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Basic setup

I A measurable space (Ω,F)

I C is a convex set of consequences (e.g., lotteries)

• In most results in this talk, C will be R for simplicity

I X is the set of all acts, which are simple functions (Ω,F) to C

I The decision maker has a preference relation % on X
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Basic setup

I The disappointment event of X ∈ X : Gul’91 ECMA

DX = {ω ∈ Ω : X (ω) ≺ X}

I DX is the set of “unlucky” states of the world

I We can also consider the elation event of X

EX = {ω ∈ Ω : X (ω) � X}

I Example: If C = R, and a unique certainty equivalent cX

exists and % is strictly increasing on constants, then

DX = {ω ∈ Ω : X (ω) < cX}
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Disco acts

I Two acts X and Y are disappointment-concordant (‘disco’) if

DX = DY

I They share the same unlucky states of the world deemed by %

I Clearly a subjective notion
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Disappointment-concordant aversion

Disappointment-concordant (disco) aversion

I A preference relation % satisfies disco aversion if

X and Y are disco and Y ′ ∼ Y =⇒ X + Y ′ % X + Y

I Adding a disco Y with X is the least favoured among all

equally favoured choices

I The DM does not like events of misfortune to happen together
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Disappointment-concordant aversion

Disappointment-concordant (disco) aversion

I A preference relation % satisfies disco aversion if

X and Y are disco and Y ′ ∼ Y =⇒ X + Y ′ % X + Y

I Adding a disco Y with X is the least favoured among all

equally favoured choices

I The DM does not like events of misfortune to happen together
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Misfortune comes together
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Example

I Consider Ω = {0, 1} and C = R

I %: a strictly monotone preference such that (a, b) ∼ (b, a)

I Let X = Y = (a, b), a < b, and Y ′ = (b, a) ∼ Y

I a ≺ X = Y ≺ b and X and Y are disco

I Disco aversion implies

a + b = X + Y ′ % X + Y = (2a, 2b)

I Clearly connected to risk aversion (e.g., P(0) = P(1) = 1/2)

I If % were EU, then the utility function would be concave
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Concordance aversion

Which preference relations satisfy disco aversion?

An obvious example:

X % Y ⇐⇒ EP [u(X )] ≥ EP [u(Y )], where u : C → R is linear

(Neutrality ⇒ not so interesting)
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Mathematical setup

I For now, C is R
I All uncertainty/randomness is in Ω

• ... acts are random variables

I No probability assigned a priori

• ... but will be generated by %

I This setting will connect better to statistics and finance

I General C: the Anscombe–Aumann (AA) framework
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The finite case

I Finite setting: Ω = {1, . . . , n} with n ≥ 4, F = 2Ω, X = Rn

I M: measures on (Ω,F) with set-wise order

I M1: probability measures on (Ω,F)

Axiom (Strict monotonicity - SM)

If X ≥ Y and X 6= Y then X � Y .

Axiom (Continuity - C)

If Xn % Yn for each n ∈ N and Xn → X and Yn → Y , then X % Y .

Axiom (Disco aversion - DA)

If X and Y are disco and Y ′ ∼ Y , then X + Y ′ % X + Y .
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Main result - I

Theorem

In the finite setting, for a preference relation % on X , Axioms SM,

C and DA hold if and only if there exist two probabilities

P,Q ∈M1 and α ∈ (0, 1/2] with 0 < αP ≤ (1− α)Q such that

X % Y ⇐⇒ ExP,Qα (X ) ≥ ExP,Qα (Y ),

where ExP,Qα (X ) is the unique number y ∈ R such that

αEP [(X − y)+] = (1− α)EQ [(y − X )+].

In this case, P,Q, α are unique.

I (x)+ = max{x , 0}
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Duet expectiles
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Duet expectiles

Formally, for any P,Q ∈M, define

ExP,Q(X ) = inf
{
y ∈ R : EP [(X − y)+] ≤ EQ [(y − X )+]

}
.

