \leq t-1)
$$

- Daily observations
	- risk measure forecast r_t for $\rho(L_t)$ given \mathcal{F}_{t-1}
	- realized loss L_t

Hypothesis to test

$$
H_0: \begin{array}{ll}\text{conditional on } \mathcal{F}_{t-1}: \\ r_t \geqslant \rho(L_t | \mathcal{F}_{t-1}) \end{array} \text{ for } t = 1, \ldots, T
$$

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 0000000000 [Risk forecasts and backtests](#page-2-0)

COQOOO

00000000

0000000000

00000000000000

Backtesting VaR

- Daily prediction $r_t = \widehat{\text{VaR}}_p(L_t | \mathcal{F}_{t-1})$
- \bullet Daily realization L_t

Backtesting for fixed T

- Under $H_0: Y_t = 1_{\{L_t > r_t\}}$ are independent Bernoulli sample with mean at most $1 - p$
- $S_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}}$ $t'_{t=1}$ $Y_t \leq$ _{st} Binomial $(T, 1 - p)$
- Easy to construct p-values (reject if S_t large enough)
- Completely model free

Such a simple procedure does not exist for ES!

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) [Risk forecasts and backtests](#page-2-0)

Backtesting risk measures

Objective: build up a backtesting method that

- **o** is model free
- is anytime valid
- **e** works for both **ES** and VaR

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Progress

[Risk forecasts and backtests](#page-2-0)

[E-values](#page-11-0)

[Model-free e-statistics](#page-18-0)

[E-backtesting](#page-29-0)

[Simulation and data analysis](#page-39-0)

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

E-values

Vladimir Vovk (Royal Holloway)

Aaditya Ramdas (Carnegie Mellon)

Qiuqi Wang (Georgia State)

Johanna Ziegel (Bern)

 0000000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

What is an e-value?

• A hypothesis \mathcal{H} : a set of probability measures

Definition (E-variables, e-values, and e-processes)

- (1) An e-variable for testing H is a non-negative random variable $E : \Omega \rightarrow [0, \infty]$ An e-variable for testing ${\cal H}$ is a non-ne
that satisfies $\int E\, {\rm d} H \leqslant 1$ for all $H\in {\cal H}.$
	- Realized values of e-variables are e-values.

(2) Given a filtration, an e-process for testing $\mathcal H$ is a non-negative process Given a filtration, an e-process for testing H is a non-negative process $(E_t)_{t=0,1,...,n}$ such that $\int E_{\tau} dH \leqslant 1$ for all stopping times τ and all $H \in \mathcal{H}$.

- For simple hypothesis $\{P\}$
	- **e** e-variable: non-negative random variable with mean ≤ 1
	- **e** e-process: (e.g.) non-negative supermartingale with initial value ≤ 1

 0000000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

What is an e-value?

- \bullet E-test: e(data) large \Longleftrightarrow reject H
- \bullet P-test: p (data) small \Longleftrightarrow reject $\mathcal H$
- E stands for expectation; P stands for probability
- Bayes factors (simple hypothesis) and likelihood ratios:

$$
e(\text{data}) = \frac{\text{Pr}(\text{data} \mid \mathbb{Q})}{\text{Pr}(\text{data} \mid \mathbb{P})}
$$

Sir Jeffreys

"Users of these tests speak of the 5 per cent. point [p-value of 5%] in much the same way as I should speak of the $K = 10^{-1/2}$ point [e-value of $10^{1/2}$], and of the 1 per cent. point [p-value of 1%] as I should speak of the $K = 10^{-1}$ point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed., 1961)

 0000000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

Robustness advantages

- Validity for arbitrary dependence
	- robust to dependence
- They are easy to combine
	- robust to operations
- Flexible with regards to stop/continue procedures
	- robust to sampling and optimizing algorithms
- Non-asymptotic and model free
	- robust to model misspecification

 00000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Example in testing multiple hypotheses

