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Agenda

Risk forecasts and backtests
E-values

Model-free e-statistics
E-backtesting

Simulation and data analysis

based on joint work with Qiuqgi Wang (Georgia State) and Johanna Ziegel (Bern)
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Risk forecasts and backtests

VaR and ES

Value-at-Risk (VaR), pe (0,1) Expected Shortfall (ES), pe (0, 1)
VaR,: L% &R, ES,: L! >R,
VaR,(X) = g,(X) 1 1
=inf{xeR: P(X < x) > p} ESp(X) = 1-p), VaRq(X)dg
(left-quantile) (also: TVaR/CVaR/AVaR)J
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Risk forecasts and backtests

Some recent work on VaR vs ES

@ Axiomatic characterizations
e VaR: Kou/Peng' 16 OR; He/Peng’' 18 OR; Liu/W.'21 MOR
e ES: W./Zitikis'21 MS; Embrechts/Mao/Wang/W.'21 MF
@ Risk sharing
e Embrechts/Liu/W."18 OR; Embrechts/Liu/Mao/W.20 MP
@ Robustness, optimization, calibration
e Emberchts/Schied/W.'22 OR; Li/W.'23 JE
@ Forecasting and backtesting ES

o Fissler/Ziegel'l6 AOS; Nolde/Ziegel'17 AOAS; Du/Escanciano’1l7 MS;
Moldenhauer/Pitera'17 JRisk; Banulescu-Radu/Hurlin/Leymarie/Scaillet’'21 MS;
Bayer/Dimitriadis'22 JFEC; Hoga/Demetrescu'22 MS
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Risk forecasts and backtests

Features in backtesting risk measures |

After each period (e.g., one trading day), a new observation comes in, and a risk
forecast is announced by a financial institution (bank). Hypothesis testing methods
are designed to assess the risk forecasts.

negated percentage log returns
ES forecast

T T T T T T
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

dates dates

@ Negated log-returns (in %) of the NASDAQ Composite index from Jan 16, 1996 to Dec 31, 2021
@ Fitted (AR(1)-GARCH(1, 1)) or empirical ESg 975 forecasts with moving window of 500
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Risk forecasts and backtests

Features in backtesting risk measures |l

Challenges

@ The risks are neither independent nor identically distributed
@ The predictions are even less clearly structured

@ The regulator does not necessarily know or trust the underlying model used by
the bank to produce a risk prediction

o Only limited information is supplied by the bank, and the bank may make mistakes
on models it provide.
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Some examples

— loss
— ESforecast

il

loss and ES forecast
0
L

T T T T
0 200 400 600 800 1000

number of data

The firm is expanding the business

loss and ES forecast

— loss
— ESforecast

T T T T
4 200 400 600 800 1000

number of data

The firm has a business cycle

loss and ES forecast

— loss
—— ES forecas|

1 TN

W (nv |

T T T T
4 200 400 600 800 1000

number of data

The firm has a poor forecast quality

Question: How do we evaluate the ES forecasts (the true ES is not known)?
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Risk forecasts and backtests

Features in backtesting risk measures ||

The regulator is concerned about underestimation of the risk measure, whereas
overestimation (being conservative) is less of a concern. J

Example from Lehman Brothers (2008)
@ underestimated default/credit risks
@ hid the true their leverage and debt
Example from Silicon Valley Bank (2023)
@ underestimated interest rate risk

@ basically no risk management

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 8/50


wang@uwaterloo.ca

Risk backtests E-values

Model-free e-statistics
000000800 0000000

E-backtesting
00000000

0000000000
Risk forecasts and backtests

Backtesting risk measures

@ Risk measure p to backtest
@ Define

Fi1:=0(Ls :s<t—1)
@ Daily observations

e risk measure forecast r; for p(L+) given Fr_1
o realized loss L

Hypothesis to test

conditional on F¢_1:

O > p(LelFi1)

fort=1,..., T

Simulation and data
0000000000000 0
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Risk forecasts and backtests

Backtesting VaR

o Daily prediction ry = VaRp(L¢|Fe_1)
@ Daily realization L
Backtesting for fixed T
@ Under Ho: Yt = 1y~ are independent Bernoulli sample with mean at most
1—p
o St =T, Vi <« Binomial(T, 1 — p)
@ Easy to construct p-values (reject if S; large enough)
@ Completely model free

