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Risk forecasts and backtests

VaR and ES

ES0.95

VaR0.95

Value-at-Risk (VaR), p P p0, 1q

VaRp : L0 Ñ R,

VaRppXq “ qppXq

“ inftx P R : PpX ď xq ě pu

(left-quantile)

Expected Shortfall (ES), p P p0, 1q

ESp : L1 Ñ R,

ESppXq “
1

1´ p

ż 1

p

VaRqpXqdq

(also: TVaR/CVaR/AVaR)
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Risk forecasts and backtests

Some recent work on VaR vs ES

Axiomatic characterizations
VaR: Kou/Peng’ 16 OR; He/Peng’ 18 OR; Liu/W.’21 MOR
ES: W./Zitikis’21 MS; Embrechts/Mao/Wang/W.’21 MF

Risk sharing
Embrechts/Liu/W.’18 OR; Embrechts/Liu/Mao/W.’20 MP

Robustness, optimization, calibration
Emberchts/Schied/W.’22 OR; Li/W.’23 JE

Forecasting and backtesting ES
Fissler/Ziegel’16 AOS; Nolde/Ziegel’17 AOAS; Du/Escanciano’17 MS;
Moldenhauer/Pitera’17 JRisk; Banulescu-Radu/Hurlin/Leymarie/Scaillet’21 MS;
Bayer/Dimitriadis’22 JFEC; Hoga/Demetrescu’22 MS
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Risk forecasts and backtests

Features in backtesting risk measures I

After each period (e.g., one trading day), a new observation comes in, and a risk
forecast is announced by a financial institution (bank). Hypothesis testing methods
are designed to assess the risk forecasts.
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Negated log-returns (in %) of the NASDAQ Composite index from Jan 16, 1996 to Dec 31, 2021
Fitted (ARp1q-GARCHp1, 1q) or empirical ES0.975 forecasts with moving window of 500
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Risk forecasts and backtests

Features in backtesting risk measures II

Challenges

The risks are neither independent nor identically distributed

The predictions are even less clearly structured
The regulator does not necessarily know or trust the underlying model used by
the bank to produce a risk prediction

Only limited information is supplied by the bank, and the bank may make mistakes
on models it provide.
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Risk forecasts and backtests

Some examples
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ES forecast

The firm is expanding the business
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The firm has a business cycle
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ES forecast

The firm has a poor forecast quality

Question: How do we evaluate the ES forecasts (the true ES is not known)?

Ruodu Wang (wang@uwaterloo.ca) E-backtesting 7/50

wang@uwaterloo.ca


Risk backtests E-values Model-free e-statistics E-backtesting Simulation and data

Risk forecasts and backtests

Features in backtesting risk measures III

The regulator is concerned about underestimation of the risk measure, whereas
overestimation (being conservative) is less of a concern.

Example from Lehman Brothers (2008)
underestimated default/credit risks

hid the true their leverage and debt

Example from Silicon Valley Bank (2023)
underestimated interest rate risk

basically no risk management
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Risk forecasts and backtests

Backtesting risk measures

Risk measure ρ to backtest

Define
Ft´1 :“ σpLs : s ď t ´ 1q

Daily observations
risk measure forecast rt for ρpLtq given Ft´1
realized loss Lt

Hypothesis to test

H0 :
conditional on Ft´1:
rt ě ρpLt |Ft´1q

for t “ 1, . . . , T
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Risk forecasts and backtests

Backtesting VaR

Daily prediction rt “ yVaRppLt |Ft´1q
Daily realization Lt

Backtesting for fixed T

Under H0: Yt “ 1tLtąrtu are independent Bernoulli sample with mean at most
1´ p

ST “
řT
t“1 Yt ďst BinomialpT, 1´ pq

Easy to construct p-values (reject if St large enough)

Completely model free

Such a simple procedure does not exist for ES!
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Risk forecasts and backtests

Backtesting risk measures

Objective: build up a backtesting method
that

is model free

is anytime valid

works for both ES and VaR
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E-values

