$\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Martingale Transports, Monge Maps, and Strassen's Theorem

Ruodu Wang

<http://sas.uwaterloo.ca/~wang>

Department of Statistics and Actuarial Science

University of Waterloo

Optimal Transport and Distributional Robustness Banff, March 25–29, 2024

- 2 [Monge martingale transport maps](#page-7-0)
- 3 [A refinement of Strassen's theorem](#page-23-0)

4 [Other results](#page-27-0)

5 [Open questions](#page-36-0)

Based on joint work with Marcel Nutz (Columbia) and Zhenyuan Zhang (Stanford)

 $4.17 + 16$

∢ 何 ▶ 《 ヨ ▶ 《 ヨ ▶ 》

$X, Y \in L^1$: $X \leqslant_{\rm cx} Y$ means $\mathbb{E}[\phi(X)] \leqslant \mathbb{E}[\phi(Y)]$ for all convex ϕ

We will prove

A refinement of Strassen's theorem

On an atomless probability space, for $X, Y \in L^1$,

$$
X \leq_{\rm cx} Y \iff X \stackrel{\rm law}{=} \mathbb{E}[Y|\mathcal{G}] \text{ for some } \sigma\text{-field } \mathcal{G}
$$

and some other related results

Monge's problem: find a transport map $T : \mathcal{X} \to \mathcal{Y}$ that minimizes

$$
\int_{\mathcal{X}} c(x, \mathcal{T}(x)) d\mu(x) : \mathcal{T}_{\#}\mu = \nu
$$

where

- \blacktriangleright X and Y are two Polish spaces (e.g., \mathbb{R}^d)
- \triangleright Cost function $c : \mathcal{X} \times \mathcal{Y} \to [0, \infty]$ or $(-\infty, \infty]$
- Probabilities μ on $\mathcal X$ and ν on $\mathcal Y$ are given
- \blacktriangleright $\mathcal{T}_{\#}\mu = \mu \circ \mathcal{T}^{-1}$ is the push forward of μ by \mathcal{T}
- In Such T is an optimal transport map

Kantorovich's problem

$$
\min \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)\,\pi(\mathrm{d} x,\mathrm{d} y):\pi\in\Pi(\mu,\nu)
$$

 $\blacktriangleright \Pi(\mu, \nu)$: probabilities on $\mathcal{X} \times \mathcal{Y}$ with marginals μ and ν

Kernel formulation

$$
\min \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)(\mu\otimes\kappa)(\mathrm{d}x,\mathrm{d}y):\kappa\in\mathcal{K}(\mu,\nu)
$$

 $\triangleright \mathcal{K}(\mu, \nu)$: kernels κ satisfying $\kappa_{\#} \mu := \int_{\mathcal{X}} \kappa_{\mathbf{x}} \mu(\mathrm{d}\mathbf{x}) = \nu$ Probabilistic formulation

$$
\text{min } \mathbb{E}[c(X,Y)] : X \stackrel{\text{law}}{\sim} \mu; Y \stackrel{\text{law}}{\sim} \nu
$$

 A and B

▶ イヨ ▶ イヨ ▶ ○

 \blacktriangleright Martingale optimal transport

$$
\text{min } \mathbb{E}[c(X, Y)] : X \stackrel{\text{law}}{\sim} \mu; Y \stackrel{\text{law}}{\sim} \nu; X = \mathbb{E}[Y|X]
$$

 \blacktriangleright Equivalently

$$
\min \int c(x,y)(\mu \otimes \kappa)(dx,dy) : \kappa \in \mathcal{K}(\mu,\nu); e[\kappa_x] = x (\mu-a.e.)
$$

where e is the mean of a probability

 $\blacktriangleright M(\mu, \nu)$: martingale transports (MT) in $\Pi(\mu, \nu)$

 $4.171 - 16$

- ∢ 中 ▶ - ∢ 手 ▶ → 手 ▶ →

 \triangleright Motivated by (Asian) option pricing: sup/inf of

$$
\Big\{\mathbb{E}[(X_1+X_2-K)_+]:X_1\stackrel{\mathrm{law}}{\sim}\mu_1;\hspace{1mm} X_2\stackrel{\mathrm{law}}{\sim}\mu_2;\hspace{1mm}\mathbb{E}[X_2|X_1]=X_1\Big\}
$$

where $K \in \mathbb{R}$ and μ_1, μ_2 are calibrated from option prices \triangleright On \mathbb{R} .

