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Main result

X,Y € L1 X <x Y means E[¢p(X)] < E[¢(Y)] for all convex ¢ |

We will prove

A refinement of Strassen’s theorem

On an atomless probability space, for X, Y € L1,

X <ex Y <= X 2 E[Y|G] for some o-field G

. and some other related results
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Monge's problem

Monge's problem: find a transport map T : X — ) that minimizes

/ c(x, T(x))du(x) : Tup=v
X

where

> X and )Y are two Polish spaces (e.g., Rd) T
> Cost function ¢ : X x ) — [0, 00] or (—o0, o]

> Probabilities . on X and v on ) are given

» Tupu=po T 1is the push forward of y by T

» Such T is an optimal transport map Y
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Kantorovich's problem

Kantorovich's problem
min / c(x,y)m(dx,dy) : 7 € M(u,v)
XxY

» M(w,v): probabilities on X x ) with marginals x and v

Kernel formulation
min [ cley)ne n)(dxdy) s € Klr)
XxY

> K(p,v): kernels & satisfying kup = [, kxp(dx) =v
Probabilistic formulation
min E[c(X, Y)]: P 1 y 2y
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Martingale transport

» Martingale optimal transport
min E[c(X,Y)]: X% 1 Y& 0 X = E[Y|X]
» Equivalently
min /c(x,y)(,u@m)(dx,dy) ik € K(u,v); e[kx] = x (p-a.e.)

where e is the mean of a probability

» M(p,v): martingale transports (MT) in M(u, v)
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Martingale transport

» Motivated by (Asian) option pricing: sup/inf of
1 1
{BI0G + X — K)4]: X " s 2 ™ s BDGIX] = X3 }

where K € R and 1, up are calibrated from option prices
» On R:
® c(x,y) = (x — y)?: all MT have the same cost

® c(x,y) = h(x — y): the first two derivatives do not matter,
but the third does

MOT: Beiglbock/Henry-Labordére/Penkner'13 FS; BeiglbockAuillet’16 AOP
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Monge Martingale transport

>

X =E[Y]|X] and Y is function of X = Y =X

v

MT cannot be Monge in the forward direction unless trivial

v

Backward direction is possible:
® X =E[Y|X] and X is function of Y
* Example: Y % U[-2,2] and X = sign(Y)
» Monge martingale transports (MMT; omit “backward")
Mpu(p, v): set of MMT
» MMT is useful for:

® identifying worst-case probabilities

v

® some settings of matching problems

Ruodu Wang  (wang@uwaterloo.ca) Monge martingale transport 9/41


wang@uwaterloo.ca

Monge MT maps
0O®0000000000000

Strassen’s theorem

» Fromnowon ¥ =Y =R
» P(R): Borel probabilities on R with finite first moment
» 1 <ex v [ ¢du < [ ¢dv for all convex ¢

Strassen's Theorem

For p,v € P(R), u <cx v if and only if M(u,v) is non-empty.

> Increasing in risk Rothschild-Stiglitz'70 JET
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Monge martingale transport

Theorem 1 (Existence)
Let u,v € P(R) satisfy  <cx v. There exists m € M(u,v) and a
Borel function h: R — R such that 7(T;g U Tatom) = 1, where

(i) Tog={(h(y),y) : ¥y €R};
(i) Tatom = {(x,y) : v({y}) > 0}.

In particular, if v is atomless, w is a Monge martingale transport.

v atomless and p <cx v = MMT exists

Ruodu Wang  (wang@uwaterloo.ca) Monge martingale transport 11/41


wang@uwaterloo.ca

Monge MT maps
0000®00000000000

Main idea of the proof

» We need the left-curtain transport 7. Beiglbdck /Juillet'16 AOP

» Write p <g v for finite measures pu, v with finite first moment
if [¢dp < [ ¢dv for any nonnegative convex ¢
°® if u(R) = v(R), thisis p <ex v
® if u < v (set-wise) then p <g v
» Given u <g v, the shadow §”(u) of p in v is defined as
$¥(u) = min{n : p <exn < v},

® always well-posed
» Given u <cx v, the left-curtain (LC) transport 7. € M(u,v)
is uniquely defined by the property that it transports ,u\(,oo’x]
to its shadow S”(ju[(_c ) for every x € R
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Main idea of the proof

- _/’[/ - | /) T 1= N\

; \t‘

Figure: An example of the left-curtain transport (not MMT)

» The LC transport uniquely minimizes [ cdm: © € M(pu,v) for
c(x,y) = h(y — x) with A’ strictly convex
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Main idea of the proof

» We will create a barcode transport by decomposing 1 and v

into countably many mutually singular Monge parts
> Define the densities
du dv
d,=———— and d,=——
P d(p+v) d(p+v)

The barcode transport is defined by a sequential construction:

1]