Multi-armed bandit problems Multi-armore Xu-W.-Ramdas'21 NeurIPS

- \bullet K arms
- null hypothesis k : arm k has mean reward at most 1
- strategy (k_t) : at time $t\geqslant 1$, pull arm k_t , obtain an iid reward $X_{k_t,t}\geqslant 0$
- aim: quickly detect arms with mean > 1
	- or maximize profit, minimize regret, etc ...
- running reward: $M_{k,t} = \prod_{i}^{t}$ $_{j=1}^{t} X_{k,j} 1\!\!1_{\{k_j = k\}}$
- complicated dependence due to exploration/exploitation
- $M_{1,\tau}$, ..., $M_{K,\tau}$ are e-values for any stopping time τ

 000000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Combining sequential e-values

Sequential e-variables

 $\mathbb{E}[X_t | X_1, \ldots, X_{t-1}] \leq 1$ for all $t = 1, 2, \ldots$

The general protocol

- Obtain sequential e-values X_1, \ldots, X_t, \ldots
- Decide predictable $\lambda_1, \ldots, \lambda_t, \cdots \in [0, 1]$
- Compute the e-process $(E_0 = 1)$

$$
E_t = E_{t-1}(1 - \lambda_t + \lambda_t X_t) = \prod_{s=1}^t (1 - \lambda_s + \lambda_s X_s)
$$

• The only optimal procedures in the sense of Pareto or Wald Vovk/W.'22

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Progress

[Risk forecasts and backtests](#page-2-0)

[Model-free e-statistics](#page-18-0)

[E-backtesting](#page-29-0)

[Simulation and data analysis](#page-39-0)

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Model-free e-statistics

Setting

- The model space M is a set of distributions on $\mathbb R$
- \bullet ρ is the risk measure to be tested
	- treated as a mapping on either M or X
- $\phi : \mathcal{M} \to \mathbb{R}$ represents auxiliary statistics
- $\phi \phi = (\rho, \phi)$ represents the collection of available statistical information Remarks.
	- If ϕ is a constant (we can take $\phi = 0$), then only the predicted value of ρ is used
	- We omit ϕ if it is a constant
	- \bullet ϕ may be d-dimensional in general, but we focus on $d = 0$ (constant ϕ) or $d = 1$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

0000000000

Model-free e-statistics

Intuitive thoughts in case ϕ is omitted

- $e(X, r)$ is an e-variable if $r \geq \rho(F_X) \leftrightarrow$ validity
- **•** If r is under-specified, then $\mathbb{E}[e(X, r)] > 1 \leftrightarrow$ consistency
- \bullet $r \mapsto e(X, r)$ should be decreasing \leftrightarrow monotonicity

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Model-free e-statistics

Intuitive thoughts in case ϕ is omitted

- e $e(X, r)$ is an e-variable if $r \geq \rho(F_X) \leftrightarrow$ validity
- **•** If r is under-specified, then $\mathbb{E}[e(X, r)] > 1 \leftrightarrow \text{consistency}$
- \bullet $r \mapsto e(X, r)$ should be decreasing \leftrightarrow monotonicity

Definition (Model-free e-statistics)

A model-free e-statistic for $(\rho, \phi) : \mathcal{M} \to \mathbb{R}^2$ is a measurable function

- A model-tree e-statistic for $(\rho, \phi) : \mathcal{M} \to \mathbb{R}^2$ is a measurable function
 $e : \mathbb{R}^3 \to [0, \infty]$ satisfying $\int e(x, \rho(F), \phi(F)) \mathrm{d}F \leqslant 1$ for each $F \in \mathcal{M}$. Moreover,
	- $e \rightarrow [0, \infty]$ satisfying $\int e(x, p, p) f(y) dx \leq 1$ for each $r \in M$. Moreover,
e is testing ρ if $\int e(x, r, z) dF(x) > 1$ for all $F \in M$ with $\rho(F) > r$ and all (r, z) in the range of (ρ, ϕ) .
	- The test is strict if $r \mapsto e(x, r, z)$ is decreasing.