- $c(x, y) = (x y)^2$: all MT have the same cost
- $c(x, y) = h(x y)$: the first two derivatives do not matter, but the third does

MOT: B[eig](#page-5-0)lbö[ck](#page-5-0)/Henry-Labordère/Penkner'13 FS; Beiglböck J[ui](#page-7-0)[lle](#page-1-0)[t](#page-2-0) 1[6](#page-7-0)[A](#page-2-0)[O](#page-6-0)[P](#page-7-0) QQQ Ruodu Wang (<wang@uwaterloo.ca>) [Monge martingale transport 7/41](#page-0-0)

2 [Monge martingale transport maps](#page-7-0)

3 [A refinement of Strassen's theorem](#page-23-0)

[Other results](#page-27-0)

5 [Open questions](#page-36-0)

Ε

 $\sqrt{2}$) $\sqrt{2}$) $\sqrt{2}$

 $4.17 + 16$

- $\triangleright X = \mathbb{E}[Y|X]$ and Y is function of $X \Longrightarrow Y = X$
- \triangleright MT cannot be Monge in the forward direction unless trivial
- \triangleright Backward direction is possible:
	- $X = \mathbb{E}[Y|X]$ and X is function of Y
	- Example: $Y \stackrel{\text{law}}{\sim} \mathrm{U}[-2,2]$ and $X = \mathrm{sign}(Y)$
- \triangleright Monge martingale transports (MMT; omit "backward")
- $\blacktriangleright M_M(\mu, \nu)$: set of MMT
- \triangleright MMT is useful for:
	- identifying worst-case probabilities
	- some settings of matching problems

 \mathcal{A} and \mathcal{A} . In the set of \mathbb{R}^n is a set of \mathbb{R}^n is a set of \mathbb{R}^n is a set of \mathbb{R}^n

- From now on $\mathcal{X} = \mathcal{Y} = \mathbb{R}$
- \blacktriangleright $\mathcal{P}(\mathbb{R})$: Borel probabilities on $\mathbb R$ with finite first moment

$$
\blacktriangleright \mu \leq_{\rm cx} \nu: \int \phi \mathrm{d}\mu \leqslant \int \phi \mathrm{d}\nu \text{ for all convex } \phi
$$

Strassen's Theorem

For $\mu, \nu \in \mathcal{P}(\mathbb{R})$, $\mu \leq_{\text{cx}} \nu$ if and only if $\mathcal{M}(\mu, \nu)$ is non-empty.

Increasing in risk Rothschild-Stiglitz'70 JET

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Monge martingale transport

Theorem 1 (Existence)

Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ satisfy $\mu \leq_{\text{cx}} \nu$. There exists $\pi \in \mathcal{M}(\mu, \nu)$ and a Borel function $h : \mathbb{R} \to \mathbb{R}$ such that $\pi(T_{\text{rg}} \cup T_{\text{atom}}) = 1$, where

(i)
$$
T_{\text{rg}} = \{ (h(y), y) : y \in \mathbb{R} \};
$$

(ii)
$$
T_{\text{atom}} = \{(x, y) : \nu(\{y\}) > 0\}.
$$

In particular, if ν is atomless, π is a Monge martingale transport.