Such a simple procedure does not exist for ES!
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Backtesting risk measures

Objective: build up a backtesting method
that

@ is model free
@ is anytime valid
@ works for both ES and VaR
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E-values

E-values

SEPA AL e/
Vladimir Vovk Aaditya Ramdas Qiugi Wang Johanna Ziegel

(Royal Holloway) (Carnegie Mellon) (Georgia State) (Bern)
@ Vovk/W., E-values: Calibration, combination, and applications. Annals of Statistics, 2021
@ W./Ramdas, False discovery rate control with e-values. JRSSB, 2022
@ Griinwald/de Heide/Koolen, Safe testing. JRSSB, 2023
@ Vovk/W., Confidence and discoveries with e-values. Statistical Science, 2023
@ Waudby-Smith/Ramdas, Estimating means of bounded random variables by betting. JRSSB, 2023
@ Wang/W./Ziegel, E-backtesting. Working paper, 2022, arXiv:2209.00991
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E-values

What is an e-value?
@ A hypothesis H: a set of probability measures

Definition (E-variables, e-values, and e-processes)

(1) An e-variable for testing H is a non-negative random variable E : 2 — [0, o]
that satisfies { EdH < 1 for all H € H.
e Realized values of e-variables are e-values.
(2) Given a filtration, an e-process for testing H is a non-negative process
(Et)t=01,...n such that SETdH < 1 for all stopping times 7 and all H € H.

@ For simple hypothesis {P}
e e-variable: non-negative random variable with mean < 1
e e-process: (e.g.) non-negative supermartingale with initial value < 1
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E-values

What is an e-value?

E-test: e(data) large < reject H

P-test: p(data) small < reject H

E stands for expectation; P stands for probability
Bayes factors (simple hypothesis) and likelihood ratios:

_ Pr(data | Q)
e(data) = m

Sir Jeffreys

“Users of these tests speak of the 5 per cent. point [p-value of 5%] in
much the same way as | should speak of the K = 10~Y/2 point [e-value of
10%/2], and of the 1 per cent. point [p-value of 1%)] as | should speak of the
K = 107! point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.,
1961)
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E-values

Robustness advantages

@ Validity for arbitrary dependence
e robust to dependence
@ They are easy to combine
e robust to operations
@ Flexible with regards to stop/continue procedures
e robust to sampling and optimizing algorithms
@ Non-asymptotic and model free
e robust to model misspecification
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E-values

Example in testing multiple hypotheses

Multi-armed bandit problems Xu-W.-Ramdas'21 NeurlPS
@ K arms
@ null hypothesis k: arm k has mean reward at most 1
@ strategy (k¢): at time t = 1, pull arm k¢, obtain an iid reward Xy, + = 0
°

aim: quickly detect arms with mean > 1
@ or maximize profit, minimize regret, etc ...

(]

running reward: My ; = H};l XiejLlik—ky
@ complicated dependence due to exploration/exploitation

@ Mjr,..., Mg, are e-values for any stopping time T
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Risk backtests E-values
E-values
Combining sequential e-values
Sequential e-variables
OE[Xt‘Xl ..... Xt,1]<1f0r3||t21,2,...
The general protocol
@ Obtain sequential e-values Xy, ..., Xty ...
@ Decide predictable Ay, ..., A¢, -+ €[0,1]
@ Compute the e-process (Eg = 1)
t
Er=Ero1(1— e+ XeXe) = [ J(1 = Xs + AsXo)
s=1
@ The only optimal procedures in the sense of Pareto or Wald Vovk/W.'22
18/50
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Model-free e-statistics

Setting
@ The model space M is a set of distributions on R

@ p is the risk measure to be tested
o treated as a mapping on either M or X

@ ¢ : M — R represents auxiliary statistics
@ Y = (p, @) represents the collection of available statistical information
Remarks.
@ If ¢ is a constant (we can take ¢ = 0), then only the predicted value of p is used
@ We omit ¢ if it is a constant