Without restricting P,Q, α

I ExP,Q = ExP̃,Q̃α holds with

P̃ =
P

P(Ω)
; Q̃ =

Q

Q(Ω)
; α =

P(Ω)

P(Ω) + Q(Ω)

I We call ExP,Q or ExP̃,Q̃α a duet expectile

I ExP,Pα is the solo expectile Newey/Powell’87 ECMA

I Replacing disco aversion with disco propensity gives the same

thesis with αP ≥ (1− α)Q > 0 with α ∈ [1/2, 1)

Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles 15/41

wang@uwaterloo.ca


Disco Axioms and chracterization Solo expectiles Risk aversion and convexity

Probabilistic sophistication

I We say that % is (P,Q)-based: W./Ziegel’21 FS

X
d
=P Y , X

d
=Q Y =⇒ X ∼ Y

I P and Q are endogenous =⇒ 2-probabilistic sophistication

I In a financial market, 2-probabilistic sophistication arises

• P and Q may be the physical and pricing probability measures
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The case of an infinite Ω

Infinite, atomless, setting

I (Ω,F ,P) is a standard probability space1

• The only role played by P is to specify the null sets of F , that

are relevant for continuity and for strict monotonicity

I X = L∞(Ω,F ,P) with ‖ · ‖∞
I M: non-zero σ-additive measures on (Ω,F)

I P
ac∼ Q: P and Q are mutually absolutely continuous

1(Ω,F ,P) is a standard probability space if there exists a uniform random

variable V on (0, 1) such that σ(V ) = F
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Weak monotone continuity

An additional continuity assumption on - is needed to ensure that

P and Q are σ-additive

Axiom (Weak monotone continuity - WMC)

For each m ∈ R and descending chain {An}n∈N of events with⋂
n∈N An = ∅, there exists n0 ∈ N such that m1An0

+ 1Ac
n0
� 0.

I A weaker version of monotone continuity used to restrict

finitely additive measures to σ-additive ones: Arrow’70

For each X ,Y ∈ X , m ∈ R and descending chain {An}n∈N of

events with
⋂

n∈N An = ∅, X � Y implies that there exists n0 ∈ N
such that m1An0

+ X1Ac
n0
� Y .
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Main result - II

Theorem

Let (Ω,F ,P) be a standard probability space. For a preference

relation % on X , Axioms SM, C, WMC and DA hold if and only if

there exist P,Q ∈M1 and α ∈ (0, 1/2] with αP ≤ (1− α)Q and

P
ac∼ Q

ac∼ P such that

X % Y ⇐⇒ ExP,Qα (X ) ≥ ExP,Qα (Y ).

In this case, P,Q, α are unique.

I Only the null sets of P are relevant
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Anscombe-Aumann framework

I C is not R but the space of simple lotteries (i.e., finitely

supported distributions)

I Acts f are mappings from (Ω,F) to C

The MBA (Monotonic, Bernoullian, Archimedean) axioms
I A1-A4 of Cerreia-Vioglio/Ghirardato/Maccheroni/Marinacci/Siniscalchi’11 ET

Proposition 1 of CGMMS11

The MBA Axioms yield: There exist an affine utility u : C → R and

a risk measure ρ such that

f % g ⇐⇒ ρ(u(f )) ≥ ρ(u(g)).
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Anscombe-Aumann framework

Theorem

In the finite setting, the MBA Axioms and Axioms SM, C and DA

(adapted to the AA framework) hold if and only if there exist an

affine utility function u : C → R, two probabilities P,Q ∈M1, and

α ∈ (0, 1/2] with 0 < αP ≤ (1− α)Q such that

f % g ⇐⇒ ExP,Qα (u(f )) ≥ ExP,Qα (u(g)).

I =⇒ the Gul disappointment model

X % Y ⇐⇒ ExPα(u(X )) ≥ ExPα(u(Y ))

when P = Q and acts are Dirac-valued

I =⇒ the Savage subjective expected utility when α = 1/2
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Progress

1 Disappointment concordance

2 Axioms and characterization

3 Solo expectiles

4 Risk aversion and convexity

Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles 22/41

wang@uwaterloo.ca


Disco Axioms and chracterization Solo expectiles Risk aversion and convexity

The solo expectiles

For X ∈ L1(Ω,F ,P), the (solo) expectile at level α ∈ (0, 1) is the

unique y such that

αEP [(X − y)+] = (1− α)EP [(y − X )+]

Original motivation: asymmetric least square Newey/Powell’87 ECMA

ExPα(X ) = arg min
y∈R

{
EP
[
α(X − y)2

+ + (1− α)(y − X )2
+

]}
I Connection to the expectation: α = 1/2

I Connection to the quantile: quadratic loss → linear loss

I A coherent risk measure if α ≥ 1/2
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The solo expectiles

Expectiles are related to loss aversion for α ∈ (0, 1/2]:

ExPα(X ) = max {m ∈ R : E[uα(X −m)] ≥ u(0)}

where uα(x) = (1− α)x + (2α− 1)x+

I (utility-indifferent price)

uα with α = 1/3

x
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The solo expectiles

Which property, not ex-ante related to an exogenously given P,

characterize the (solo) expectiles among duet expectiles?