ν atomless and $\mu \leq_{\rm cx} \nu \implies MMT$ exists

- ∢ 何 ▶ - ∢ ヨ ▶ → ヨ ▶ →

 200

- \triangleright We need the left-curtain transport π_{1c} Beiglböck/Juillet'16 AOP
- \blacktriangleright Write $\mu \leqslant_{\mathbf{E}} \nu$ for finite measures μ, ν with finite first moment if $\int \phi \, d\mu \leqslant \int \phi \, d\nu$ for any nonnegative convex ϕ
	- if $\mu(\mathbb{R}) = \nu(\mathbb{R})$, this is $\mu \leq_{\text{cx}} \nu$
	- if $\mu \leq \nu$ (set-wise) then $\mu \leqslant_{E} \nu$
- \blacktriangleright Given $\mu \leqslant_{\mathrm{E}} \nu$, the shadow $S^{\nu}(\mu)$ of μ in ν is defined as

$$
S^{\nu}(\mu) = \min_{\leqslant cx} \{\eta : \mu \leqslant_{cx} \eta \leqslant \nu\},\
$$

- always well-posed
- ► Given $\mu \leq_{cx} \nu$, the left-curtain (LC) transport $\pi_{lc} \in \mathcal{M}(\mu, \nu)$ is uniquely defined by the property that it transports $\mu|_{(-\infty,x]}$ to its shadow $S^\nu(\mu|_{(-\infty,x]})$ for every $x\in\mathbb{R}$ $x\in\mathbb{R}$ $x\in\mathbb{R}$

- ∢ 何 ▶ - ∢ ヨ ▶ → (ヨ ▶ →

Figure: An example of the left-curtain transport (not MMT)

F The LC transport uniquely minimizes $\int c d\pi$: $\pi \in \mathcal{M}(\mu, \nu)$ for $c(x, y) = h(y - x)$ with h' strictly convex

- \triangleright We will create a barcode transport by decomposing μ and ν into countably many mutually singular Monge parts
- \blacktriangleright Define the densities

$$
d_{\mu} = \frac{d\mu}{d(\mu + \nu)}
$$
 and $d_{\nu} = \frac{d\nu}{d(\mu + \nu)}$

The barcode transport is defined by a sequential construction:

- **I** Take the part on $\mathbb R$ with $d_\mu \geqslant 1/2$ "d $\mu \geqslant d\nu$ "
- \triangleright Apply the left-curtain transport on this part with its shadow
- **F** Remove the matched parts from both μ and ν
- \blacktriangleright Repeat on the rest
- \blacktriangleright This procedure converges

Figure: An example of the barcode transport between Gaussian marginals

marginals. (a) The barcode transp[or](#page-13-0)[t c](#page-15-0)[o](#page-13-0)[n](#page-14-0)[s](#page-22-0)[is](#page-6-0)[t](#page-7-0)s [o](#page-6-0)[f](#page-7-0)[a](#page-23-0) [c](#page-0-0)[olle](#page-40-0)ction of $\mathbf{d} \in \mathbb{R}$ of $\mathbf{d} \in \mathbb{R}$ and $\mathbf{d} \in \$

Proposition 1 (Structure of π_{1c})

Let $\mu \leq_{\rm cx} \nu$. There exists a Borel function $h : \mathbb{R} \to \mathbb{R}$ such that the LC transport π_{lc} satisfies $\pi_{\text{lc}}(S_{\text{rg}} \cup S_{\text{diag}} \cup S_{\text{atom}}) = 1$, where (i) $S_{r\sigma} = \{(h(y), y) : y \in \mathbb{R}\};$ (ii) $S_{\text{diag}} = \{(x, x) : x \in \mathbb{R}\};$ (iii) $S_{\text{atom}} = \{(x, y) : \nu(\{y\}) > 0\}.$ If $d_{\mu} \geq 1/2$ μ -a.e., then $\pi_{\rm lc}(S_{\rm rg} \cup S_{\rm atom}) = 1$. In particular, if in addition ν is atomless, then $\pi_{\text{lc}} \in \mathcal{M}_M(\mu, \nu)$.