@ ¢ may be d-dimensional in general, but we focus on d = 0 (constant ¢) or d = 1
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Model-free e-statistics
Intuitive thoughts in case ¢ is omitted
@ e(X,r) is an e-variable if r = p(Fx) < validity
o If r is under-specified, then E[e(X, r)] > 1 < consistency
@ r — e(X, r) should be decreasing <= monotonicity
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Model-free e-statistics
Intuitive thoughts in case ¢ is omitted
@ e(X,r) is an e-variable if r = p(Fx) < validity
@ If r is under-specified, then E[e(X, r)] > 1 < consistency
@ r — e(X, r) should be decreasing <= monotonicity

Definition (Model-free e-statistics)
A model-free e-statistic for (p, ) : M — R? is a measurable function
e : R® — [0, o0] satisfying § e(x, p(F), $(F))dF < 1 for each F € M. Moreover,

@ eis testing p if {e(x, r, z)dF(x) > 1 for all F € M with p(F) > r and all (r, z) in
the range of (p, ¢).

@ The test is strict if r — e(x, r, z) is decreasing.

o We write e(x, r) = e(x, r,0) if ¢ =0 (so z does not matter)
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Model-free e-statistics

Examples (convention: 0/0 = 1 and 1/0 = )

E-backtesting
0000000000

Simulation and data
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@ Let M be the set of distributions on R, with a finite mean. The function
e(x,r) = x/r for x,r = 0 is a model-free e-statistic strictly testing the mean.
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Model-free e-statistics

Examples (convention: 0/0 = 1 and 1/0 = )
@ Let M be the set of distributions on R, with a finite mean. The function
e(x,r) = x/r for x,r = 0 is a model-free e-statistic strictly testing the mean.

@ Let M be the set of distributions on R with a finite variance. The function

e(x,r,z) = (x — z)?/r for x,ze R and r = 0 is a model-free e-statistic for
(E, Var) strictly testing the variance.
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Model-free e-statistics

Model-free e-statistics

Examples (convention: 0/0 = 1 and 1/0 = )

@ Let M be the set of distributions on R, with a finite mean. The function
e(x,r) = x/r for x,r = 0 is a model-free e-statistic strictly testing the mean.

@ Let M be the set of distributions on R with a finite variance. The function
e(x,r,z) = (x — z)?/r for x,ze R and r = 0 is a model-free e-statistic for
(E, Var) strictly testing the variance.

@ Let M be the set of all distributions on R and take p € (0, 1). The function
e(x,r) =1~ /(1 —p) for x,r e R is a model-free e-statistic strictly testing
VaR,.
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Model-free e-statistics for VaR
The model-free e-statistic strictly testing VaR,

1
eQ(x,r) = —ben

5 1_p x,relR

Theorem 1

For p € (0,1), all model-free e-statistics testing VaR,, that are continuous except at
X = r have the form

e(x,r) =1=X(r) + X(r)ed(x,r), x,reR,

for some continuous A : R — (0, 1]. Moreover, €' is strictly testing VaR,, if and only
if X(r) is constant in r.
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Model-free e-statistics

Model-free e-statistics for ES

Proposition 1

There does not exist a model-free e-statistic testing ES, using solely the information
of ES,.

Define the function

ES (x—2)¢
e,°(x,rz) = ————, xeR, z<r,
A e )
Theorem 2
For pe (0,1), eES is a model-free e-statistic for (ES,, VaR,) strictly testing ES,. J
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Model-free e-statistics for ES

Sketch of Proof. VaR-ES optimization formula: Rockafellar/Uryasev'02 JBF

VaR,(X) € argmin {X + 1flpllﬂ[(X — x)+]}

xeR

ES,(X) = rxneiﬂg {X 4+ ?1PE[(X — x)+]}

= VaRy(X) + T E[(X — VaRy(X)): ]

Hence,

E[eE5(X, ES,(X), VaRy(X))] = X — VaRo(X))- ]

(1= P)(ES,(X) — VaRs(X))

and

E[eES(X, r.z)]>1 forany z <r < ES,(X)
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Model-free e-statistics

Model-free e-statistics for ES

Theorem 3
All model-free e-statistics for (ESp, VaRp) testing ES,, have the form

e(x,r,z)=1-=Xr, z)+ Xr, Z)GES(X, r,z), xeR, z<r.

for some X : R? — (0, 1]. Moreover, €' is strictly testing ES,, if and only if both
r— X(r,z) and r — (r — z)/X(r, z) are increasing.