Progress

Risk forecasts and backtests

E-values

Model-free e-statistics

E-backtesting

Simulation and data analysis
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E-values

E-values

Vladimir Vovk
(Royal Holloway)

Aaditya Ramdas
(Carnegie Mellon)

Qiuqi Wang
(Georgia State)

Johanna Ziegel
(Bern)

Vovk/W., E-values: Calibration, combination, and applications. Annals of Statistics, 2021

W./Ramdas, False discovery rate control with e-values. JRSSB, 2022

Grünwald/de Heide/Koolen, Safe testing. JRSSB, 2023

Vovk/W., Confidence and discoveries with e-values. Statistical Science, 2023

Waudby-Smith/Ramdas, Estimating means of bounded random variables by betting. JRSSB, 2023

Wang/W./Ziegel, E-backtesting. Working paper, 2022, arXiv:2209.00991
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E-values

What is an e-value?

A hypothesis H: a set of probability measures

Definition (E-variables, e-values, and e-processes)
(1) An e-variable for testing H is a non-negative random variable E : Ω Ñ r0,8s

that satisfies
ş

E dH ď 1 for all H P H.
Realized values of e-variables are e-values.

(2) Given a filtration, an e-process for testing H is a non-negative process
pEtqt“0,1,...,n such that

ş

EτdH ď 1 for all stopping times τ and all H P H.

For simple hypothesis tPu
e-variable: non-negative random variable with mean ď 1

e-process: (e.g.) non-negative supermartingale with initial value ď 1
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E-values

What is an e-value?
E-test: epdataq large ðñ reject H
P-test: ppdataq small ðñ reject H
E stands for expectation; P stands for probability
Bayes factors (simple hypothesis) and likelihood ratios:

epdataq “
Prpdata | Qq
Prpdata | Pq

Sir Jeffreys

“Users of these tests speak of the 5 per cent. point [p-value of 5%] in
much the same way as I should speak of the K “ 10´1{2 point [e-value of
101{2], and of the 1 per cent. point [p-value of 1%] as I should speak of the
K “ 10´1 point [e-value of 10]." (Theory of Probability, p.435, 3rd Ed.,
1961)
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E-values

Robustness advantages

Validity for arbitrary dependence
robust to dependence

They are easy to combine
robust to operations

Flexible with regards to stop/continue procedures
robust to sampling and optimizing algorithms

Non-asymptotic and model free
robust to model misspecification
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E-values

Example in testing multiple hypotheses

Multi-armed bandit problems Xu-W.-Ramdas’21 NeurIPS

K arms

null hypothesis k : arm k has mean reward at most 1

strategy pktq: at time t ě 1, pull arm kt , obtain an iid reward Xkt ,t ě 0

aim: quickly detect arms with mean ą 1

or maximize profit, minimize regret, etc ...

running reward: Mk,t “
śt
j“1Xk,j1tkj“ku

complicated dependence due to exploration/exploitation

M1,τ , . . . ,MK,τ are e-values for any stopping time τ
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E-values

Combining sequential e-values

Sequential e-variables

ErXt | X1, . . . , Xt´1s ď 1 for all t “ 1, 2, . . .

The general protocol

Obtain sequential e-values X1, . . . , Xt , . . .

Decide predictable λ1, . . . , λt , ¨ ¨ ¨ P r0, 1s

Compute the e-process (E0 “ 1)

Et “ Et´1p1´ λt ` λtXtq “
t
ź

s“1

p1´ λs ` λsXsq

The only optimal procedures in the sense of Pareto or Wald Vovk/W.’22
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Model-free e-statistics

Progress

Risk forecasts and backtests

E-values

Model-free e-statistics

E-backtesting

Simulation and data analysis
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Model-free e-statistics

Model-free e-statistics

Setting

The model spaceM is a set of distributions on R
ρ is the risk measure to be tested

treated as a mapping on eitherM or X
φ :MÑ R represents auxiliary statistics

ψ “ pρ, φq represents the collection of available statistical information

Remarks.