Axiom (Event independence - EI)

For all A,B,C ∈ F disjoint, 1A % 1B =⇒ 1A∪C % 1B∪C .

Axiom EI was used to rationalize subjective probability de Finetti’31

Theorem

Let (Ω,F ,P) be a standard probability space. For a preference relation %

on X , Axioms SM, C, EI, WMC and DA hold if and only if there exist

P ∈M1 and α ∈ (0, 1/2] with P
ac∼ P such that % is represented by ExPα.

I In the finite case, adding Axiom EI is not enough to pin down solo

expectiles
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Expectile characterizations in the literature

A comparison with other expectile axiomatizations

I Elicitability + coherence Weber’06 MF; Ziegel’16 MF

• Based on statistical properties

• Interpreted as risk measures — regulatory capital requirement

I The Gul disappointment model can be represented by Gul’91

X 7→ ExPα(u(X ))

• Assuming probability (choice over lotteries)

I Disco aversion + standard axioms This paper

• Not assuming probability
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Probabilistic interpretation

I Dis-concordance is a notion of positive correlation

I Different from comonotonicity defined by

(X (ω)− X (ω′))(Y (ω)− Y (ω′)) ≥ 0 for all ω, ω′ ∈ Ω

I Concordance is subjective to %, while comonotonicity is

objective, and neither implies the other
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Probabilistic interpretation

We say that aversion to a relation D holds if

(X ,Y ) ∈ D, Y ′ ∼ Y =⇒ X + Y ′ % X + Y

I No distribution

I Different from dependence aversion:

(X ,Y ) ∈ D, Y ′ d
= Y =⇒ X + Y ′ % X + Y

• Risk aversion Maccheroni/Marinacci/W./Wu’23 wp
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Probabilistic interpretation

Aversion to a relation D holds:

(X ,Y ) ∈ D, Y ′ ∼ Y =⇒ X + Y ′ % X + Y

Aversion to ... characterizes ... in

Comonotonicity
(objective)

concave Choquet
integrals

Wakker’90 JET

Risk concentration
(objective)

Expected Shortfall
(ES)

W./Zitikis’21 MS

Han/Wang/W./Wu’24 MF

Anticomonotonicity
(objective)

the mean Principi/Wakker/W.’23 wp

Disappointment
concordance
(subjective)

concave expectiles this paper
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Axiomatizing ES
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Axiomatizing ES
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Risk aversion and convexity

I Weak risk aversion under P ∈M1:

EP [X ] % X for all X ∈ X

I Strong risk aversion under P ∈M1:2

X ≥P
ssd Y implies X % Y

I Convexity of %:

X ∼ Y implies λX + (1− λ)Y % X for all λ ∈ [0, 1]

2X ≥P
ssd Y means that EP [φ(X )] ≥ EP [φ(Y )] for all increasing and concave

utility functions φ : R→ R
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Risk aversion and convexity

Theorem

Suppose that % is represented by ExP,Qα for some P,Q ∈M1 and

α ∈ (0, 1), and Axiom SM holds. The following are equivalent:

(i) % is weakly risk averse under P;

(ii) % is weakly risk averse under Q;

(iii) % is convex;

(iv) ExP,Qα is concave;

(v) αP ≤ (1− α)Q.
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Risk aversion and convexity

Consequences of the axioms in terms of risk aversion:

I SM, C and DA imply convexity of %

I SM, C and DA imply weak risk aversion under both P and Q

I SM, C, WMC, DA and EI imply strong risk aversion under P

I If P 6= Q, then ExP,Qα is not law-based under either P or Q; it

is not strongly risk averse under either P or Q
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Dual representation

Proposition

Let P,Q ∈M1 and α ∈ (0, 1) and assume that SM holds. If

αP ≤ (1− α)Q, then the following dual representation holds:

ExP,Qα (X ) = inf
R∈R

ER [X ] for X ∈ X ,

where

R =

{
R ∈M1 : α ess-sup

Q

dR

dQ
≤ (1− α) ess-inf

P

dR

dP

}
.

