(日)

Martingale Transports, Monge Maps, and Strassen's Theorem

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Optimal Transport and Distributional Robustness Banff, March 25–29, 2024

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	0000000000000000		000000000	00000
Agenda				

- 2 Monge martingale transport maps
- 3 A refinement of Strassen's theorem

Other results

5 Open questions

Based on joint work with Marcel Nutz (Columbia) and Zhenyuan Zhang (Stanford)

- 「同 ト - 1 三 ト - 1 三 ト

Martingale transport ●0000	Monge MT maps 0000000000000000	Strassen's theorem	Other results 000000000	Open questions
Main recult				

$X,Y\in L^1$: $X\leqslant_{\mathrm{cx}} Y$ means $\mathbb{E}[\phi(X)]\leqslant \mathbb{E}[\phi(Y)]$ for all convex ϕ

We will prove

A refinement of Strassen's theorem

On an atomless probability space, for $X, Y \in L^1$,

$$X \leqslant_{\mathrm{cx}} Y \iff X \stackrel{\mathrm{law}}{=} \mathbb{E}[Y|\mathcal{G}]$$
 for some σ -field \mathcal{G}

... and some other related results

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Martingale transport 0●000	Monge MT maps 000000000000000	Strassen's theorem	Other results	Open questions
Monge's pro	blem			

Monge's problem: find a transport map $T : \mathcal{X} \to \mathcal{Y}$ that minimizes

$$\int_{\mathcal{X}} c(x, T(x)) \,\mathrm{d}\mu(x) : T_{\#}\mu = \nu$$

where

- \mathcal{X} and \mathcal{Y} are two Polish spaces (e.g., \mathbb{R}^d)
- Cost function $c : \mathcal{X} \times \mathcal{Y} \rightarrow [0, \infty]$ or $(-\infty, \infty]$
- Probabilities μ on \mathcal{X} and ν on \mathcal{Y} are given
- $T_{\#}\mu = \mu \circ T^{-1}$ is the push forward of μ by T
- Such T is an optimal transport map

Martingale transport 00●00	Monge MT maps 0000000000000000	Strassen's theorem	Other results	Open questions
Kantorovich'	s problem			

Kantorovich's problem

$$\mathsf{min} \quad \int_{\mathcal{X}\times\mathcal{Y}} c(x,y) \, \pi(\mathrm{d} x,\mathrm{d} y) : \pi \in \mathsf{\Pi}(\mu,\nu)$$

• $\Pi(\mu, \nu)$: probabilities on $\mathcal{X} imes \mathcal{Y}$ with marginals μ and ν

Kernel formulation

$$\min \quad \int_{\mathcal{X}\times\mathcal{Y}} c(x,y)(\mu\otimes\kappa)(\mathrm{d} x,\mathrm{d} y):\kappa\in\mathcal{K}(\mu,\nu)$$

• $\mathcal{K}(\mu, \nu)$: kernels κ satisfying $\kappa_{\#}\mu := \int_{\mathcal{X}} \kappa_x \mu(dx) = \nu$ Probabilistic formulation

min
$$\mathbb{E}[c(X,Y)]: X \stackrel{\text{law}}{\sim} \mu; Y \stackrel{\text{law}}{\sim} \nu$$

Martingale transport 000●0	Monge MT maps 0000000000000000	Strassen's theorem 0000	Other results	Open questions
Martingale t	ransport			

Martingale optimal transport

min
$$\mathbb{E}[c(X,Y)]: X \stackrel{\text{law}}{\sim} \mu; Y \stackrel{\text{law}}{\sim} \nu; X = \mathbb{E}[Y|X]$$

Equivalently

min
$$\int c(x,y)(\mu \otimes \kappa)(\mathrm{d}x,\mathrm{d}y) : \kappa \in \mathcal{K}(\mu,\nu); \ e[\kappa_x] = x \ (\mu\text{-a.e.})$$

where e is the mean of a probability

• $\mathcal{M}(\mu, \nu)$: martingale transports (MT) in $\Pi(\mu, \nu)$

Martingale transport 0000●	Monge MT maps 0000000000000000	Strassen's theorem	Other results	Open questions
Martingale t	ransport			