» Take the part on R with d, > 1/2 “dp > dv

v

Apply the left-curtain transport on this part with its shadow

v

Remove the matched parts from both x4 and v

» Repeat on the rest

v

This procedure converges
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Main idea of the proof

dp/d(p+v) >1/2

v

Figure: An example of the barcode transport between Gaussian marginals
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Main idea of the proof

Proposition 1 (Structure of )
Let p <cx v. There exists a Borel function h : R — R such that
the LC transport m satisfies mic(Srg U Sdiag U Satom) = 1, where

(i) Stg = {(h(y),y) : y € R},
(i) Sgiag = {(x,x) : x € R};
(iii) Satom = {(x,y) : v({y}) > 0}.
If d, > 1/2 p-a.e., then mc(Sig U Satom) = 1. In particular, if in

addition v is atomless, then m. € M (u,v).

v atomless and d, > 1/2 = i is MMT
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Let us prove Proposition 1

Lemma 1 (LC is left-monotone; Beiglbock/Juillet’16 AOP)
The LC transport m. € M(u,v) satisfies mc(I') = 1 for some

[ C R x R that is a left-monotone set; i.e.,

(x,y7), (x,yT), (X, y") € T with x < x': it forbids y= <y’ < y*.

Moreover, m. € M(u,v) is uniquely characterized by that property.
v

T o

Figure: Forbidden configuration for
left-monotonicity: the legs of a point x’
cannot step into the legs of another point x

— ; = to the left of x’
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Let us prove Proposition 1

Lemma 2 (Support of LC; Beiglbock/Juillet’'16 AOP)
There exist two functions Ty, Ty :R — R such that
Te(Riegs U Ratom) = 1, where

(a) Riegs is the union of the graphs of T4, T, over the first

marginal;

(b) Ratom = {(x,¥) : u({x}) > 0}.
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Let us prove Proposition 1

Denote by kx(dy) the disintegration of 7. by p:

me(dx, dy) = p(dx) @ kx(dy)

We have d, < d, p-a.e. on {x € R: ky = 0x}.

i

Figure: For the left-curtain
transport, d, < d, p-a.e. on
{x €R: ky = dx}
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Let us prove Proposition 1

Let us prove

e is supported on S if d,, > d,, pi-a.e. and v is atomless

v

v is atomless = if p({x}) > 0 then kx({x}) =0

» Lemma 2 = p-a.e. if p({x}) = 0 then either kyx = 5 or Ky
is supported on two points Ty(x) < x < Ty(x).

» Lemma 3 = p-a.e. if ky({x}) > 0 then d,(x) < d,(x)
> dy, > dy, pra.e. = prace. if Kx({x}) > 0 then d,(x) = d,(x)
» meisid on §:={x € R: ky({x}) > 0} and Monge

» Safely remove S and assume rx({x}) = 0 p-a.e. to continue
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Let us prove Proposition 1

v

Lemma 1 = m. is supported on a left-monotone set I

v

[ C supp(u) X supp(v) and ' € Ricgs U Ratom

Previous step = N {(x,x) : x e R} = &
Suppose (x,y),(x",y) € T with y & {x,x'}

(@) x<y<x = p((x,y)) =0

(b) y <x < x' = u((x,y’ Ax")) =0 for y’ the right leg of x
(c) x<x' <y= p((x,x"))=0

v

v

=0 #=0 =0
s 4 3" z s z’

y y y y
(a) The case z < y < 2’ (b) The case y < z < @’ (c) The case z < 2’/ <y
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Let us prove Proposition 1

> As supp(u) is closed, its complement can be written as a

countable disjoint union of open intervals

» Each pair of (x,y),(x,y) € [ with x # x’ corresponds to an

endpoint of one of the open intervals
» There are at most countably many y that do this
» v atomless = such y has v-measure 0 = 7c(Sy) = 1

» Verify that the transport map in S, can be required Borel
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Main idea of the proof

| ]

(a) Left-curtain transport (b) Barcode transport

Figure: It is possible that the left-curtain transport is MMT, but it is not
necessarily equal to the barcode transport
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Strassen’s theorem on random variables

Consider the statement

law

X <x Y < X = E[Y]|G] for some o-field G?

> Jensen's inequality gives <

> Is = true?

Let Q = {1, 2}, uniform probability, X = (1,2) and Y = (0, 3)

law

» X <cx Y but X = E[Y]G] does not hold for any G
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Strassen’s theorem on random variables

Reverse Jensen's:
X <ox Y = X 2 E[Y|G] for some o-field G (%)

What about an atomless space?

> If (%) holds true for o(Y) = F then necessarily
X<ex Y = X2 f(Y) for some measurable f

» (%) requires a Monge martingale transport to exist!
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A refinement of Strassen’s theorem

Theorem 2 (Refinement of Strassen’s Theorem)
For random variables X and Y on (2, F,P) that is atomless,
X <ex Y if and only if X 2 E[Y|G] for some o-field G C F.

