Solo expectiles

Risk aversion and convexity

Joint Disappointment and Duet Expectile Preferences

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

2nd IC on Actuarial Science, Quantitative Finance, and Risk Management Central University of Finance and Economics, Beijing, China, July 2024

Agenda

- 2 Axioms and characterization
- 3 Solo expectiles
- 4 Risk aversion and convexity

Based on joint work with Fabio Bellini, Tiantian Mao and Qinyu Wu

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Basic setup

- A measurable space (Ω, \mathcal{F})
- ▶ C is a convex set of consequences (e.g., lotteries)
 - In most results in this talk, ${\mathcal C}$ will be ${\mathbb R}$ for simplicity
- \mathcal{X} is the set of all acts, which are simple functions (Ω, \mathcal{F}) to \mathcal{C}
- \blacktriangleright The decision maker has a preference relation \succsim on ${\mathcal X}$

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Disco oooooo	Axioms and chracterization	Solo expectiles	Risk aversion and convexity
Basic setup)		

• The disappointment event of $X \in \mathcal{X}$:

Gul'91 ECMA

$$D_X = \{\omega \in \Omega : X(\omega) \prec X\}$$

► *D_X* is the set of "unlucky" states of the world

We can also consider the elation event of X

$$E_X = \{\omega \in \Omega : X(\omega) \succ X\}$$

► Example: If C = R, and a unique certainty equivalent c_X exists and ≿ is strictly increasing on constants, then

$$D_X = \{ \omega \in \Omega : X(\omega) < c_X \}$$

Disco	Axioms and chracterization	Solo
000000		

Disco acts

▶ Two acts X and Y are disappointment-concordant ('disco') if

$$D_X = D_Y$$

- \blacktriangleright They share the same unlucky states of the world deemed by \succsim
- Clearly a subjective notion

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Disappointment-concordant aversion

Disappointment-concordant (disco) aversion

• A preference relation \succeq satisfies disco aversion if

X and Y are disco and $Y' \sim Y \implies X + Y' \succsim X + Y$

- Adding a disco Y with X is the least favoured among all equally favoured choices
- The DM does not like events of misfortune to happen together

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Disappointment-concordant aversion

Disappointment-concordant (disco) aversion

• A preference relation \succeq satisfies disco aversion if

X and Y are disco and $Y' \sim Y \implies X + Y' \succsim X + Y$

- Adding a disco Y with X is the least favoured among all equally favoured choices
- The DM does not like events of misfortune to happen together

Image: Image:

Disco 0000●00

Axioms and chracterizatio

Solo expectiles

Risk aversion and convexity 000000000

Misfortune comes together

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Disco ooooo●o	Axioms and chracterization	Solo expectiles	Risk aversion and convexity
Evample			

- Consider $\Omega = \{0,1\}$ and $\mathcal{C} = \mathbb{R}$
- \succsim : a strictly monotone preference such that $(a,b) \sim (b,a)$
- Let X = Y = (a, b), a < b, and $Y' = (b, a) \sim Y$
- $a \prec X = Y \prec b$ and X and Y are disco
- Disco aversion implies

$$a+b=X+Y' \succeq X+Y=(2a,2b)$$

- Clearly connected to risk aversion (e.g., $\mathbb{P}(0) = \mathbb{P}(1) = 1/2$)
- \blacktriangleright If \succsim were EU, then the utility function would be concave

うりつ ゴビ イビト イビト くらく

Disco 0000000 Axioms and chracterization

Solo expectiles

Risk aversion and convexity

Concordance aversion

Which preference relations satisfy disco aversion?

An obvious example:

$$X \succeq Y \iff \mathbb{E}^{P}[u(X)] \ge \mathbb{E}^{P}[u(Y)], \text{ where } u : \mathcal{C} \to \mathbb{R} \text{ is linear}$$

(Neutrality \Rightarrow not so interesting)

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Risk aversion and convexity 000000000

Progress



2 Axioms and characterization

3 Solo expectiles

4 Risk aversion and convexity

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Mathematical setup

- \blacktriangleright For now, ${\mathcal C}$ is ${\mathbb R}$
- All uncertainty/randomness is in Ω
 - ... acts are random variables
- No probability assigned a priori
 - ... but will be generated by \succsim
- This setting will connect better to statistics and finance
- ► General C: the Anscombe-Aumann (AA) framework

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Disco	Axioms and chracterization	Solo expectiles	Risk aversion and convexity
0000000		0000000000	000000000
The finit	e case		

- Finite setting: $\Omega = \{1, \dots, n\}$ with $n \ge 4$, $\mathcal{F} = 2^{\Omega}$, $\mathcal{X} = \mathbb{R}^n$
- M: measures on (Ω, F) with set-wise order
- \mathcal{M}_1 : probability measures on (Ω, \mathcal{F})

Axiom (Strict monotonicity - SM)

If $X \ge Y$ and $X \ne Y$ then $X \succ Y$.