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 26/50


wang@uwaterloo.ca

Risk backtests E-values
000000000 0000000

Backtesting

Progress

E-backtesting

Ruodu Wang  (wang®uwaterloo.ca)

Model-free e-statistics
00000000

E-backtesting
©000000000

E-backtesting

Simulation and data
00000000000000

27/50


wang@uwaterloo.ca

Risk backtests E-values

Model-free e-statistics
000000000 0000000

00000000
Backtesting

E-backtesting
Daily observations
@ ES forecast r;
@ VaR forecast z;
@ realized loss L

HypOtheSIS/_;co_ test conditional on Fy_;:
0

re = ESp(L¢|Fr—1) and z¢ = VaR,(L¢|Fe—1)

E-backtesting
0®00000000

fort=1,...

Simulation and data
0000000000000 0

A Ll lppeilesis conditional on F;_1 :

H(,) Loy — Z = ESp(Lt|ft_1) — VaRp(Lt|ft_1) for t = 1,...

and Zy = VaRp(Lt|.,Ft71)
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Backtesting

Backtesting ES

The general protocol for t e N

The bank announces ES forecast ry and VaR forecast z

@ Decide predictable \¢(rt, zt) € [0, 1] (= not shown to the bank)
@ Observe realized loss Ly

@ Obtain the sequential e-values X; = eES(Lt, re, zt)

@ Compute the e-process (Eqg = 1)

t

Ee(A) = (1= At + AeXe) Eoa () = [ J(1 = As + X:Xo).

s=1
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Backtesting
Backtesting ES
Theorem 4
Under Ho or Hy, (E+(X))¢=1.... T Is a supermartingale, and
1
P(supEs(A) > — | <
t>1 a
Our method
@ Completely model free
@ Anytime validity: one can stop at any stopping time
@ Early warning: one can reject at a low threshold such as 2
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Comparison with existing methods
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_ Parametric or Forecast Fixed sample Asymptotic Reliance on
Literature dependence structural .
assumptions assumptions size L= VaR forecast
MFOQ0 yes yes yes yes yes
AS14 yes yes yes yes yes
DE17 yes yes yes yes yes
NZ17 yes yes yes yes yes
BD22 yes yes yes yes no
HD22 yes yes no no yes
This paper no no no no yes

Table: Comparison of backtesting methods for ES; parametric or dependence assumptions
refer to those on loss distributions, time series models, stationarity, or strong mixing; forecast
structural assumptions refer to requirements on the forms and properties of risk forecasts
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Backtesting risk measures

@ A model-free e-statistic e : R? — [0, o] for (p, ¢) testing p

@ p forecast ry; ¢ forecast z;; realized loss L¢; e-value X; = e(Ly, rt, zt)

Hypothesis to test

o conditional on F;_1:
O n> p(Le|Fe—1) and z; = ¢(L¢|Fr-1)

Simulation and data
0000000000000 0

@ Decide a (predictable) X¢(r¢, z¢) € [0, 1]
@ Compute the test martingale (Eq = 1)

E:(A) = (1= At + A X)) Er1(A) = ﬁ(l — s + AeXs).
s=1

@ Size-a test for Hy: reject if sup; E+(A) = 1/a
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Backtesting

Choosing ¢

@ Heuristic choice of constant At = XA € [0,1], e.g., A =0.01
@ Adaptive choices:

o Dependent on observed loss data
o Dependent on forecast
e Dependent on past forecast

@ E-power (Vovk/W.'23) of an e-variable E for an alternative Q:
E®[log E]
In our setting (where Q; is unknown):
E® [log(1 — Ar + Aee(Ly, re, z¢)) | Fe_1]

@ A —log(l— X+ Xe(L¢, rt, zt)) is concave
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Backtesting

Choosing ¢
Fix y € (0,1); v = 1/2 works well
@ GRO (growth-rate optimal): L ~ Q¢, Griinwald/de Heide/Koolen'23
ASRO — \6RO(y 7y = a;g[ma]xIEQf [log(1 — X+ Xe(L,r.z)) | Feo1], r.zeR?
|0,y