 ν atomless and $d_{\mu} \geqslant 1/2 \implies \pi_{\mathrm{lc}}$ is MMT

Let us prove Proposition [1](#page-15-1)

Lemma 1 (LC is left-monotone; Beiglböck/Juillet'16 AOP)

The LC transport $\pi_{lc} \in \mathcal{M}(\mu, \nu)$ satisfies $\pi_{lc}(\Gamma) = 1$ for some $\Gamma \subset \mathbb{R} \times \mathbb{R}$ that is a left-monotone set; i.e.,

 $(x, y^-), (x, y^+), (x', y') \in \Gamma$ with $x < x'$: it forbids $y^- < y' < y^+$.

Moreover, $\pi_{lc} \in \mathcal{M}(\mu, \nu)$ is uniquely characterized by that property.

Figure: Forbidden configuration for left-monotonicity: the legs of a point x' cannot step into the legs of another point x to the left of x^{\prime}

∢ロ ▶ (何 ▶ (ヨ ▶ (ヨ ▶)

Lemma 2 (Support of LC; Beiglböck/Juillet'16 AOP)

There exist two functions T_d , T_u : $\mathbb{R} \to \mathbb{R}$ such that

$$
\pi_{\mathrm{lc}}(R_{\mathrm{legs}} \cup R_{\mathrm{atom}}) = 1, \text{ where}
$$

(a) R_{legs} is the union of the graphs of T_{d} , T_{u} over the first marginal;

(b)
$$
R_{\text{atom}} = \{(x, y) : \mu(\{x\}) > 0\}.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Denote by $\kappa_{\mathsf{x}}(\text{d}y)$ the disintegration of π_{lc} by μ :

 $\pi_{\rm lc}({\rm d}x,{\rm d}y)=\mu({\rm d}x)\otimes \kappa_{x}({\rm d}y)$

Lemma 3

We have $d_{\mu} \leqslant d_{\nu}$ μ -a.e. on $\{x \in \mathbb{R} : \kappa_x = \delta_x\}.$

Figure: For the left-curtain transport, $d_{\mu} \leqslant d_{\nu}$ μ -a.e. on $\{x \in \mathbb{R} : \kappa_{\mathsf{x}} = \delta_{\mathsf{x}}\}\$

 $\mathcal{A} \oplus \mathcal{B}$) and $\mathcal{B} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 $4.171 - 16$

Let us prove Proposition [1](#page-15-1)

Let us prove

 $\pi_{\rm lc}$ is supported on $S_{\rm rc}$ if $d_{\mu} \geqslant d_{\nu}$ μ -a.e. and ν is atomless

- \triangleright *ν* is atomless \implies if $\mu({x}) > 0$ then $\kappa_{x}({x}) = 0$
- Elemma [2](#page-17-0) $\implies \mu$ -a.e. if $\mu({x}) = 0$ then either $\kappa_x = \delta_x$ or κ_x is supported on two points $T_d(x) < x < T_u(x)$.
- **If** Lemma [3](#page-18-0) $\implies \mu$ -a.e. if $\kappa_X({x}) > 0$ then $d_\mu(x) \leq d_\nu(x)$
- \blacktriangleright d_u $\geq d_{\nu}$ μ -a.e. $\implies \mu$ -a.e. if $\kappa_{x}(\{x\}) > 0$ then $d_{\mu}(x) = d_{\nu}(x)$
- $\triangleright \pi_{\text{lc}}$ is id on $S := \{x \in \mathbb{R} : \kappa_x(\{x\}) > 0\}$ and Monge
- Safely remove S and assume $\kappa_{x}(\{x\}) = 0$ μ -a.e. to continue

モニメ イヨメメ ミメ イヨメ

- **I** Lemma $1 \implies \pi_{1c}$ is supported on a left-monotone set Γ
- $\blacktriangleright \Gamma \subseteq \text{supp}(\mu) \times \text{supp}(\nu)$ and $\Gamma \subseteq R_{\text{legs}} \cup R_{\text{atom}}$
- Previous step $\implies \Gamma \cap \{(x, x) : x \in \mathbb{R}\} = \varnothing$
- ► Suppose $(x, y), (x', y) \in \Gamma$ with $y \notin \{x, x'\}$ (a) $x < y < x' \implies \mu((x, y)) = 0$ (b) $y < x < x' \implies \mu((x, y' \wedge x')) = 0$ for y' the right leg of x (c) $x < x' < y \implies \mu((x, x')) = 0$