• We write $e(x, r) = e(x, r, 0)$ if $\phi = 0$ (so z does not matter)

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Model-free e-statistics

Examples (convention: $0/0 = 1$ and $1/0 = \infty$)

• Let M be the set of distributions on \mathbb{R}_+ with a finite mean. The function $e(x, r) = x/r$ for x, $r \ge 0$ is a model-free e-statistic strictly testing the mean.

 0000000

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Model-free e-statistics

Examples (convention: $0/0 = 1$ and $1/0 = \infty$)

- Let M be the set of distributions on \mathbb{R}_+ with a finite mean. The function $e(x, r) = x/r$ for x, $r \ge 0$ is a model-free e-statistic strictly testing the mean.
- \bullet Let M be the set of distributions on R with a finite variance. The function $e(x, r, z) = (x - z)^2/r$ for $x, z \in \mathbb{R}$ and $r \ge 0$ is a model-free e-statistic for (E,Var) strictly testing the variance.

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Model-free e-statistics

Examples (convention: $0/0 = 1$ and $1/0 = \infty$)

- Let M be the set of distributions on \mathbb{R}_+ with a finite mean. The function $e(x, r) = x/r$ for x, $r \ge 0$ is a model-free e-statistic strictly testing the mean.
- \bullet Let M be the set of distributions on R with a finite variance. The function $e(x, r, z) = (x - z)^2/r$ for $x, z \in \mathbb{R}$ and $r \ge 0$ is a model-free e-statistic for (E,Var) strictly testing the variance.
- Let M be the set of all distributions on R and take $p \in (0, 1)$. The function $e(x, r) = 1_{\{x > r\}}/(1 - p)$ for x, $r \in \mathbb{R}$ is a model-free e-statistic strictly testing VaR_p .

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

0000000000

00000000000000

Model-free e-statistics for VaR

The model-free e-statistic strictly testing VaR_n

$$
e_p^Q(x,r) = \frac{\mathbb{1}_{\{x > r\}}}{1 - p}, \quad x, r \in \mathbb{R}
$$

Theorem 1

For $p \in (0, 1)$, all model-free e-statistics testing VaR_p that are continuous except at $x = r$ have the form

$$
e'(x,r) = 1 - \lambda(r) + \lambda(r)e_p^Q(x,r), \quad x, r \in \mathbb{R},
$$

for some continuous $\lambda : \mathbb{R} \to (0, 1]$. Moreover, e' is strictly testing VaR_p if and only if $\lambda(r)$ is constant in r.

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 000000000

0000000000

00000000000000

Model-free e-statistics for ES

Proposition 1

There does not exist a model-free e-statistic testing ES_p using solely the information of ES_n .

Define the function

$$
e_p^{ES}(x, r, z) = \frac{(x - z)_+}{(1 - p)(r - z)}, \quad x \in \mathbb{R}, \ z \le r,
$$

Theorem 2

For $p \in (0, 1)$, e_p^{ES} is a model-free e-statistic for (ES_p, VaR_p) strictly testing ES_p .

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Model-free e-statistics for ES

Sketch of Proof. VaR-ES optimization formula: Rockafellar/Uryasev'02 JBF

$$
\begin{aligned} \text{VaR}_{p}(X) &\in \arg\min_{x \in \mathbb{R}} \left\{ x + \frac{1}{1 - p} \mathbb{E}[(X - x)_{+}] \right\} \\ \text{ES}_{p}(X) &= \min_{x \in \mathbb{R}} \left\{ x + \frac{1}{1 - p} \mathbb{E}[(X - x)_{+}] \right\} \\ &= \text{VaR}_{p}(X) + \frac{1}{1 - p} \mathbb{E}[(X - \text{VaR}_{p}(X))_{+}] \end{aligned}
$$