@ GREE (growth-rate for empirical e-statistics):
t—1

= arg max log(1 — A + Ae(Ls, 15, Z
rgmax s 3} oo (Ls. 76,25))

GREE
>\t

@ GREL (growth-rate for empirical losses):

t—1

ASREL _ \CREL () 7) = arg max Z log(1— X+ Xe(Ls, 1, 2)), r,.zeR?
A€[0,7] -1 =il

@ GREM (GRE mixture): E;(ACREM) — (£, (ACREL) 4 £, (ACREEY)) /2
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Backtesting

Optimality of a method
Definition (Asymptotic optimality)

For (Lt—1, rt, Zt)teny adapted to (Fr—1)ten and a given model-free e-statistic e,
@ two betting processes A = (A¢)en and X = (A}) ey are asymptotically
equivalent, denoted by A ~ X/, if
1

7_(Iog Er(A\) —log ET(A\) 20 as T — oo

@ a betting process X is asymptotically optimal (AO) if A =~ (A$RO(r;, z¢)) en.

@ The long-term growth rates of the two resulting e-processes are the same
@ GRO as the oracle benchmark
® Y*(M) = {(r, z) in the range of (p, ¢) such that e(x, r, z) < oo for all x}
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Backtesting

Optimality of GREE and GREL

Assumption 1
For all (r,z) € 9*(M), supsen E®t[log(e(Le, r, 2))] < .

Theorem 5

Suppose that (rt, zt)ten takes values in P*(M), (L¢—1, I, Zt)ten IS adapted to
(Ft—1)ten, € Is @ model-free e-statistic, and Assumption 1 holds.
(i) ASREE js AO if (e(Ly¢, re, z¢))een is iid and (r¢, Zt)ten IS deterministic.
(i) ASREL s AO if (Ly)¢en Is iid and either:
(a) (re, z¢)ten takes finitely many possible values in R?;
(b) (rt,z:) lives in a common compact set, e(x, r, z) is continuous in (r, z), and
(re,zt) B (ro, 20) as t — oo for some (ry, zo).

(i) ACREM s AQ ff either ACREE or AGREL s AQ.

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 36/50


wang@uwaterloo.ca

Risk backtests E-values

Model-free e-statistics E-backtesting
000000000 0000000

Simulation and data
00000000

0000000000 ©0000000000000
Simulation and data analysis

Progress

Simulation and data analysis
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Example 1: Co-movements of losses and forecasts (linear growth)
@ Sample size for testing n = 1, 000; size of training data / = 10
@ Losses: Ly =Zi(1+t/(n+1)); {Z¢}t=1,...n+s are iid samples from N(O, 1)
@ ES forecasts: rr = 1.86(1 + t/(n+1)); VaR forecasts: z: = 1.48(1 + t/(n+ 1))
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Example 2: Co-movements of losses and forecasts (varying magnitude)
@ Losses: Ly = Z¢(1 +sin(6t)), 6 = 0.01
@ ES forecasts: ry = 1.86(1 + sin(0t)); VaR forecasts: z; = 1.48(1 + sin(6t))

< o 5 0 4 — GREE
A ) — GREL
= D 3 N — GREM
N D s — GRO
y \ <
N | N
. \ , “ :
\
- \ y \ o
8 p
£ (93
| o
g o 4 wh’w, .vM g 9
& ]
2 )
° -
o
o 4
- A
T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
number of data number of data

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 39/50


wang@uwaterloo.ca

Simulation and data analysis

E-values

Model-free e-statistics
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Example 3: Forecasts with an estimation error
@ Losses: iid Ly ~ N(0, 1)

@ ES forecasts: ry = 2.06 + €¢; VaR forecasts: z; = 1.64 + €¢; {€¢}=1

samples uniformly distributed on support {+//10:/ =0, ..., 5}
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Simulation and data analysis

Time-series model

Data generating process (Nolde/Ziegel'17)
@ AR(1)-GARCH(1,1) process:

Lt = pt + €1, € = 0124,

pt = —0.05+03L; 1, 02=0.01+0.1€2 ; +0.8502 ,

@ The innovations {Z;}sen, are iid skewed-t with shape parameter v = 5 and
skewness parameter v = 1.5

@ simulate 1,000 daily losses in each run (1,000 runs)