Motivated by (Asian) option pricing: sup/inf of

$$\left\{\mathbb{E}[(X_1+X_2-\mathcal{K})_+]:X_1\stackrel{\mathrm{law}}{\sim}\mu_1;\ X_2\stackrel{\mathrm{law}}{\sim}\mu_2;\ \mathbb{E}[X_2|X_1]=X_1
ight\}$$

where $K \in \mathbb{R}$ and μ_1, μ_2 are calibrated from option prices • On \mathbb{R} :

- $c(x,y) = (x y)^2$: all MT have the same cost
- c(x, y) = h(x y): the first two derivatives do not matter, but the third does

Martingale transport 00000	Monge MT maps ●0000000000000000	Strassen's theorem	Other results 00000000	Open questions

2 Monge martingale transport maps

3 A refinement of Strassen's theorem

Other results

5 Open questions

• • = • • = •

Martingale transport	Monge MT maps o●ooooooooooooooo	Strassen's theorem	Other results	Open questions
Monge Mar	tingale transpo	rt		

- $X = \mathbb{E}[Y|X]$ and Y is function of $X \Longrightarrow Y = X$
- MT cannot be Monge in the forward direction unless trivial
- Backward direction is possible:
 - $X = \mathbb{E}[Y|X]$ and X is function of Y
 - Example: $Y \stackrel{\text{law}}{\sim} U[-2,2]$ and $X = \operatorname{sign}(Y)$
- Monge martingale transports (MMT; omit "backward")
- $\mathcal{M}_{M}(\mu,\nu)$: set of MMT
- MMT is useful for:
 - identifying worst-case probabilities
 - some settings of matching problems

・ 同 ト ・ ヨ ト ・ ヨ ト …

Martingale transport	Monge MT maps 00●00000000000000	Strassen's theorem	Other results	Open questions
Strassen's t	heorem			

- From now on $\mathcal{X} = \mathcal{Y} = \mathbb{R}$
- $\mathcal{P}(\mathbb{R})$: Borel probabilities on \mathbb{R} with finite first moment

•
$$\mu \leqslant_{\mathrm{cx}} \nu$$
: $\int \phi \mathrm{d}\mu \leqslant \int \phi \mathrm{d}\nu$ for all convex ϕ

Strassen's Theorem

For $\mu, \nu \in \mathcal{P}(\mathbb{R})$, $\mu \leqslant_{cx} \nu$ if and only if $\mathcal{M}(\mu, \nu)$ is non-empty.

Increasing in risk

Rothschild-Stiglitz'70 JET

イロン 不得 とくほ とくほ とうほう

Martingale transport 00000	Monge MT maps 000●000000000000	Strassen's theorem	Other results	Open questions

Monge martingale transport

Theorem 1 (Existence)

Let $\mu, \nu \in \mathcal{P}(\mathbb{R})$ satisfy $\mu \leq_{cx} \nu$. There exists $\pi \in \mathcal{M}(\mu, \nu)$ and a Borel function $h : \mathbb{R} \to \mathbb{R}$ such that $\pi(T_{rg} \cup T_{atom}) = 1$, where

(i)
$$T_{\rm rg} = \{(h(y), y) : y \in \mathbb{R}\};$$

(ii)
$$T_{\text{atom}} = \{(x, y) : \nu(\{y\}) > 0\}.$$

In particular, if ν is atomless, π is a Monge martingale transport.