If φ is a constant (we can take φ “ 0), then only the predicted value of ρ is used

We omit φ if it is a constant

φ may be d-dimensional in general, but we focus on d “ 0 (constant φ) or d “ 1
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Model-free e-statistics

Model-free e-statistics
Intuitive thoughts in case φ is omitted

epX, rq is an e-variable if r ě ρpFXq Ðâ validity
If r is under-specified, then ErepX, rqs ą 1 Ðâ consistency
r ÞÑ epX, rq should be decreasing Ðâ monotonicity

Definition (Model-free e-statistics)

A model-free e-statistic for pρ, φq :MÑ R2 is a measurable function
e : R3 Ñ r0,8s satisfying

ş

epx, ρpF q, φpF qqdF ď 1 for each F PM. Moreover,

e is testing ρ if
ş

epx, r, zqdF pxq ą 1 for all F PM with ρpF q ą r and all pr, zq in
the range of pρ, φq.

The test is strict if r ÞÑ epx, r, zq is decreasing.

We write epx, rq “ epx, r, 0q if φ “ 0 (so z does not matter)
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Model-free e-statistics

Model-free e-statistics

Examples (convention: 0{0 “ 1 and 1{0 “ 8)

LetM be the set of distributions on R` with a finite mean. The function
epx, rq “ x{r for x, r ě 0 is a model-free e-statistic strictly testing the mean.

LetM be the set of distributions on R with a finite variance. The function
epx, r, zq “ px ´ zq2{r for x, z P R and r ě 0 is a model-free e-statistic for
pE,Varq strictly testing the variance.

LetM be the set of all distributions on R and take p P p0, 1q. The function
epx, rq “ 1txąru{p1´ pq for x, r P R is a model-free e-statistic strictly testing
VaRp.
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Model-free e-statistics

Model-free e-statistics for VaR
The model-free e-statistic strictly testing VaRp

eQp px, rq “
1txąru

1´ p
, x, r P R

Theorem 1
For p P p0, 1q, all model-free e-statistics testing VaRp that are continuous except at
x “ r have the form

e 1px, rq “ 1´ λprq ` λprqeQp px, rq, x, r P R,

for some continuous λ : RÑ p0, 1s. Moreover, e 1 is strictly testing VaRp if and only
if λprq is constant in r .
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Model-free e-statistics

Model-free e-statistics for ES

Proposition 1
There does not exist a model-free e-statistic testing ESp using solely the information
of ESp.

Define the function

eESp px, r, zq “
px ´ zq`

p1´ pqpr ´ zq
, x P R, z ď r,

Theorem 2
For p P p0, 1q, eESp is a model-free e-statistic for pESp,VaRpq strictly testing ESp.
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Model-free e-statistics

Model-free e-statistics for ES
Sketch of Proof. VaR-ES optimization formula: Rockafellar/Uryasev’02 JBF

VaRppXq P arg min
xPR

"

x `
1

1´ p
ErpX ´ xq`s

*

ESppXq “ min
xPR

"

x `
1

1´ p
ErpX ´ xq`s

*

“ VaRppXq `
1

1´ p
ErpX ´ VaRppXqq`s

Hence,

EreESp pX,ESppXq,VaRppXqqs “
ErpX ´ VaRppXqq`s

p1´ pqpESppXq ´ VaRppXqq
“ 1

and
EreESp pX, r, zqs ą 1 for any z ď r ă ESppXq
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Model-free e-statistics

Model-free e-statistics for ES

Theorem 3
All model-free e-statistics for pESp,VaRpq testing ESp have the form

e 1px, r, zq “ 1´ λpr, zq ` λpr, zqeESp px, r, zq, x P R, z ď r.

for some λ : R2 Ñ p0, 1s. Moreover, e 1 is strictly testing ESp if and only if both
r ÞÑ λpr, zq and r ÞÑ pr ´ zq{λpr, zq are increasing.
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Backtesting