Hence,

$$
\mathbb{E}\big[e_p^{\text{ES}}(X, \text{ES}_p(X), \text{VaR}_p(X))\big] = \frac{\mathbb{E}\big[(X - \text{VaR}_p(X))_+\big]}{(1 - p)(\text{ES}_p(X) - \text{VaR}_p(X))} = 1
$$

and

$$
\mathbb{E}[e_p^{ES}(X, r, z)] > 1 \quad \text{for any } z \leq r < ES_p(X)
$$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 0000000

0000000000

00000000000000

Model-free e-statistics for ES

Theorem 3

All model-free e-statistics for (ES_p,VaR_p) testing ES_p have the form

$$
e'(x, r, z) = 1 - \lambda(r, z) + \lambda(r, z)e_{p}^{ES}(x, r, z), \quad x \in \mathbb{R}, \ z \leq r.
$$

for some $\lambda : \mathbb{R}^2 \to (0, 1]$. Moreover, e' is strictly testing ES_p if and only if both $r \mapsto \lambda(r, z)$ and $r \mapsto (r - z)/\lambda(r, z)$ are increasing.

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

Progress

[Risk forecasts and backtests](#page-2-0)

[Model-free e-statistics](#page-18-0)

[E-backtesting](#page-29-0)

[Simulation and data analysis](#page-39-0)

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0)

E-backtesting

Daily observations

- \bullet ES forecast r_t
- \bullet VaR forecast z_t
- \bullet realized loss L_t

Hypothesis to test

$$
H_0: \text{comotational on } \mathcal{F}_{t-1}: \\
 H_0: \text{tr}_{t \geqslant \text{ES}_p(L_t | \mathcal{F}_{t-1})} \text{ and } \text{tr}_{t} = \text{VaR}_p(L_t | \mathcal{F}_{t-1}) \text{ for } t = 1, \dots, T
$$

A weaker hypothesis

$$
\begin{array}{ll}\n\text{conditional on } \mathcal{F}_{t-1}: \\
H_0': r_t - z_t \geqslant \text{ES}_p(L_t | \mathcal{F}_{t-1}) - \text{VaR}_p(L_t | \mathcal{F}_{t-1}) \quad \text{for } t = 1, \ldots, T \\
\text{and } z_t \geqslant \text{VaR}_p(L_t | \mathcal{F}_{t-1})\n\end{array}
$$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 0000000000

0000000000000

Backtesting ES

The general protocol for $t \in \mathbb{N}$

- The bank announces ES forecast r_t and VaR forecast z_t
- Decide predictable $\lambda_t(r_t, z_t) \in [0, 1] \; (\Rightarrow$ not shown to the bank)
- \bullet Observe realized loss L_t
- Obtain the sequential e-values $X_t = e_p^{ES}(L_t, r_t, z_t)$
- Compute the e-process $(E_0 = 1)$

$$
E_t(\boldsymbol{\lambda}) = (1 - \lambda_t + \lambda_t X_t) E_{t-1}(\boldsymbol{\lambda}) = \prod_{s=1}^t (1 - \lambda_s + \lambda_s X_s).
$$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 0000000000

Backtesting ES

Theorem 4

Under H₀ or H₀, $(E_t(\lambda))_{t=1,\dots,T}$ is a supermartingale, and

$$
\mathbb{P}\left(\sup_{t\geq 1}E_t(\boldsymbol{\lambda})\geq \frac{1}{\alpha}\right)\leq \alpha.
$$

Our method

- **•** Completely model free
- Anytime validity: one can stop at any stopping time
- Early warning: one can reject at a low threshold such as 2

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 00000000000

00000000000000

Comparison with existing methods

Table: Comparison of backtesting methods for ES; parametric or dependence assumptions refer to those on loss distributions, time series models, stationarity, or strong mixing; forecast structural assumptions refer to requirements on the forms and properties of risk forecasts

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 00000000000

0000000000000

Backtesting risk measures

- A model-free e-statistic $e:\mathbb{R}^2\to[0,\infty]$ for (ρ,ϕ) testing ρ
- ρ forecast r_t ; φ forecast z_t ; realized loss L_t ; e-value $X_t = e(L_t, r_t, z_t)$