ν atomless and $\mu \leq_{\mathrm{cx}} \nu \implies \mathsf{MMT}$ exists

< ロ > < 同 > < 三 > < 三 > 、

Main idea of				
Martingale transport 00000	Monge MT maps 000000000000000	Strassen's theorem	Other results 000000000	Open questions

- \blacktriangleright We need the left-curtain transport π_{lc} Beiglböck/Juillet'16 AOP
- ▶ Write $\mu \leq_E \nu$ for finite measures μ, ν with finite first moment if $\int \phi \, d\mu \leq \int \phi \, d\nu$ for any nonnegative convex ϕ
 - if $\mu(\mathbb{R}) = \nu(\mathbb{R})$, this is $\mu \leqslant_{\mathrm{cx}} \nu$
 - if $\mu \leqslant \nu$ (set-wise) then $\mu \leqslant_{\mathrm{E}} \nu$
- Given $\mu \leq_{\mathrm{E}} \nu$, the shadow $S^{\nu}(\mu)$ of μ in ν is defined as

$$S^{\nu}(\mu) = \min_{\leqslant_{\mathrm{cx}}} \{\eta : \mu \leqslant_{\mathrm{cx}} \eta \leqslant \nu \},$$

- always well-posed
- Given μ ≤_{cx} ν, the left-curtain (LC) transport π_{lc} ∈ M(μ, ν) is uniquely defined by the property that it transports μ|_{(-∞,x]} to its shadow S^ν(μ|_{(-∞,x]}) for every x ∈ ℝ

Martingale transport 00000 Monge MT maps

Strassen's theorem

Other results

Open questions

Main idea of the proof

< ロ > < 同 > < 三 > < 三 >

Figure: An example of the left-curtain transport (not MMT)

The LC transport uniquely minimizes ∫ cdπ: π ∈ M(μ, ν) for c(x, y) = h(y − x) with h' strictly convex

Martingale transport	Monge MT maps 0000000000000000	Strassen's theorem	Other results	Open questions
Main idea c	of the proof			

- We will create a barcode transport by decomposing μ and ν into countably many mutually singular Monge parts
- Define the densities

$$d_{\mu} = rac{\mathrm{d}\mu}{\mathrm{d}(\mu+
u)}$$
 and $d_{
u} = rac{\mathrm{d}
u}{\mathrm{d}(\mu+
u)}$

The barcode transport is defined by a sequential construction:

- ▶ Take the part on $\mathbb R$ with $d_\mu \geqslant 1/2$ "d $\mu \geqslant \mathrm{d}
 u$ "
- Apply the left-curtain transport on this part with its shadow
- \blacktriangleright Remove the matched parts from both μ and ν
- Repeat on the rest
- This procedure converges

Martingale transport	Monge MT maps 000000000000000000	Strassen's theorem	Other results	Open questions
Main idea c	of the proof			

Figure: An example of the barcode transport between Gaussian marginals

Э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Martingale transport	Monge MT maps 00000000000000000	Strassen's theorem	Other results	Open questions
Main idea c	of the proof			

Proposition 1 (Structure of π_{lc})

Let $\mu \leq_{cx} \nu$. There exists a Borel function $h : \mathbb{R} \to \mathbb{R}$ such that the LC transport π_{lc} satisfies $\pi_{lc}(S_{rg} \cup S_{diag} \cup S_{atom}) = 1$, where (i) $S_{rg} = \{(h(y), y) : y \in \mathbb{R}\};$ (ii) $S_{diag} = \{(x, x) : x \in \mathbb{R}\};$ (iii) $S_{atom} = \{(x, y) : \nu(\{y\}) > 0\}.$ If $d_{\mu} \ge 1/2 \mu$ -a.e., then $\pi_{lc}(S_{rg} \cup S_{atom}) = 1$. In particular, if in addition ν is atomless, then $\pi_{lc} \in \mathcal{M}_{M}(\mu, \nu)$.

$$u$$
 atomless and $d_{\mu} \geqslant 1/2 \implies \pi_{
m lc}$ is MMT

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

1	- Duon asiti an 1			
Martingale transport	Monge MT maps 00000000000000000	Strassen's theorem	Other results 000000000	Open questions

Let us prove Proposition 1

Lemma 1 (LC is left-monotone; Beiglböck/Juillet'16 AOP)

The LC transport $\pi_{lc} \in \mathcal{M}(\mu, \nu)$ satisfies $\pi_{lc}(\Gamma) = 1$ for some $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$ that is a left-monotone set; i.e.,

 $(x, y^{-}), (x, y^{+}), (x', y') \in \Gamma$ with x < x': it forbids $y^{-} < y' < y^{+}$.