Progress

Risk forecasts and backtests

E-values

Model-free e-statistics

E-backtesting

Simulation and data analysis
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Backtesting

E-backtesting
Daily observations

ES forecast rt
VaR forecast zt
realized loss Lt

Hypothesis to test
H0 :

conditional on Ft´1:
rt ě ESppLt |Ft´1q and zt “ VaRppLt |Ft´1q

for t “ 1, . . . , T

A weaker hypothesis

H10 :

conditional on Ft´1 :

rt ´ zt ě ESppLt |Ft´1q ´ VaRppLt |Ft´1q
and zt ě VaRppLt |Ft´1q

for t “ 1, . . . , T
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Backtesting

Backtesting ES

The general protocol for t P N
The bank announces ES forecast rt and VaR forecast zt
Decide predictable λtprt , ztq P r0, 1s (ñ not shown to the bank)

Observe realized loss Lt
Obtain the sequential e-values Xt “ eESp pLt , rt , ztq

Compute the e-process (E0 “ 1)

Etpλq “ p1´ λt ` λtXtqEt´1pλq “
t
ź

s“1

p1´ λs ` λsXsq.
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Backtesting

Backtesting ES

Theorem 4
Under H0 or H10, pEtpλqqt“1,...,T is a supermartingale, and

P
ˆ

sup
tě1

Etpλq ě
1

α

˙

ď α.

Our method

Completely model free

Anytime validity: one can stop at any stopping time

Early warning: one can reject at a low threshold such as 2
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Backtesting

Comparison with existing methods

Literature
Parametric or
dependence
assumptions

Forecast
structural

assumptions

Fixed sample
size

Asymptotic
test

Reliance on
VaR forecast

MF00 yes yes yes yes yes

AS14 yes yes yes yes yes

DE17 yes yes yes yes yes

NZ17 yes yes yes yes yes

BD22 yes yes yes yes no

HD22 yes yes no no yes

This paper no no no no yes

Table: Comparison of backtesting methods for ES; parametric or dependence assumptions
refer to those on loss distributions, time series models, stationarity, or strong mixing; forecast
structural assumptions refer to requirements on the forms and properties of risk forecasts
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Backtesting

Backtesting risk measures
A model-free e-statistic e : R2 Ñ r0,8s for pρ, φq testing ρ

ρ forecast rt ; φ forecast zt ; realized loss Lt ; e-value Xt “ epLt , rt , ztq

Hypothesis to test

H0 :
conditional on Ft´1:

rt ě ρpLt |Ft´1q and zt “ φpLt |Ft´1q
for t “ 1, . . . , T

Decide a (predictable) λtprt , ztq P r0, 1s

Compute the test martingale (E0 “ 1)

Etpλq “ p1´ λt ` λtXtqEt´1pλq “
t
ź

s“1

p1´ λs ` λsXsq.

Size-α test for H0: reject if supt Etpλq ě 1{α
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Backtesting

Choosing λt
Heuristic choice of constant λt “ λ P r0, 1s, e.g., λ “ 0.01

Adaptive choices:
Dependent on observed loss data
Dependent on forecast
Dependent on past forecast

E-power (Vovk/W.’23) of an e-variable E for an alternative Q:

EQrlogEs

In our setting (where Qt is unknown):

EQt rlogp1´ λt ` λtepLt , rt , ztqq | Ft´1s

λ ÞÑ logp1´ λ` λepLt , rt , ztqq is concave
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Backtesting

Choosing λt
Fix γ P p0, 1q; γ “ 1{2 works well

GRO (growth-rate optimal): L „ Qt , Grünwald/de Heide/Koolen’23

λGROt “ λGROt pr, zq “ arg max
λPr0,γs

EQt rlogp1´ λ` λepL, r, zqq | Ft´1s, r, z P Rd

GREE (growth-rate for empirical e-statistics):