つくへ

- As supp(μ) is closed, its complement can be written as a countable disjoint union of open intervals
- ► Each pair of $(x, y), (x', y) \in \Gamma$ with $x \neq x'$ corresponds to an endpoint of one of the open intervals
- \triangleright There are at most countably many y that do this
- \triangleright v atomless \Longrightarrow such y has v-measure $0 \Longrightarrow \pi_{1c}(S_{\text{ref}}) = 1$
- \blacktriangleright Verify that the transport map in S_{rg} can be required Borel

∢ 何 ▶ 《 百 》 《 百 》

Figure: It is possible that the left-curtain transport is MMT, but it is not necessarily equal to the barcode transport

4 0 F

2 [Monge martingale transport maps](#page-7-0)

3 [A refinement of Strassen's theorem](#page-23-0)

[Other results](#page-27-0)

5 [Open questions](#page-36-0)

Ε

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\}$

4 □ ▶

Strassen's theorem on random variables

Consider the statement

$$
X \leq_{\rm cx} Y \iff X \stackrel{\rm law}{=} \mathbb{E}[Y|\mathcal{G}] \text{ for some } \sigma\text{-field } \mathcal{G}?
$$

 \blacktriangleright Jensen's inequality gives \Leftarrow

 \blacktriangleright Is \Rightarrow true?

Example 1

Let $\Omega = \{1, 2\}$, uniform probability, $X = (1, 2)$ and $Y = (0, 3)$ \blacktriangleright $X \leqslant_{\text{cx}} Y$ but $X \stackrel{\text{law}}{=} \mathbb{E}[Y | \mathcal{G}]$ does not hold for any $\mathcal G$

K 何 ▶ K 手 ▶ K 手 ▶

Strassen's theorem on random variables

Reverse Jensen's:

$$
X \leqslant_{\scriptscriptstyle{\mathsf{CX}}} Y \implies X \stackrel{\text{law}}{=} \mathbb{E}[Y|\mathcal{G}] \text{ for some σ-field \mathcal{G}} \tag{\star}
$$

What about an atomless space?

If (\star) holds true for $\sigma(Y) = \mathcal{F}$ then necessarily

 $X \leqslant_{\text{cx}} Y \Longrightarrow X \stackrel{\text{law}}{=} f(Y)$ for some measurable t

 \blacktriangleright (\star) requires a Monge martingale transport to exist!

A refinement of Strassen's theorem

Theorem 2 (Refinement of Strassen's Theorem)

For random variables X and Y on $(\Omega, \mathcal{F}, \mathbb{P})$ that is atomless,

 $X \leqslant_{\text{cx}} Y$ if and only if $X \stackrel{\text{law}}{=} \mathbb{E}[Y | \mathcal{G}]$ for some $\sigma\text{-field } \mathcal{G} \subseteq \mathcal{F}.$

It is a refinement to the following version

Strassen's in the form of Theorem 3.A.4 of Shaked/Shantikumar'07 Two random variables X and Y satisfy $X \leq_{\text{cx}} Y$ if and only if there exist random variables X', Y' on an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $X' \stackrel{\text{law}}{=} X$, $Y' \stackrel{\text{law}}{=} Y$ and $X' = \mathbb{E}[Y'|X']$.

2 [Monge martingale transport maps](#page-7-0)

3 [A refinement of Strassen's theorem](#page-23-0)

4 [Other results](#page-27-0)

5 [Open questions](#page-36-0)

 \leftarrow \Box

 \sqrt{m}) \sqrt{m}) \sqrt{m}

Ξ

Theorem 3 (MMTs are dense)

Let $\mu \leq_{cx} \nu$ with ν atomless. Then $\mathcal{M}_{M}(\mu, \nu)$ is weakly dense in $\mathcal{M}(\mu, \nu)$. If μ is discrete, it is also dense for the ∞ -Wasserstein topology.