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 41/50


wang@uwaterloo.ca

Risk backtests E-values
000000000 0000000

Simulation and data analysis

Time-series model

Forecasters

Model-free e-statistics
00000000

E-backtesting
0000000000

o Fit AR(1)-GARCH(1, 1) everyday with a moving window of 500 days
@ Innovations: normal, t and skewed-t

@ Strategies: under-report, point forecast, over-report

Average point forecast over 500 days

\73\R0_95 @0.99 va\R0.875 Igé0.875 @0.975 é\50.975

normal || 0605 | 0.883 | 0403 0606 | 0734 0888
t 0528 | 0974 | 0300 0566 | 0709  1.034
skewed-t || 0658 | 1217 | 0365 0701 | 0888  1.281
true 0658 | 1242 | 0359 0706 | 0897 1312

Ruodu Wang  (wang@uwaterloo.ca)

E-backtesting

Simulation and data
00000800000000

42/50


wang@uwaterloo.ca

Risk backtests E-values Model-free e-statistics E-backtesting Simulation and data
000000000 0000000 00000000 0000000000 000000 e0000000

Simulation and data analysis

Backtesting ES (e-process), GREM

E-value rejection thresholds: 2, 5, and 10
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Figure: Average (Log) e-processes testing ESg 975 with respect to number of days using the
GREM method

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 43/50


wang@uwaterloo.ca

Risk backtests E-values Model-free e-statistics E-backtesting Simulation and data
000000000 0000000 00000000

0000000000 00000008000000
Simulation and data analysis
Backtesting ES, GREM
—10% ES exact +10% ES
Threshold 2 5 10 | 2 5 10 | 2 5 10

normal ~ 99.8 995 985 | 99.3 957 883 | 948 79.8 62.1

t 98.4 888 77.1 ‘ 88.1 63.9 431 ‘ 70.0 349 156

skewed-t 476 161 62 | 188 40 08 | 79 11 01

Table: Percentage of rejections (%) for ESg o975 forecasts using the GREM method within the
total 1, 000 trials
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Detection of structural change

Data generating process (Hoga/Demetrescu'22)
@ GARCH(1, 1) process:

Ly = —0¢Zs, 02 =0.00001 + 0.04¢2_; + B0,

@ The innovations {Z;}sen, are iid skewed-t with shape parameter v = 5 and
skewness parameter v = 0.95
@ Simulate 250 daily losses for forecasting and 250 for testing

@ By =0.7+ O.25]l{t>b*}; b* + 1 is the time where structural change happens
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Backtesting ESq g5

Percentage of detections (%)
and average number of days
needed to detect structural
change (ARL) with respect to
b*; black line (“monitor")
represents the result of the
sequential monitoring method in
Hoga/Demetrescu'22
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Simulation and data analysis

Data analysis setting

negated percentage log returns.

T T T T T T T T T T
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020

@ Negated log-returns of the NASDAQ Composite index from Jan 16, 1996 to Dec 31,

2021
@ Fitted to an AR(1)-GARCH(1, 1) model with moving window of 500
@ Sample size after initial training: n = 5,536
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Jan 2005 - Dec 2021, GREM, ESO_975

Threshold 2 5 10
normal 540 610 713 (30.28)
t 540 933 1381 (10.25)
skewed-t 540 2639 2889 (4.169)
st +10% ES = = = (—0.6896)

empirical 756 862 931 (8.454)

Table: Number of days taken to reject the ESq 975
forecasts, and final log e-values (in brackets); "“-"
means no rejection
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Future directions

@ E-backtesting other risk measures

o Gini deviation (3E[|X — X’[]): Model-free e-statistics take the form of r — 1=l
(requires two iid copies)
e Distortion risk measures

@ Game theoretic framework

e Financial institution: report as low risk forecasts as possible
o Regulator: reject when e-process becomes large
e Equilibrium risk forecasts and betting process (A¢)ten
@ Other methods choosing betting process (At)ten
e Optimal betting process for specific distributions
e Optimal betting process for general dependence structures
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Simulation and data analysis
Thank you

Thank you for your attention

https://arxiv.org/abs/2209.00991

Ruodu Wang  (wang@uwaterloo.ca) E-backtesting 50/50


https://arxiv.org/abs/2209.00991
wang@uwaterloo.ca