Axiom (Continuity - C)

If $X_n \succeq Y_n$ for each $n \in \mathbb{N}$ and $X_n \to X$ and $Y_n \to Y$, then $X \succeq Y$.

Axiom (Disco aversion - DA)

If X and Y are disco and $Y' \sim Y$, then $X + Y' \succeq X + Y$.

< 日 > < 同 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Disco	

Main result - I

Theorem

In the finite setting, for a preference relation \succeq on \mathcal{X} , Axioms SM, C and DA hold if and only if there exist two probabilities $P, Q \in \mathcal{M}_1$ and $\alpha \in (0, 1/2]$ with $0 < \alpha P \le (1 - \alpha)Q$ such that

$$X \succsim Y \iff \operatorname{Ex}^{P,Q}_{lpha}(X) \ge \operatorname{Ex}^{P,Q}_{lpha}(Y),$$

where $\operatorname{Ex}_{\alpha}^{P,Q}(X)$ is the unique number $y \in \mathbb{R}$ such that

$$\alpha \mathbb{E}^{P}[(X - y)_{+}] = (1 - \alpha) \mathbb{E}^{Q}[(y - X)_{+}].$$

In this case, P, Q, α are unique.

 $(x)_{+} = \max\{x, 0\}$ Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles 13/41

Disco 0000000 Axioms and chracterization

Solo expectiles

Risk aversion and convexity 000000000

Duet expectiles

Disco 0000000	Axioms and chracterization	Solo expectiles	Risk aversion and convexity
_			

Duet expectiles

Formally, for any $P,Q\in\mathcal{M}$, define

$$\operatorname{Ex}^{P,Q}(X) = \inf \left\{ y \in \mathbb{R} : \mathbb{E}^{P}[(X - y)_{+}] \leq \mathbb{E}^{Q}[(y - X)_{+}] \right\}.$$

Without restricting P, Q, α

•
$$\operatorname{Ex}^{P,Q} = \operatorname{Ex}_{\alpha}^{\widetilde{P},\widetilde{Q}}$$
 holds with

$$\widetilde{P} = rac{P}{P(\Omega)}; \quad \widetilde{Q} = rac{Q}{Q(\Omega)}; \quad \alpha = rac{P(\Omega)}{P(\Omega) + Q(\Omega)}$$

• We call $\operatorname{Ex}^{P,Q}$ or $\operatorname{Ex}_{\alpha}^{\widetilde{P},\widetilde{Q}}$ a duet expectile

• $\operatorname{Ex}_{\alpha}^{P,P}$ is the solo expectile

Newey/Powell'87 ECMA

15/41

▶ Replacing disco aversion with disco propensity gives the same thesis with αP ≥ (1 − α)Q > 0 with α ∈ [1/2, 1)

Probabilistic sophistication

• We say that \succeq is (P, Q)-based: W./Ziegel'21 FS

$$X \stackrel{\mathrm{d}}{=}_P Y, \ X \stackrel{\mathrm{d}}{=}_Q Y \implies X \sim Y$$

- *P* and *Q* are endogenous \implies 2-probabilistic sophistication
- In a financial market, 2-probabilistic sophistication arises
 - P and Q may be the physical and pricing probability measures

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

The case of an infinite Ω

Infinite, atomless, setting

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a standard probability space¹
 - The only role played by \mathbb{P} is to specify the null sets of \mathcal{F} , that are relevant for continuity and for strict monotonicity
- $\blacktriangleright \mathcal{X} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ with $\|\cdot\|_{\infty}$
- \mathcal{M} : non-zero σ -additive measures on (Ω, \mathcal{F})
- \triangleright $P \stackrel{\text{ac}}{\sim} Q$: P and Q are mutually absolutely continuous

 $^{1}(\Omega, \mathcal{F}, \mathbb{P})$ is a standard probability space if there exists a uniform random variable V on (0,1) such that $\sigma(V) = \mathcal{F}$ ション 人口 アイビア イロ アイロ ア Ruodu Wang (wang@uwaterloo.ca)