Hypothesis to test

$$
H_0: \begin{array}{ll}\n\text{conditional on } \mathcal{F}_{t-1}: \\
r_t \ge \rho(L_t | \mathcal{F}_{t-1}) \text{ and } z_t = \phi(L_t | \mathcal{F}_{t-1})\n\end{array}
$$
 for $t = 1, ..., T$

- Decide a (predictable) $\lambda_t(r_t, z_t) \in [0, 1]$
- Compute the test martingale $(E_0 = 1)$

$$
E_t(\boldsymbol{\lambda}) = (1 - \lambda_t + \lambda_t X_t) E_{t-1}(\boldsymbol{\lambda}) = \prod_{s=1}^t (1 - \lambda_s + \lambda_s X_s).
$$

• Size- α test for H_0 : reject if sup, $E_t(\lambda) \geq 1/\alpha$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 00000000000

00000000000000

Choosing λ_t

- Heuristic choice of constant $\lambda_t = \lambda \in [0, 1]$, e.g., $\lambda = 0.01$
- Adaptive choices:
	- Dependent on observed loss data
	- Dependent on forecast
	- Dependent on past forecast
- \bullet E-power (Vovk/W.'23) of an e-variable E for an alternative Q:

$\mathbb{E}^Q[\log E]$

In our setting (where Q_t is unknown):

$$
\mathbb{E}^{Q_t} \left[\log(1 - \lambda_t + \lambda_t e(L_t, r_t, z_t)) \mid \mathcal{F}_{t-1} \right]
$$

•
$$
\lambda \mapsto \log(1 - \lambda + \lambda e(L_t, r_t, z_t))
$$
 is concave

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 00000000000

0000000000000

Choosing λ_t

Fix $\gamma \in (0, 1)$; $\gamma = 1/2$ works well

• GRO (growth-rate optimal): $L \sim Q_t$,

, Grünwald/de Heide/Koolen'23

$$
\lambda_t^{\text{GRO}} = \lambda_t^{\text{GRO}}(r, z) = \underset{\lambda \in [0, \gamma]}{\text{arg max}} \mathbb{E}^{Q_t} [\log(1 - \lambda + \lambda e(L, r, z)) \mid \mathcal{F}_{t-1}], \quad r, z \in \mathbb{R}^d
$$

GREE (growth-rate for empirical e-statistics):

$$
\lambda_t^{\text{GREE}} = \underset{\lambda \in [0,\gamma]}{\arg \max} \frac{1}{t-1} \sum_{s=1}^{t-1} \log(1 - \lambda + \lambda e(L_s, r_s, z_s))
$$

• GREL (growth-rate for empirical losses):

$$
\lambda_t^{\text{GREL}} = \lambda_t^{\text{GREL}}(r, z) = \underset{\lambda \in [0, \gamma]}{\text{arg max}} \frac{1}{t - 1} \sum_{s = 1}^{t - 1} \log(1 - \lambda + \lambda e(L_s, r, z)), \quad r, z \in \mathbb{R}^d
$$

GREM (GRE mixture): $E_t(\boldsymbol{\lambda}^{\text{GREM}}) = (E_t(\boldsymbol{\lambda}^{\text{GREL}}) + E_t(\boldsymbol{\lambda}^{\text{GREE}}))/2$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 000000000

00000000000000

Optimality of a method

Definition (Asymptotic optimality)

For $(L_{t-1}, r_t, z_t)_{t \in \mathbb{N}}$ adapted to $(\mathcal{F}_{t-1})_{t \in \mathbb{N}}$ and a given model-free e-statistic e ,

two betting processes $\bm{\lambda}=(\lambda_t)_{t\in\mathbb{N}}$ and $\bm{\lambda}'=(\lambda'_t)_{t\in\mathbb{N}}$ are asymptotically equivalent, denoted by $\boldsymbol{\lambda} \simeq \boldsymbol{\lambda}'$, if

$$
\frac{1}{T}(\log E_T(\lambda) - \log E_T(\lambda')) \xrightarrow{p} 0 \quad \text{as } T \to \infty;
$$

a betting process $\bm{\lambda}$ is asymptotically optimal (AO) if $\bm{\lambda}\simeq (\lambda^{\sf GRO}_{t}(r_t, z_t))_{t\in\mathbb{N}}.$