Corollary 1 (Optimal MT cost $=$ optimal MMT cost)

Let $\mu \leqslant_{\rm cx} \nu$ with ν atomless. If $c : \mathbb{R}^2 \to \mathbb{R}$ is continuous with $|c(x,y)| \leqslant a(x) + b(y)$ for some $a \in L^1(\mu)$ and $b \in L^1(\nu)$, then

$$
\inf_{\pi \in \mathcal{M}_{M}(\mu,\nu)} \int c \mathrm{d}\pi = \inf_{\pi \in \mathcal{M}(\mu,\nu)} \int c \mathrm{d}\pi.
$$

Denseness

Lemma 4

A^δ A^δ

Let $\nu \in \mathcal{P}(\mathbb{R})$ be atomless. Given any decomposition $\nu = \sum_{i=1}^{\infty} \nu_i$ of ν , there exist mutually singular $\hat{\nu}_i$, $i \in \mathbb{N}$ such that $\nu = \sum_{i=1}^{\infty} \hat{\nu}_i$ and $\nu_1 \leq_{\text{cx}} \hat{\nu}_1$ and $\text{bary}(\nu_i) = \text{bary}(\hat{\nu}_i)$ for $i \geq 2$.

J^k I`

ν

Figure: An illustration of the main idea to prove Theorem [3](#page-28-0)

 $4.171 \times$

 200

Uniqueness

Theorem 4 (Uniqueness)

Let $\mu \leq_{cx} \nu$ with ν atomless. The following are equivalent:

- (i) The MT from μ to ν is unique.
- (ii) The MMT from μ to ν is unique.

(iii) Let $\mu_{\sf a}:=\sum_{j\in\mathbb{N}}{\sf a}_j\delta_{\sf x_j}$ be the atomic part of μ , where $\{{\sf x}_j\}_{j\in\mathbb{N}}$ are distinct. Then the shadows $\mathcal{S}^{\nu}(\mathsf{a}_j\delta_{\mathsf{x}_j}),\,j\in\mathbb{N}$ are mutually singular and $\mu - \mu_{\sf a} = \nu - \sum_{j \in \mathbb{N}} S^{\nu} (a_j \delta_{x_j}).$

 \triangleright μ and ν are both atomless: uniqueness \iff $\mu = \nu$

- ← (日) → (日) → (日)

 $\frac{1}{2}$ is unique to ν is unique Figure: Distribution functions of μ, ν where the MMT (and MT) from μ

Ε

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Example 2 (MT exists; MMT does not)

Let μ and ν be two-point distributions satisfying $\mu \leq_{cx} \nu$. Then there is a unique MT but there is no MMT unless $\mu = \nu$.

In general, if μ, ν are discrete and $\text{card}(\cdot)$ denotes the cardinality of the support, the existence of an MMT implies $(2 \operatorname{card}((\mu - \nu)_+)) \vee \operatorname{card}(\mu) \leq \operatorname{card}(\nu)$

Example 3 (MMT is unique; MT is not)

Let μ be uniform on $\{2, 5\}$ and ν be uniform on $\{0, 3, 4, 7\}$. The unique MMT is given by transporting $\{2\}$ to $\{0,4\}$ and $\{5\}$ to $\{3, 7\}$, while it is easy to see that there exist many MTs.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Proposition 2

Consider $\mu \leq_{cx} \nu$ with ν atomless. For any strictly convex $f, g : \mathbb{R} \to \mathbb{R}$, $\mathcal{M}_M(\mu, \nu) = \argmin_{(X, Y) \in \mathbb{R}^N} \mathbb{E}\left[f(\mathbb{E}[Y|X] - X) - g(\mathbb{E}[X|Y])\right].$ (\diamondsuit) $(X,Y) \in \Pi(\mu,\nu)$