Disco 0000000	Axioms and chracterization	Solo expectiles	Risk aversion and convexity 000000000

Weak monotone continuity

An additional continuity assumption on \precsim is needed to ensure that

P and Q are σ -additive

Axiom (Weak monotone continuity - WMC)

For each $m \in \mathbb{R}$ and descending chain $\{A_n\}_{n \in \mathbb{N}}$ of events with $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, there exists $n_0 \in \mathbb{N}$ such that $m \mathbb{1}_{A_{n_0}} + \mathbb{1}_{A_{n_0}^c} \succ 0$.

A weaker version of monotone continuity used to restrict finitely additive measures to σ-additive ones: Arrow'70

For each $X, Y \in \mathcal{X}$, $m \in \mathbb{R}$ and descending chain $\{A_n\}_{n \in \mathbb{N}}$ of events with $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$, $X \succ Y$ implies that there exists $n_0 \in \mathbb{N}$ such that $m \mathbb{1}_{A_{n_0}} + X \mathbb{1}_{A_{n_0}^c} \succ Y$.

Main result - II

Theorem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a standard probability space. For a preference relation \succeq on \mathcal{X} , Axioms SM, C, WMC and DA hold if and only if there exist $P, Q \in \mathcal{M}_1$ and $\alpha \in (0, 1/2]$ with $\alpha P \leq (1 - \alpha)Q$ and $P \stackrel{\mathrm{ac}}{\sim} Q \stackrel{\mathrm{ac}}{\sim} \mathbb{P}$ such that

$$X \succeq Y \iff \operatorname{Ex}_{\alpha}^{P,Q}(X) \ge \operatorname{Ex}_{\alpha}^{P,Q}(Y).$$

In this case, P, Q, α are unique.

• Only the null sets of $\mathbb P$ are relevant

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ▲ □ ▶ ◆ □ ▶

Disco	

Anscombe-Aumann framework

- C is not ℝ but the space of simple lotteries (i.e., finitely supported distributions)
- Acts f are mappings from (Ω, \mathcal{F}) to \mathcal{C}
- The MBA (Monotonic, Bernoullian, Archimedean) axioms
 - A1-A4 of Cerreia-Vioglio/Ghirardato/Maccheroni/Marinacci/Siniscalchi'11 ET

Proposition 1 of CGMMS11

The MBA Axioms yield: There exist an affine utility $u:\mathcal{C}
ightarrow \mathbb{R}$ and

a risk measure ρ such that

$$f \succeq g \iff \rho(u(f)) \ge \rho(u(g)).$$

< ロ > < 同 > < 回 > < 回 > < 回 > 三

Disco	

Solo expectiles

Risk aversion and convexity 000000000

Anscombe-Aumann framework

Theorem

In the finite setting, the MBA Axioms and Axioms SM, C and DA (adapted to the AA framework) hold if and only if there exist an affine utility function $u : C \to \mathbb{R}$, two probabilities $P, Q \in \mathcal{M}_1$, and $\alpha \in (0, 1/2]$ with $0 < \alpha P \le (1 - \alpha)Q$ such that

$$f \succeq g \iff \operatorname{Ex}_{\alpha}^{P,Q}(u(f)) \ge \operatorname{Ex}_{\alpha}^{P,Q}(u(g)).$$

 $\blacktriangleright \implies$ the Gul disappointment model

$$X \succeq Y \iff \operatorname{Ex}^{\mathcal{P}}_{\alpha}(u(X)) \ge \operatorname{Ex}^{\mathcal{P}}_{\alpha}(u(Y))$$

when P = Q and acts are Dirac-valued

• \implies the Savage subjective expected utility when $\alpha = 1/2$

Risk aversion and convexity 000000000

Progress



2 Axioms and characterization

3 Solo expectiles

4 Risk aversion and convexity

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Disco	Axioms and chracterization	Solo expectiles	Risk aversion and convexity
		00000000	
T I I			

The solo expectiles

For $X \in L^1(\Omega, \mathcal{F}, P)$, the (solo) expectile at level $\alpha \in (0, 1)$ is the unique y such that

$$\alpha \mathbb{E}^{P}[(X - y)_{+}] = (1 - \alpha) \mathbb{E}^{P}[(y - X)_{+}]$$