Moreover, $\pi_{lc} \in \mathcal{M}(\mu, \nu)$ is uniquely characterized by that property.

Figure: Forbidden configuration for left-monotonicity: the legs of a point x'cannot step into the legs of another point xto the left of x'

< 口 > < 同 > < 三 > < 三 > 、

Martingale transport	Monge MT maps 000000000000000000000000000000000000	Strassen's theorem	Other results	Open questions
Let us prove	e Proposition 1			

Lemma 2 (Support of LC; Beiglböck/Juillet'16 AOP)

There exist two functions T_d , $T_u : \mathbb{R} \to \mathbb{R}$ such that $\pi_{lc}(R_{legs} \cup R_{atom}) = 1$, where

(a) $R_{\rm legs}$ is the union of the graphs of $T_{\rm d}, T_{\rm u}$ over the first marginal;

(b)
$$R_{\text{atom}} = \{(x, y) : \mu(\{x\}) > 0\}.$$

Martingale transport 00000	Monge MT maps ooooooooooooooooo	Strassen's theorem	Other results	Open questions
Let us prove	Proposition 1			

Denote by $\kappa_x(dy)$ the disintegration of π_{lc} by μ :

 $\pi_{\mathrm{lc}}(\mathrm{d} x, \mathrm{d} y) = \mu(\mathrm{d} x) \otimes \kappa_x(\mathrm{d} y)$

Lemma 3

We have $d_{\mu} \leq d_{\nu} \ \mu$ -a.e. on $\{x \in \mathbb{R} : \kappa_x = \delta_x\}$.

Figure: For the left-curtain transport, $d_{\mu} \leq d_{\nu} \mu$ -a.e. on $\{x \in \mathbb{R} : \kappa_x = \delta_x\}$

Martingale transport 00000	Monge MT maps 000000000000000000000000000000000000	Strassen's theorem	Other results	Open questions
Let us prove	Proposition 1			

Let us prove

 $\pi_{\rm lc}$ is supported on $S_{\rm rg}$ if $d_{\mu} \ge d_{\nu}$ μ -a.e. and ν is atomless

- ν is atomless \implies if $\mu(\{x\}) > 0$ then $\kappa_x(\{x\}) = 0$
- Lemma 2 ⇒ μ-a.e. if μ({x}) = 0 then either κ_x = δ_x or κ_x is supported on two points T_d(x) < x < T_u(x).
- ▶ Lemma 3 $\implies \mu$ -a.e. if $\kappa_x(\{x\}) > 0$ then $d_\mu(x) \leqslant d_\nu(x)$
- ► $d_\mu \geqslant d_\nu$ µ-a.e. \implies µ-a.e. if $\kappa_x(\{x\}) > 0$ then $d_\mu(x) = d_\nu(x)$
- π_{lc} is id on $S := \{x \in \mathbb{R} : \kappa_x(\{x\}) > 0\}$ and Monge
- Safely remove S and assume κ_x({x}) = 0 µ-a.e. to continue

- (同) (三) (=

Martingale transport 00000	Monge MT maps 000000000000000000000000000000000000	Strassen's theorem	Other results	Open questions 00000
Let us prove	Proposition 1			

- Lemma $1 \Longrightarrow \pi_{lc}$ is supported on a left-monotone set Γ
- ► $\Gamma \subseteq \operatorname{supp}(\mu) \times \operatorname{supp}(\nu)$ and $\Gamma \subseteq R_{\operatorname{legs}} \cup R_{\operatorname{atom}}$
- Previous step \implies $\Gamma \cap \{(x, x) : x \in \mathbb{R}\} = \emptyset$
- ► Suppose $(x, y), (x', y) \in \Gamma$ with $y \notin \{x, x'\}$ (a) $x < y < x' \implies \mu((x, y)) = 0$ (b) $y < x < x' \implies \mu((x, y' \land x')) = 0$ for y' the right leg of x (c) $x < x' < y \implies \mu((x, x')) = 0$