- The long-term growth rates of the two resulting e-processes are the same
- **GRO** as the oracle benchmark
- $\psi^*(\mathcal{M}) = \{(r, z) \text{ in the range of } (\rho, \phi) \text{ such that } e(x, r, z) < \infty \text{ for all } x\}$

COQOOO

[Risk backtests](#page-2-0) [E-values](#page-11-0) [Model-free e-statistics](#page-18-0) [E-backtesting](#page-29-0) [Simulation and data](#page-39-0) 00000000

 000000000

00000000000000

Optimality of GREE and GREL

Assumption 1

For all $(r, z) \in \psi^*(\mathcal{M})$, $\sup_{t \in \mathbb{N}} \mathbb{E}^{Q_t}[\log(e(L_t, r, z))] < \infty$.

Theorem 5

Suppose that $(r_t, z_t)_{t \in \mathbb{N}}$ takes values in $\psi^*(\mathcal{M})$, $(L_{t-1}, r_t, z_t)_{t \in \mathbb{N}}$ is adapted to $(f_{t-1})_{t\in\mathbb{N}}$, e is a model-free e-statistic, and Assumption [1](#page-38-0) holds.

- (i) λ^{GREE} is AO if $(e(L_t, r_t, z_t))_{t \in \mathbb{N}}$ is iid and $(r_t, z_t)_{t \in \mathbb{N}}$ is deterministic.
- (ii) λ^{GREL} is AO if $(L_t)_{t \in \mathbb{N}}$ is iid and either:
	- (a) $(r_t, z_t)_{t \in \mathbb{N}}$ takes finitely many possible values in \mathbb{R}^2 ;
	- (b) (r_t, z_t) lives in a common compact set, $e(x, r, z)$ is continuous in (r, z) , and $(r_t, z_t) \xrightarrow{p} (r_0, z_0)$ as $t \to \infty$ for some (r_0, z_0) .

(iii) λ^{GREM} is AO if either λ^{GREE} or λ^{GREL} is AO.

Progress

[Risk forecasts and backtests](#page-2-0)

[Model-free e-statistics](#page-18-0)

[E-backtesting](#page-29-0)

[Simulation and data analysis](#page-39-0)

Ruodu Wang [\(wang@uwaterloo.ca\)](wang@uwaterloo.ca) [E-backtesting](#page-0-0) 37/50

Example 1: Co-movements of losses and forecasts (linear growth)

- Sample size for testing $n = 1,000$; size of training data $l = 10$
- Losses: $L_t = Z_t (1 + t/(n + l))$; $\{Z_t\}_{t=1,...,n+l}$ are iid samples from N(0, 1)
- ES forecasts: $r_t = 1.86(1 + t/(n + l))$; VaR forecasts: $z_t = 1.48(1 + t/(n + l))$

Example 2: Co-movements of losses and forecasts (varying magnitude) **•** Losses: $L_t = Z_t (1 + \sin(\theta t)), \theta = 0.01$

ES forecasts: $r_t = 1.86(1 + \sin(\theta t))$; VaR forecasts: $z_t = 1.48(1 + \sin(\theta t))$

00000000

0000000000

0000000000000

Example 3: Forecasts with an estimation error

- Losses: iid $L_t \sim N(0, 1)$
- ES forecasts: $r_t = 2.06 + \varepsilon_t$; VaR forecasts: $z_t = 1.64 + \varepsilon_t$; $\{\varepsilon_t\}_{t=1,\dots,n+1}$ are iid samples uniformly distributed on support $\{\pm i/10 : i = 0, \ldots, 5\}$