λGREEt “ arg max
λPr0,γs

1

t ´ 1

t´1
ÿ

s“1

logp1´ λ` λepLs , rs , zsqq

GREL (growth-rate for empirical losses):

λGRELt “ λGRELt pr, zq “ arg max
λPr0,γs

1

t ´ 1

t´1
ÿ

s“1

logp1´ λ` λepLs , r, zqq, r, z P Rd

GREM (GRE mixture): EtpλGREMq “ pEtpλGRELq ` EtpλGREEqq{2
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Backtesting

Optimality of a method

Definition (Asymptotic optimality)
For pLt´1, rt , ztqtPN adapted to pFt´1qtPN and a given model-free e-statistic e,

two betting processes λ “ pλtqtPN and λ1 “ pλ1tqtPN are asymptotically
equivalent, denoted by λ » λ1, if

1

T
plogET pλq ´ logET pλ

1qq
p
ÝÑ 0 as T Ñ8;

a betting process λ is asymptotically optimal (AO) if λ » pλGROt prt , ztqqtPN.

The long-term growth rates of the two resulting e-processes are the same

GRO as the oracle benchmark

ψ˚pMq “ tpr, zq in the range of pρ, φq such that epx, r, zq ă 8 for all xu
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Backtesting

Optimality of GREE and GREL
Assumption 1

For all pr, zq P ψ˚pMq, suptPN EQt rlogpepLt , r, zqqs ă 8.

Theorem 5
Suppose that prt , ztqtPN takes values in ψ˚pMq, pLt´1, rt , ztqtPN is adapted to
pFt´1qtPN, e is a model-free e-statistic, and Assumption 1 holds.

(i) λGREE is AO if pepLt , rt , ztqqtPN is iid and prt , ztqtPN is deterministic.
(ii) λGREL is AO if pLtqtPN is iid and either:

(a) prt , ztqtPN takes finitely many possible values in R2;
(b) prt , ztq lives in a common compact set, epx, r, zq is continuous in pr, zq, and

prt , ztq
p
ÝÑ pr0, z0q as t Ñ8 for some pr0, z0q.

(iii) λGREM is AO if either λGREE or λGREL is AO.
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Simulation and data analysis

Progress

Risk forecasts and backtests

E-values

Model-free e-statistics

E-backtesting

Simulation and data analysis
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Simulation and data analysis

Example 1: Co-movements of losses and forecasts (linear growth)
Sample size for testing n “ 1, 000; size of training data l “ 10

Losses: Lt “ Ztp1` t{pn ` lqq; tZtut“1,...,n`l are iid samples from Np0, 1q

ES forecasts: rt “ 1.86p1` t{pn ` lqq; VaR forecasts: zt “ 1.48p1` t{pn ` lqq
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Simulation and data analysis

Example 2: Co-movements of losses and forecasts (varying magnitude)
Losses: Lt “ Ztp1` sinpθtqq, θ “ 0.01

ES forecasts: rt “ 1.86p1` sinpθtqq; VaR forecasts: zt “ 1.48p1` sinpθtqq
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Simulation and data analysis

Example 3: Forecasts with an estimation error
Losses: iid Lt „ Np0, 1q

ES forecasts: rt “ 2.06` εt ; VaR forecasts: zt “ 1.64` εt ; tεtut“1,...,n`l are iid
samples uniformly distributed on support t˘i{10 : i “ 0, . . . , 5u
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Simulation and data analysis

Time-series model

Data generating process (Nolde/Ziegel’17)

ARp1q-GARCHp1, 1q process:

Lt “ µt ` εt , εt “ σtZt ,

µt “ ´0.05` 0.3Lt´1, σ2t “ 0.01` 0.1ε2t´1 ` 0.85σ2t´1

The innovations tZtutPN`
are iid skewed-t with shape parameter ν “ 5 and

skewness parameter γ “ 1.5

simulate 1,000 daily losses in each run (1,000 runs)
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Simulation and data analysis