> It is a refinement to the following version

Strassen's in the form of Theorem 3.A.4 of Shaked/Shantikumar'07

Two random variables X and Y satisfy X <.« Y if and only if

there exist random variables X', Y' on an atomless probability
space (Q, F,P) satisfying X' 2 X, Y''2" Y and X' = E[Y'|X].
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Denseness

Theorem 3 (MMTs are dense)
Let 1 <cx v with v atomless. Then M (u,v) is weakly dense in
M(p,v). If p is discrete, it is also dense for the co-Wasserstein

topology.

¢

Corollary 1 (Optimal MT cost = optimal MMT cost)

Let p <cx v with v atomless. If c : R? — R is continuous with
lc(x, y)| < a(x) + b(y) for some a € L*(u) and b € L1(v), then

inf /cd7r— inf /cd7r.
TEMum(1,v) TEM(p,v)

A
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Denseness

and vy <cx 71 and bary(v;) = bary(?;) for i > 2.

Vi,
B ﬂgyg

Lemma

U, W) )

Figure: An illustration of the main idea to prove Theorem 3
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Uniqueness

Theorem 4 (Uniqueness)
Let 1 <cx v with v atomless. The following are equivalent:

(i) The MT from 1 to v is unique.

(i) The MMT from (1 to v is unique.

(iii) Let pa =)y ajdx be the atomic part of p, where {x;}jen
are distinct. Then the shadows S”(a;dx;), j € N are mutually

singular and p — pa = v — iy S”(3j0x;)-

> 1 and v are both atomless: uniqueness <= u =v
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Uniqueness

F,

Figure: Distribution functions of u, v where the MMT (and MT) from p

to v is unique
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Uniqueness

Example 2 (MT exists; MMT does not)
Let 1 and v be two-point distributions satisfying u <.x v. Then

there is a unique MT but there is no MMT unless p = v.

» In general, if u, v are discrete and card(-) denotes the
cardinality of the support, the existence of an MMT implies
(2card((n — v)+)) V card(p) < card(v)

Example 3 (MMT is unique; MT is not)

Let 4 be uniform on {2,5} and v be uniform on {0,3,4,7}. The
unique MMT is given by transporting {2} to {0,4} and {5} to
{3,7}, while it is easy to see that there exist many MTs.
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Optimizer

Proposition 2
Consider i <cx v with v atomless. For any strictly convex
f,g :R—R,

Mu(p,v) = argmin  E[f(E[Y|X] = X) — g(E[X|Y])]. (0)
X, Y)en(u,v)

2

» f(x) = g(x) =x: () is equivalent to

E[E[Y|X]? — E[X|Y]? = 2E[XY]]

» This cost is not symmetric in X and Y

» The term —2E[XY] is essential: M p(1, ) does not minimize
E[E[Y|X]? — E[X|Y]?] unless X is a constant
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Backward deterministic martingales

Definition 1
A stochastic process (Xp)nen is backward deterministic if (Xj)/_;

is o(Xn)-measurable for all n € N.

» o(X,) is non-decreasing in n.
» A backward deterministic process is Markovian

» Perfect memory: its time-n value records all its history up to

time n
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Backward deterministic martingales

Given any martingale (Y,)nen with atomless marginals, there

exists a backward deterministic martingale (X,)nen such that
law

X, = Y, forall n € N.

» Although rare, the class of backward deterministic martingale

is surprisingly “rich”
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Open questions

Backward deterministic fake Brownian motions

> Let (W;)¢epo,7) be a martingale with marginal distribution
W, 2 N(0, t)
» Fake Brownian motions
® (continuous path) Beiglbdck/Lowther/Pammer/Schachermayer'23 FS
> Does there exist such W that is also backward deterministic?
® (Ws)sepo,g is o(W;)-measurable for each t € [0, T]
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Open questions

Generalization to RY

» Seems highly challenging

Let y1,v be probability measures on RY satisfying ju <cx v, and

{vx : x € RYY} is a decomposition into irreducible components of
(p,v). Suppose that vy is atomless for yi-a.e. x € R9. Then
M, v) is non-empty and weakly dense in M(u,v). If pis

discrete, it is also dense for the co-Wasserstein topology.
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Open questions

Monge supermartingale/directional transport
» Existence of Monge directional transport: clear Nutz-W.'22 AAP
» Existence of Monge supermartingale transport: unclear

» Denseness: unclear
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Thank you for your kind attention

o)

Marcel Nutz Zhenyuan Zhang
(Columbia) (Stanford)
Takeaway 1. On an atomless probability space,
X <ex Y <= X2 E[Y|G] for some o-field G
£
Takeaway 2. For atomless v and continuous and “non-exploding” c,
optimal MT cost = optimal MMT cost )

™ = = = =
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