COQOOO

00000000

0000000000

00000000000000

Time-series model

Data generating process (Nolde/Ziegel'17)

• $AR(1)-GARCH(1, 1)$ process:

$$
L_t = \mu_t + \varepsilon_t, \quad \varepsilon_t = \sigma_t Z_t,
$$

$$
\mu_t = -0.05 + 0.3L_{t-1}, \quad \sigma_t^2 = 0.01 + 0.1\varepsilon_{t-1}^2 + 0.85\sigma_{t-1}^2
$$

- The innovations $\{Z_t\}_{t\in\mathbb{N}_+}$ are iid skewed-t with shape parameter $\nu = 5$ and skewness parameter $\gamma = 1.5$
- simulate 1,000 daily losses in each run (1,000 runs)

00000000

00000000000000

Time-series model

Forecasters

- \bullet Fit AR(1)-GARCH(1, 1) everyday with a moving window of 500 days
- Innovations: normal, t and skewed-t
- **Strategies: under-report, point forecast, over-report**

Average point forecast over 500 days

Backtesting ES (e-process), GREM

E-value rejection thresholds: 2, 5, and 10

Figure: Average (Log) e-processes testing $ES_{0.975}$ with respect to number of days using the GREM method

Ruodu Wang [\(wang@uwaterloo.ca\)](wang@uwaterloo.ca) [E-backtesting](#page-0-0) 43/50

Backtesting ES, GREM

Table: Percentage of rejections (%) for $ES_{0.975}$ forecasts using the GREM method within the total 1, 000 trials

COQOOO

00000000

0000000000

00000000000000

Detection of structural change

Data generating process (Hoga/Demetrescu'22)

 \bullet GARCH $(1, 1)$ process:

$$
L_t = -\sigma_t Z_t, \quad \sigma_t^2 = 0.00001 + 0.04 \varepsilon_{t-1}^2 + \beta_t \sigma_{t-1}^2
$$

- The innovations $\{Z_t\}_{t\in\mathbb{N}_+}$ are iid skewed-t with shape parameter $\nu = 5$ and skewness parameter $\gamma = 0.95$
- Simulate 250 daily losses for forecasting and 250 for testing
- $\beta_t = 0.7 + 0.251_{\{t > b^*\}}; b^* + 1$ is the time where structural change happens

Backtesting $ES_{0.95}$

Percentage of detections (%) and average number of days needed to detect structural change (ARL) with respect to b*; black line ("monitor") represents the result of the sequential monitoring method in Percentage of detections (%)

and average number of days

needed to detect structural

change (ARL) with respect to
 b^* ; black line ("monitor")

represents the result of the

sequential monitoring method in

Hoga/Demet

00000000

Data analysis setting

- Negated log-returns of the NASDAQ Composite index from Jan 16, 1996 to Dec 31, 2021
- \bullet Fitted to an AR(1)-GARCH(1, 1) model with moving window of 500
- Sample size after initial training: $n = 5,536$

Jan 2005 - Dec 2021, GREM, $ES_{0.975}$

Table: Number of days taken to reject the $ES_{0.975}$ forecasts, and final log e-values (in brackets); "–" means no rejection

COQOOO

00000000

0000000000

000000000000000

Future directions

- E-backtesting other risk measures
	- Gini deviation $(\frac{1}{2} \mathbb{E}[|X X'|])$: Model-free e-statistics take the form of $r \mapsto \frac{|x_1 x_2|}{2r}$ (requires two iid copies)
	- **o** Distortion risk measures
- **•** Game theoretic framework
	- Financial institution: report as low risk forecasts as possible
	- Regulator: reject when e-process becomes large
	- **•** Equilibrium risk forecasts and betting process $(\lambda_t)_{t \in \mathbb{N}}$
- Other methods choosing betting process $(\lambda_t)_{t\in\mathbb{N}}$
	- Optimal betting process for specific distributions
	- Optimal betting process for general dependence structures

Thank you

Thank you for your attention

<https://arxiv.org/abs/2209.00991>