Time-series model
Forecasters

Fit ARp1q-GARCHp1, 1q everyday with a moving window of 500 days

Innovations: normal, t and skewed-t

Strategies: under-report, point forecast, over-report

Average point forecast over 500 days

zVaR0.95 zVaR0.99 zVaR0.875 xES0.875 zVaR0.975 xES0.975

normal 0.605 0.883 0.403 0.606 0.734 0.888

t 0.528 0.974 0.300 0.566 0.709 1.034

skewed-t 0.658 1.217 0.365 0.701 0.888 1.281

true 0.658 1.242 0.359 0.706 0.897 1.312
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Simulation and data analysis

Backtesting ES (e-process), GREM
E-value rejection thresholds: 2, 5, and 10
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Figure: Average (Log) e-processes testing ES0.975 with respect to number of days using the
GREM method
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Simulation and data analysis

Backtesting ES, GREM

´10% ES exact `10% ES

Threshold 2 5 10 2 5 10 2 5 10

normal 99.8 99.5 98.5 99.3 95.7 88.3 94.8 79.8 62.1

t 98.4 88.8 77.1 88.1 63.9 43.1 70.0 34.9 15.6

skewed-t 47.6 16.1 6.2 18.8 4.0 0.8 7.9 1.1 0.1

Table: Percentage of rejections (%) for ES0.975 forecasts using the GREM method within the
total 1, 000 trials
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Simulation and data analysis

Detection of structural change

Data generating process (Hoga/Demetrescu’22)

GARCHp1, 1q process:

Lt “ ´σtZt , σ2t “ 0.00001` 0.04ε2t´1 ` βtσ
2
t´1

The innovations tZtutPN`
are iid skewed-t with shape parameter ν “ 5 and

skewness parameter γ “ 0.95

Simulate 250 daily losses for forecasting and 250 for testing

βt “ 0.7` 0.251ttąb˚u; b˚ ` 1 is the time where structural change happens

Ruodu Wang (wang@uwaterloo.ca) E-backtesting 45/50

wang@uwaterloo.ca


Risk backtests E-values Model-free e-statistics E-backtesting Simulation and data

Simulation and data analysis

Backtesting ES0.95

Percentage of detections (%)
and average number of days
needed to detect structural
change (ARL) with respect to
b˚; black line (“monitor")
represents the result of the
sequential monitoring method in
Hoga/Demetrescu’22
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Simulation and data analysis

Data analysis setting
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Negated log-returns of the NASDAQ Composite index from Jan 16, 1996 to Dec 31,
2021

Fitted to an ARp1q-GARCHp1, 1q model with moving window of 500

Sample size after initial training: n “ 5, 536
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Simulation and data analysis

Jan 2005 - Dec 2021, GREM, ES0.975

Threshold 2 5 10

normal 540 610 713 p30.28q

t 540 933 1381 p10.25q

skewed-t 540 2639 2889 p4.169q

st `10% ES – – – p´0.6896q

empirical 756 862 931 p8.454q

Table: Number of days taken to reject the ES0.975
forecasts, and final log e-values (in brackets); “–"
means no rejection
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Simulation and data analysis

Future directions

E-backtesting other risk measures
Gini deviation ( 12Er|X ´X

1|s): Model-free e-statistics take the form of r ÞÑ |x1´x2|
2r

(requires two iid copies)
Distortion risk measures

Game theoretic framework
Financial institution: report as low risk forecasts as possible
Regulator: reject when e-process becomes large
Equilibrium risk forecasts and betting process pλtqtPN

Other methods choosing betting process pλtqtPN
Optimal betting process for specific distributions
Optimal betting process for general dependence structures

Ruodu Wang (wang@uwaterloo.ca) E-backtesting 49/50

wang@uwaterloo.ca


Risk backtests E-values Model-free e-statistics E-backtesting Simulation and data

Simulation and data analysis

Thank you

Thank you for your attention

https://arxiv.org/abs/2209.00991
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