Original motivation: asymmetric least square Newey/Powell'87 ECMA

$$\operatorname{Ex}_{\alpha}^{P}(X) = \operatorname*{arg\,min}_{y \in \mathbb{R}} \left\{ \mathbb{E}^{P} \left[\alpha (X - y)_{+}^{2} + (1 - \alpha)(y - X)_{+}^{2} \right] \right\}$$

- Connection to the expectation: $\alpha = 1/2$
- Connection to the quantile: quadratic loss \rightarrow linear loss
- A coherent risk measure if $\alpha \ge 1/2$

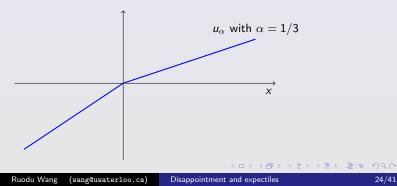
The s	olo expectiles		
Disco 0000000	Axioms and chracterization	Solo expectiles	Risk aversion and convexity

Expectiles are related to loss aversion for $\alpha \in (0, 1/2]$:

$$\operatorname{Ex}_{\alpha}^{P}(X) = \max \left\{ m \in \mathbb{R} : \mathbb{E}[u_{\alpha}(X - m)] \ge u(0) \right\}$$

where $u_{\alpha}(x) = (1 - \alpha)x + (2\alpha - 1)x_+$

(utility-indifferent price)



Solo expectiles

Risk aversion and convexity 000000000

The solo expectiles

Which property, not ex-ante related to an exogenously given \mathbb{P} , characterize the (solo) expectiles among duet expectiles?

Axiom (Event independence - EI)

For all $A, B, C \in \mathcal{F}$ disjoint, $\mathbb{1}_A \succeq \mathbb{1}_B \Longrightarrow \mathbb{1}_{A \cup C} \succeq \mathbb{1}_{B \cup C}$.

Axiom El was used to rationalize subjective probability de Finetti'31

Theorem

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a standard probability space. For a preference relation \succeq on \mathcal{X} , Axioms SM, C, EI, WMC and DA hold if and only if there exist $P \in \mathcal{M}_1$ and $\alpha \in (0, 1/2]$ with $P \stackrel{ac}{\sim} \mathbb{P}$ such that \succeq is represented by $\operatorname{Ex}_{\alpha}^P$.

In the finite case, adding Axiom El is not enough to pin down solo expectiles

Expectile characterizations in the literature

A comparison with other expectile axiomatizations

- Elicitability + coherence Weber'06 MF; Ziegel'16 MF
 - Based on statistical properties
 - Interpreted as risk measures regulatory capital requirement
- ► The Gul disappointment model can be represented by Gul'91

 $X\mapsto \operatorname{Ex}^{\mathbb{P}}_{\alpha}(u(X))$

- Assuming probability (choice over lotteries)
- Disco aversion + standard axioms

This paper

イロト (雪) (ヨ) (ヨ) (コ)

Not assuming probability

Probabilistic interpretation

- Dis-concordance is a notion of positive correlation
- Different from comonotonicity defined by

$$(X(\omega)-X(\omega'))(Y(\omega)-Y(\omega'))\geq 0$$
 for all $\omega,\omega'\in \ \Omega$

► Concordance is subjective to ≿, while comonotonicity is objective, and neither implies the other

Probabilistic interpretation

We say that aversion to a relation D holds if

$$(X,Y) \in D, Y' \sim Y \implies X + Y' \succeq X + Y$$

- No distribution
- Different from dependence aversion:

$$(X, Y) \in D, Y' \stackrel{\mathrm{d}}{=} Y \implies X + Y' \succsim X + Y$$

Risk aversion

Maccheroni/Marinacci/W./Wu'23 wp

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ▲ □ ▶ ◆ □ ▶

Disco 0000000	Axioms and chracterization	Solo expectiles 0000000€00	Risk aversion and convexity

Probabilistic interpretation

Aversion to a relation D holds:

 $(X,Y) \in D, Y' \sim Y \implies X + Y' \succeq X + Y$

Aversion to	characterizes	in		
Comonotonicity (objective)	concave Choquet integrals	Wakker'90 JET		
Risk concentration (objective)	Expected Shortfall (ES)	W./Zitikis'21 MS Han/Wang/W./Wu'24 MF		
Anticomonotonicity (objective)	the mean	Principi/Wakker/W.'23 wp		
Disappointment concordance (<mark>subjective</mark>)	concave expectiles	this paper		
		世間 (4冊 > 4冊 > 4冊 > 4日 >		
Ruodu Wang (wa	Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles			