•
$$
f(x) = g(x) = x^2
$$
: (\Diamond) is equivalent to

$$
\mathbb{E}\big[\mathbb{E}[Y|X]^2-\mathbb{E}[X|Y]^2-2\mathbb{E}[XY]\big]
$$

- \blacktriangleright This cost is not symmetric in X and Y
- **Fi** The term $-2\mathbb{E}[XY]$ is essential: $\mathcal{M}_M(\mu,\nu)$ does not minimize $\mathbb{E}[\mathbb{E}[Y|X]^2-\mathbb{E}[X|Y]^2]$ $\mathbb{E}[\mathbb{E}[Y|X]^2-\mathbb{E}[X|Y]^2]$ $\mathbb{E}[\mathbb{E}[Y|X]^2-\mathbb{E}[X|Y]^2]$ unless X is a co[ns](#page-32-0)t[an](#page-34-0)t

Backward deterministic martingales

Definition 1

A stochastic process $(X_n)_{n\in\mathbb{N}}$ is backward deterministic if $(X_j)_{j=1}^n$ is $\sigma(X_n)$ -measurable for all $n \in \mathbb{N}$.

- $\blacktriangleright \sigma(X_n)$ is non-decreasing in *n*.
- \triangleright A backward deterministic process is Markovian
- Perfect memory: its time-n value records all its history up to time n

Backward deterministic martingales

Corollary 2

Given any martingale $(Y_n)_{n\in\mathbb{N}}$ with atomless marginals, there exists a backward deterministic martingale $(X_n)_{n\in\mathbb{N}}$ such that $X_n \stackrel{\text{law}}{=} Y_n$ for all $n \in \mathbb{N}$.

 \triangleright Although rare, the class of backward deterministic martingale is surprisingly "rich"

2 [Monge martingale transport maps](#page-7-0)

3 [A refinement of Strassen's theorem](#page-23-0)

[Other results](#page-27-0)

Ε

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$

4 □ ▶

Backward deterministic fake Brownian motions

- ► Let $(W_t)_{t \in [0, T]}$ be a martingale with marginal distribution $W_t \stackrel{\text{law}}{=} N(0,t)$
- \blacktriangleright Fake Brownian motions
	- (continuous path) Beiglböck/Lowther/Pammer/Schachermayer'23 FS
- \triangleright Does there exist such W that is also backward deterministic?
	- \bullet $(W_s)_{s\in[0,t]}$ is $\sigma(W_t)$ -measurable for each $t\in[0,T]$

┌ ◀ ≡ ▶ ◀ ≡ ▶ │

Generalization to \mathbb{R}^d

 \triangleright Seems highly challenging

Conjecture 1

Let μ,ν be probability measures on \mathbb{R}^d satisfying $\mu \leqslant_{\rm cx} \nu$, and $\{\nu_x : x \in \mathbb{R}^d\}$ is a decomposition into irreducible components of (μ,ν) . Suppose that ν_{x} is atomless for μ -a.e. $\mathsf{x}\in\mathbb{R}^{\bm{d}}$. Then $\mathcal{M}_{M}(\mu, \nu)$ is non-empty and weakly dense in $\mathcal{M}(\mu, \nu)$. If μ is discrete, it is also dense for the ∞ -Wasserstein topology.

Monge supermartingale/directional transport

- Existence of Monge directional transport: clear $Nutz-W.22$ AAP
- \triangleright Existence of Monge supermartingale transport: unclear
- \blacktriangleright Denseness: unclear

[Martingale transport](#page-2-0) [Monge MT maps](#page-7-0) [Strassen's theorem](#page-23-0) [Other results](#page-27-0) [Open questions](#page-36-0)

Thank you for your kind attention

Marcel Nutz (Columbia)

Zhenyuan Zhang (Stanford)

Takeaway 1. On an atomless probability space,

$$
X \leq_{\rm cx} Y \iff X \stackrel{\rm law}{=} \mathbb{E}[Y|\mathcal{G}] \text{ for some } \sigma\text{-field } \mathcal{G}
$$

Takeaway 2. For atomless ν and continuous and "non-exploding" c,

optimal $MT cost = optimal MMT cost$