00000	0000000000000000000	0000	000000000	00000		
Let us prove Proposition 1						

- As supp(µ) is closed, its complement can be written as a countable disjoint union of open intervals
- Each pair of (x, y), (x', y) ∈ Γ with x ≠ x' corresponds to an endpoint of one of the open intervals
- There are at most countably many y that do this
- ν atomless \Longrightarrow such y has ν -measure $0 \Longrightarrow \pi_{lc}(S_{rg}) = 1$
- Verify that the transport map in $S_{
 m rg}$ can be required Borel

・ 同 ト ・ ヨ ト ・ ヨ ト …

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	000000000000000000	0000	000000000	00000
Main idea c	of the proof			

Figure: It is possible that the left-curtain transport is MMT, but it is not necessarily equal to the barcode transport

4 3 4 4 3 4

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	●000	000000000	

Monge martingale transport maps

3 A refinement of Strassen's theorem

4 Other results

5 Open questions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Martingale transport	Monge MT maps	Strassen's theorem 0●00	Other results	Open questions

Strassen's theorem on random variables

Consider the statement

$$X \leq_{\mathrm{cx}} Y \iff X \stackrel{\mathrm{law}}{=} \mathbb{E}[Y|\mathcal{G}]$$
 for some σ -field \mathcal{G} ?

► Jensen's inequality gives ⇐

• Is \Rightarrow true?

Example 1

Let $\Omega = \{1, 2\}$, uniform probability, X = (1, 2) and Y = (0, 3)• $X \leq_{cx} Y$ but $X \stackrel{law}{=} \mathbb{E}[Y|\mathcal{G}]$ does not hold for any \mathcal{G}

< ロ > < 同 > < 三 > < 三 > 、

Martingale transport 00000	Monge MT maps 0000000000000000	Strassen's theorem 00●0	Other results	Open questions

Strassen's theorem on random variables

Reverse Jensen's:

$$X \leqslant_{\mathrm{cx}} Y \Longrightarrow X \stackrel{\mathrm{law}}{=} \mathbb{E}[Y|\mathcal{G}]$$
 for some σ -field \mathcal{G} (*)

What about an atomless space?

• If (*) holds true for $\sigma(Y) = \mathcal{F}$ then necessarily

 $X \leq_{\mathrm{cx}} Y \Longrightarrow X \stackrel{\mathrm{law}}{=} f(Y)$ for some measurable f

(*) requires a Monge martingale transport to exist!

・ 同 ト ・ ヨ ト ・ 国 ト …

 Martingale transport
 Monge MT maps
 Strassen's theorem
 Other results
 Open questions

 0000
 0000
 0000
 0000
 0000
 0000

A refinement of Strassen's theorem

Theorem 2 (Refinement of Strassen's Theorem)

For random variables X and Y on $(\Omega, \mathcal{F}, \mathbb{P})$ that is atomless,

 $X \leq_{\mathrm{cx}} Y$ if and only if $X \stackrel{\mathrm{law}}{=} \mathbb{E}[Y|\mathcal{G}]$ for some σ -field $\mathcal{G} \subseteq \mathcal{F}$.

It is a refinement to the following version

Strassen's in the form of Theorem 3.A.4 of Shaked/Shantikumar'07 Two random variables X and Y satisfy $X \leq_{cx} Y$ if and only if there exist random variables X', Y' on an atomless probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfying $X' \stackrel{\text{law}}{=} X$, $Y' \stackrel{\text{law}}{=} Y$ and $X' = \mathbb{E}[Y'|X']$.

Martingale transport 00000	Monge MT maps 0000000000000000	Strassen's theorem	Other results •00000000	Open questions

2 Monge martingale transport maps

3 A refinement of Strassen's theorem

Other results

5 Open questions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Martingale transport 00000	Monge MT maps 0000000000000000	Strassen's theorem	Other results	Open questions
Denseness				

Theorem 3 (MMTs are dense)

Let $\mu \leq_{cx} \nu$ with ν atomless. Then $\mathcal{M}_M(\mu, \nu)$ is weakly dense in $\mathcal{M}(\mu, \nu)$. If μ is discrete, it is also dense for the ∞ -Wasserstein topology.