29/41

Axiomatizing ES

Wang and Zitikis: Axiomatic Foundation for the Expected Shortfall Management Science, 2021, vol. 67, no. 3, pp. 1413–1429, © 2020 INFORMS

Theorem 1. A functional $\rho : L^1 \to \mathbb{R}$ with $\rho(1) = 1$ satisfies Axioms M, LI, P, and NRC if and only if $\rho = ES_p$ for some $p \in (0, 1)$. Moreover, in the forward direction of the above statement, the value of p is uniquely given by $1 - \mathbb{P}(A)$, where A is any stress event in Axiom NRC.

Axiom LI (Law Invariance). <i>The risk value depends on the loss via its distribution; that is,</i> $\rho(X) = \rho(Y)$ <i>whenever</i> $X \stackrel{d}{=} Y$.	to a larger or equal risk value; that is, $\rho(X) \le \rho(Y)$ when- ever $X \le Y$. Axiom NRC (No Reward for Concentration). There exists	
Axiom P (Prudence). The risk value is not underestimated by approximations; that is, the bound $\lim_{k\to\infty} \rho(\xi_k) \ge \rho(X)$ holds whenever $\xi_k \to X$ (pointwise) and the limit $\lim_{k\to\infty} \rho(\xi_k)$ exists.		

Disco 0000000 Axioms and chracterizatio

Solo expectiles

Risk aversion and convexity 000000000

Axiomatizing ES

🤮 国家金融监督管理总局规章

商业银行资本管理办法

(2023年10月26日国家金融监督管理总局令2023年第4号 公布 自2024年1月1日起施行)

附件15——市场风险内部模型法监管要求.docx

四、可建模风险因子的资本要求

(一)商业银行可使用任何能够反映其所有主要风险的模型 方法计算市场风险资本要求,包括但不限于方差-协方差法、历史 模拟法和蒙特卡罗模拟法等。

(二) 商业银行应在每个交易日计算全行层面和交易台层面 预期尾部损失, 使用单尾 97.5%的置信区间。

(三)计算预期尾部损失时,商业银行应对基于基准10天持 有期的预期尾部损失进行放大。公式如下:

$$ES = \sqrt{\left(ES_{T}(P)\right)^{2} + \sum_{j \geq 2} \left(ES_{T}(P, j)\sqrt{\frac{\left(LH_{j} - LH_{j-1}\right)}{T}}\right)}$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Progress

2 Axioms and characterization

3 Solo expectiles

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Risk aversion and convexity

• Weak risk aversion under $P \in \mathcal{M}_1$:

 $\mathbb{E}^{P}[X] \succeq X$ for all $X \in \mathcal{X}$

• Strong risk aversion under $P \in \mathcal{M}_1$:²

$$X \geq_{\mathrm{ssd}}^{P} Y$$
 implies $X \succeq Y$

► Convexity of <a>::

 $X \sim Y$ implies $\lambda X + (1 - \lambda)Y \succeq X$ for all $\lambda \in [0, 1]$

 ${}^{2}X \geq_{\text{sed}}^{P} Y$ means that $\mathbb{E}^{P}[\phi(X)] \geq \mathbb{E}^{P}[\phi(Y)]$ for all increasing and concave utility functions $\phi : \mathbb{R} \to \mathbb{R}$ ◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ● Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles

Solo expectiles

Risk aversion and convexity

Risk aversion and convexity

Theorem

Suppose that \succsim is represented by $\mathrm{Ex}^{\mathcal{P},\mathcal{Q}}_{lpha}$ for some $\mathcal{P},\mathcal{Q}\in\mathcal{M}_1$ and

 $\alpha \in (0,1)$, and Axiom SM holds. The following are equivalent:

(i) \succeq is weakly risk averse under P;

(ii)
$$\succeq$$
 is weakly risk averse under Q;

(iii) \succeq is convex;

(iv) $\operatorname{Ex}_{\alpha}^{P,Q}$ is concave;

(v)
$$\alpha P \leq (1-\alpha)Q$$
.

Risk aversion and convexity

Consequences of the axioms in terms of risk aversion:

- SM, C and DA imply convexity of \succeq
- **SM**, C and DA imply weak risk aversion under both P and Q
- SM, C, WMC, DA and EI imply strong risk aversion under P
- If P ≠ Q, then Ex^{P,Q} is not law-based under either P or Q; it is not strongly risk averse under either P or Q

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Dual representation

Proposition

Let $P, Q \in \mathcal{M}_1$ and $\alpha \in (0, 1)$ and assume that SM holds. If

 $lpha \mathsf{P} \leq (1-lpha) \mathsf{Q}$, then the following dual representation holds:

$$\operatorname{Ex}_{\alpha}^{P,Q}(X) = \inf_{R \in \mathcal{R}} \mathbb{E}^{R}[X] \quad \textit{ for } X \in \mathcal{X},$$

where

$$\mathcal{R} = \left\{ R \in \mathcal{M}_1 : \alpha \operatorname{ess-sup}_Q \frac{\mathrm{d}R}{\mathrm{d}Q} \leq (1 - \alpha) \operatorname{ess-inf}_P \frac{\mathrm{d}R}{\mathrm{d}P} \right\}$$

If $\alpha P \geq (1 - \alpha)Q$:

- A coherent risk measure
- A sublinear expectation

Disco 0000000	Axioms and chracterization	Solo expectiles	Risk aversion and convexity 00000●0000

Dual representation

By writing X = u(f) (with standard axioms) this leads to a Gilboa-Schmeidler form

$$f \succeq g \iff \inf_{R \in \mathcal{R}} \int u(f) \mathrm{d}R \ge \inf_{R \in \mathcal{R}} \int u(g) \mathrm{d}R$$

In the finite case

$$\mathcal{R} = \left\{ R \in \mathcal{M}_1 : \frac{\mathrm{d}R/\mathrm{d}Q(\omega_1)}{\mathrm{d}R/\mathrm{d}P(\omega_2)} \leq \frac{1-\alpha}{\alpha} \text{ for all } \omega_1, \omega_2 \in \Omega \right\}$$

• \mathcal{R} : All probabilities R 'sandwiched' by P and Q

•
$$\alpha = 1/2$$
 forces $P = Q = R$

◆□ ▶ ◆□ ▶ ▲ ≡ ▶ ▲ ■ ■ ● ● ●

Solo expectiles

Risk aversion and convexity

Further results on duet expectiles

Proposition

Let $P, Q \in \mathcal{M}$. The duet expectile $\operatorname{Ex}^{P,Q}$ has the following properties.

- (i) Monotonicity: $\operatorname{Ex}^{P,Q}(Y) \ge \operatorname{Ex}^{P,Q}(X)$ whenever $Y \ge X$.
- (ii) Translation invariance: $\operatorname{Ex}^{P,Q}(X+c) = \operatorname{Ex}^{P,Q}(X) + c$ for $c \in \mathbb{R}$.
- (iii) Positive homogeneity: $\operatorname{Ex}^{P,Q}(\lambda X) = \lambda \operatorname{Ex}^{P,Q}(X)$ for $\lambda \ge 0$.
- (iv) Symmetry: $\operatorname{Ex}^{P,Q}(X) = -\operatorname{Ex}^{Q,P}(-X)$.

(v) Continuity in the following senses:

a)
$$|\operatorname{Ex}^{P,Q}(X) - \operatorname{Ex}^{P,Q}(Y)| \le ||X - Y||_{\infty}^{P \lor Q}.$$

b) If $P \land Q \neq 0$, then

$$|\mathrm{Ex}^{\mathcal{P},\mathcal{Q}}(\mathcal{X})-\mathrm{Ex}^{\mathcal{P},\mathcal{Q}}(\mathcal{Y})|\leq rac{\|\mathcal{X}-\mathcal{Y}\|_1^{\mathcal{P}ee \mathcal{Q}}}{(\mathcal{P}\wedge\mathcal{Q})(\Omega)}$$

Disco	
	0

Solo expectiles

Conclusion

What do we learn?

Disco, solo, duet.