Corollary 1 (Optimal MT cost = optimal MMT cost)

Let $\mu \leq_{cx} \nu$ with ν atomless. If $c : \mathbb{R}^2 \to \mathbb{R}$ is continuous with $|c(x, y)| \leq a(x) + b(y)$ for some $a \in L^1(\mu)$ and $b \in L^1(\nu)$, then $\inf_{\pi \in \mathcal{M}_M(\mu,\nu)} \int c d\pi = \inf_{\pi \in \mathcal{M}(\mu,\nu)} \int c d\pi.$

< 口 > < 同 > < 三 > < 三 > 、

Martingale transport 00000	Monge MT maps 0000000000000000	Strassen's theorem	Other results 00000000	Open questions
D				

Denseness

Lemma 4

Let $\nu \in \mathcal{P}(\mathbb{R})$ be atomless. Given any decomposition $\nu = \sum_{i=1}^{\infty} \nu_i$ of ν , there exist mutually singular $\hat{\nu}_i$, $i \in \mathbb{N}$ such that $\nu = \sum_{i=1}^{\infty} \hat{\nu}_i$ and $\nu_1 \leq_{\mathrm{cx}} \hat{\nu}_1$ and $\mathrm{bary}(\nu_i) = \mathrm{bary}(\hat{\nu}_i)$ for $i \ge 2$.

Figure: An illustration of the main idea to prove Theorem 3

• • = • • = •

Martingale transport 00000	Monge MT maps 0000000000000000	Strassen's theorem	Other results	Open questions

Uniqueness

Theorem 4 (Uniqueness)

Let $\mu \leq_{cx} \nu$ with ν atomless. The following are equivalent:

- (i) The MT from μ to ν is unique.
- (ii) The MMT from μ to ν is unique.

(iii) Let $\mu_{a} := \sum_{j \in \mathbb{N}} a_{j} \delta_{x_{j}}$ be the atomic part of μ , where $\{x_{j}\}_{j \in \mathbb{N}}$ are distinct. Then the shadows $S^{\nu}(a_{j}\delta_{x_{j}})$, $j \in \mathbb{N}$ are mutually singular and $\mu - \mu_{a} = \nu - \sum_{j \in \mathbb{N}} S^{\nu}(a_{j}\delta_{x_{j}})$.

• μ and ν are both atomless: uniqueness $\iff \mu = \nu$

- 4 同 6 4 日 6 - 日 5 - 日

Martingale transport 00000	Monge MT maps	Strassen's theorem 0000	Other results	Open questions
Uniqueness				
			F_{μ}	_
			o	-
	•	/		
F_{ν} •	0			

Figure: Distribution functions of μ,ν where the MMT (and MT) from μ to ν is unique

• • = • • = •

00000	000000000000000000000000000000000000000	0000	000000000	00000
Uniqueness				

Example 2 (MT exists; MMT does not)

Let μ and ν be two-point distributions satisfying $\mu \leq_{cx} \nu$. Then there is a unique MT but there is no MMT unless $\mu = \nu$.

In general, if µ, ν are discrete and card(·) denotes the cardinality of the support, the existence of an MMT implies (2 card((µ − ν)₊)) ∨ card(µ) ≤ card(ν)

Example 3 (MMT is unique; MT is not)

Let μ be uniform on $\{2,5\}$ and ν be uniform on $\{0,3,4,7\}$. The unique MMT is given by transporting $\{2\}$ to $\{0,4\}$ and $\{5\}$ to $\{3,7\}$, while it is easy to see that there exist many MTs.