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Disco 0000000	Axioms and chracterization	Solo expectiles	Risk aversion and convexity 00000000€0
Conclusion			

- New concepts of disappointment-concordant (disco) acts and disco aversion
- Disco aversion is a negative attitude toward "events of misfortune come together"
- Disco aversion and other standard axioms characterize duet expectile preferences
- Two endogenous probabilities are implied
- An axiomatization of the classic solo expectile preferences
- Connection to various notions of risk aversion under two probabilities and 2-probabilistic sophistication

물 이 이 문 이 물 님

Thank you

Solo expectiles

Risk aversion and convexity

Thank you for your kind attention

- Bellini/Mao/W./Wu
 Joint disappointment and duet expectile
 preferences (new title)
 arXiv:2404.17751, 2024
- Principi/Wakker/W.
 Anticomonotonicity for preference axioms: The natural counterpart to comonotonicity arXiv:2307.08542, 2023
- Maccheroni/Marinacci/W./Wu Risk aversion and insurance propensity arXiv:2310.09173, 2023

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()

Backup ●0000

Aversion to comonotonicity

- \blacktriangleright Suppose that \succsim is averse to comonotonicity
- Let $Z \mapsto c_Z$ be the unique certainty equivalent
- Let X and Y be comonotonic
- X and c_Y are also comonotonic
- Aversion to comonotonicity implies

 $c_X + c_Y \succeq X + c_Y \succeq X + Y \succeq X + c_Y \succeq c_X + c_Y$

- $Z \mapsto c_Z$ is comonotonic additive
- Hence a Choquet integral

Schmeidler'86 PAMS

イロト (母) (ヨト (ヨト)ヨヨ ののの

It is superadditive (concave) because

$$Y' \sim Y \implies c_{X+Y'} \ge c_{X+Y} = c_X + c_Y$$

Aversion to anticomonotonicity

- Suppose that \succeq is averse to anticomonotonicity
- Let $Z \mapsto c_Z$ be the unique certainty equivalent
- Let X and Y be anticomonotonic
- ► X and c_Y are also anticomonotonic
- Aversion to anticomonotonicity implies

 $c_X + c_Y \succeq X + c_Y \succeq X + Y \succeq X + c_Y \succeq c_X + c_Y$

- $Z \mapsto c_Z$ is anticomonotonic additive
- Hence it is additive

Principi/Wakker/W.'23 arXiv

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Risk aversion and convexity

- Take a set Q of probabilities
- ► (Strong) *Q*-risk aversion:

Dentcheva/Ruszczyński'10 MP

$$X \geq^{P}_{ ext{ssd}} Y$$
 for all $P \in \mathcal{Q}$ implies $X \succsim Y$

•
$$\operatorname{Ex}^{P,Q}$$
 is not $(\widetilde{P},\widetilde{Q})$ -risk averse in general

Proposition

If \succeq is represented by $\operatorname{Ex}^{P,Q}$ for $P, Q \in \mathcal{M}$ satisfying $P \leq Q$ and $P \neq Q$, then \succeq is $(\widetilde{P}, \widetilde{R})$ -risk averse, where R = Q - P.

Further results on duet expectiles

Proposition

 $\operatorname{Ex}^{P,Q}$ defined on $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ satisfies SM if and only if $P \stackrel{\mathrm{ac}}{\sim} Q \stackrel{\mathrm{ac}}{\sim} \mathbb{P}.$

In the finite case $\operatorname{Ex}^{P,Q}$ satisfies $\mathsf{SM} \iff P, Q > 0$.

Assumption (A)

There exist $S_1, S_2, S_3 \in \mathcal{F}$ such that $\{S_1, S_2, S_3\}$ is a partition of Ω , with $P(S_1)$, $P(S_2) > 0$ and $Q(S_1)$, $Q(S_3) > 0$.

► In the finite case with $n \ge 3$, $Ex^{P,Q}$ satisfies SM \implies

P, Q > 0 and Assumption A holds

► In the standard probability space case, $\operatorname{Ex}^{P,Q}$ satisfies SM $\implies P \stackrel{\operatorname{ac}}{\sim} Q \stackrel{\operatorname{ac}}{\sim} \mathbb{P}$ and Assumption A holds

Further results on duet expectiles

Proposition

For $P, Q \in M$, assume that Assumption A holds. The duet expectile $\operatorname{Ex}^{P,Q}$ is concave (convex) if and only if $P \leq Q$ ($P \geq Q$).

Proposition

Let $P, Q \in \mathcal{M}$ and suppose that Assumption A holds. The representation $\operatorname{Ex}^{P,Q} = \operatorname{Ex}_{\alpha}^{S,R}$ for $S, R \in \mathcal{M}_1$ and $\alpha \in (0,1)$ is uniquely given by $S = \widetilde{P}$, $R = \widetilde{Q}$ and $\alpha = P(\Omega)/(P(\Omega) + Q(\Omega))$.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●