<ロト < 同ト < ヨト < ヨト

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	0000000000000000	0000	0000000000	00000
Optimizer				

Proposition 2

Consider $\mu \leq_{cx} \nu$ with ν atomless. For any strictly convex $f, g : \mathbb{R} \to \mathbb{R}$,

 $\mathcal{M}_{M}(\mu,\nu) = \operatorname*{arg\,min}_{(X,Y)\in\Pi(\mu,\nu)} \mathbb{E}\left[f(\mathbb{E}[Y|X] - X) - g(\mathbb{E}[X|Y])\right]. \quad (\diamond)$

•
$$f(x) = g(x) = x^2$$
: (\Diamond) is equivalent to

$$\mathbb{E}\big[\mathbb{E}[Y|X]^2 - \mathbb{E}[X|Y]^2 - 2\mathbb{E}[XY]\big]$$

- This cost is not symmetric in X and Y
- ► The term -2𝔼[XY] is essential: 𝓜_M(µ, ν) does not minimize 𝔅[𝔅[Y|X]² - 𝔅[X|Y]²] unless X is a constant

 Martingale transport
 Monge MT maps
 Strassen's theorem
 Other results
 Open questions

 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Backward deterministic martingales

Definition 1

A stochastic process $(X_n)_{n \in \mathbb{N}}$ is backward deterministic if $(X_j)_{j=1}^n$ is $\sigma(X_n)$ -measurable for all $n \in \mathbb{N}$.

- $\sigma(X_n)$ is non-decreasing in *n*.
- A backward deterministic process is Markovian
- Perfect memory: its time-n value records all its history up to time n

(日)

Monge MT maps

Strassen's theorem

Other results

Open questions

Backward deterministic martingales

Corollary 2

Given any martingale $(Y_n)_{n \in \mathbb{N}}$ with atomless marginals, there exists a backward deterministic martingale $(X_n)_{n \in \mathbb{N}}$ such that $X_n \stackrel{\text{law}}{=} Y_n$ for all $n \in \mathbb{N}$.

 Although rare, the class of backward deterministic martingale is surprisingly "rich"

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	0000000000000000	0000	000000000	•0000

2 Monge martingale transport maps

3 A refinement of Strassen's theorem

4 Other results

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Martingale transport	Monge MT maps	Strassen's theorem	Other results	Open questions
00000	0000000000000000		000000000	00000
Open quest	ions			

Backward deterministic fake Brownian motions

- Let $(W_t)_{t \in [0,T]}$ be a martingale with marginal distribution $W_t \stackrel{\text{law}}{=} N(0,t)$
- Fake Brownian motions
 - (continuous path) Beiglböck/Lowther/Pammer/Schachermayer'23 FS
- ► Does there exist such W that is also backward deterministic?
 - $(W_s)_{s \in [0,t]}$ is $\sigma(W_t)$ -measurable for each $t \in [0, T]$

(b) A (B) (b) A (B) (b)

Martingale transport	Monge MT maps ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Strassen's theorem 0000	Other results	Open questions
Opon quest	ions			

Generalization to \mathbb{R}^d

Seems highly challenging

Conjecture 1

Let μ, ν be probability measures on \mathbb{R}^d satisfying $\mu \leq_{cx} \nu$, and $\{\nu_x : x \in \mathbb{R}^d\}$ is a decomposition into irreducible components of (μ, ν) . Suppose that ν_x is atomless for μ -a.e. $x \in \mathbb{R}^d$. Then $\mathcal{M}_M(\mu, \nu)$ is non-empty and weakly dense in $\mathcal{M}(\mu, \nu)$. If μ is discrete, it is also dense for the ∞ -Wasserstein topology.

Martingale transport	Monge MT maps ೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Strassen's theorem	Other results	Open questions
Open quest	ions			

Monge supermartingale/directional transport

- Existence of Monge directional transport: clear Nutz-W.'22 AAP
- Existence of Monge supermartingale transport: unclear
- Denseness: unclear

Martingale transport 00000 Monge MT maps

Strassen's theorem

Other results

Open questions

Thank you for your kind attention

Marcel Nutz (Columbia)

Zhenyuan Zhang (Stanford)

Takeaway 1. On an atomless probability space,

$$X \leqslant_{\mathrm{cx}} Y \iff X \stackrel{\mathrm{law}}{=} \mathbb{E}[Y|\mathcal{G}]$$
 for some σ -field \mathcal{G}

Takeaway 2. For atomless ν and continuous and "non-exploding" c,

optimal MT cost = optimal MMT cost