If αP ≥ (1− α)Q:

I A coherent risk measure

I A sublinear expectation
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Dual representation

By writing X = u(f ) (with standard axioms) this leads to a

Gilboa-Schmeidler form

f % g ⇐⇒ inf
R∈R

∫
u(f )dR ≥ inf

R∈R

∫
u(g)dR

In the finite case

R =

{
R ∈M1 :

dR/dQ(ω1)

dR/dP(ω2)
≤ 1− α

α
for all ω1, ω2 ∈ Ω

}
I R: All probabilities R ‘sandwiched’ by P and Q

I α = 1/2 forces P = Q = R

Ruodu Wang (wang@uwaterloo.ca) Disappointment and expectiles 37/41

wang@uwaterloo.ca


Disco Axioms and chracterization Solo expectiles Risk aversion and convexity

Further results on duet expectiles

Proposition

Let P,Q ∈M. The duet expectile ExP,Q has the following properties.

(i) Monotonicity: ExP,Q(Y ) ≥ ExP,Q(X ) whenever Y ≥ X.

(ii) Translation invariance: ExP,Q(X + c) = ExP,Q(X ) + c for c ∈ R.

(iii) Positive homogeneity: ExP,Q(λX ) = λExP,Q(X ) for λ ≥ 0.

(iv) Symmetry: ExP,Q(X ) = −ExQ,P(−X ).

(v) Continuity in the following senses:

a) |ExP,Q(X )− ExP,Q(Y )| ≤ ‖X − Y ‖P∨Q
∞ .

b) If P ∧ Q 6= 0, then

|ExP,Q(X )− ExP,Q(Y )| ≤ ‖X − Y ‖P∨Q
1

(P ∧ Q)(Ω)
.
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Conclusion

What do we learn?

Disco, solo, duet.
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Conclusion

I New concepts of disappointment-concordant (disco) acts and

disco aversion

I Disco aversion is a negative attitude toward “events of

misfortune come together”

I Disco aversion and other standard axioms characterize duet

expectile preferences

I Two endogenous probabilities are implied

I An axiomatization of the classic solo expectile preferences

I Connection to various notions of risk aversion under two

probabilities and 2-probabilistic sophistication
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Thank you

Thank you for your kind attention

I Bellini/Mao/W./Wu

Joint disappointment and duet expectile

preferences (new title)

arXiv:2404.17751, 2024

I Principi/Wakker/W.

Anticomonotonicity for preference axioms:

The natural counterpart to comonotonicity

arXiv:2307.08542, 2023

I Maccheroni/Marinacci/W./Wu

Risk aversion and insurance propensity

arXiv:2310.09173, 2023
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Backup

Aversion to comonotonicity

I Suppose that % is averse to comonotonicity

I Let Z 7→ cZ be the unique certainty equivalent

I Let X and Y be comonotonic

I X and cY are also comonotonic

I Aversion to comonotonicity implies

cX + cY % X + cY % X + Y % X + cY % cX + cY

I Z 7→ cZ is comonotonic additive

I Hence a Choquet integral Schmeidler’86 PAMS

I It is superadditive (concave) because

Y ′ ∼ Y =⇒ cX+Y ′ ≥ cX+Y = cX + cY
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Aversion to anticomonotonicity

I Suppose that % is averse to anticomonotonicity

I Let Z 7→ cZ be the unique certainty equivalent

I Let X and Y be anticomonotonic

I X and cY are also anticomonotonic

I Aversion to anticomonotonicity implies

cX + cY % X + cY % X + Y % X + cY % cX + cY

I Z 7→ cZ is anticomonotonic additive

I Hence it is additive Principi/Wakker/W.’23 arXiv
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Risk aversion and convexity

I Take a set Q of probabilities

I (Strong) Q-risk aversion: Dentcheva/Ruszczyński’10 MP

X ≥P
ssd Y for all P ∈ Q implies X % Y

I ExP,Q is not (P̃, Q̃)-risk averse in general

Proposition

If % is represented by ExP,Q for P,Q ∈M satisfying P ≤ Q and

P 6= Q, then % is (P̃, R̃)-risk averse, where R = Q − P.
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Further results on duet expectiles

Proposition

ExP,Q defined on L∞(Ω,F ,P) satisfies SM if and only if

P
ac∼ Q

ac∼ P.

In the finite case ExP,Q satisfies SM ⇐⇒ P,Q > 0.

Assumption (A)

There exist S1,S2, S3 ∈ F such that {S1, S2,S3} is a partition of

Ω, with P(S1), P(S2) > 0 and Q(S1), Q(S3) > 0.

I In the finite case with n ≥ 3, ExP,Q satisfies SM =⇒
P,Q > 0 and Assumption A holds

I In the standard probability space case, ExP,Q satisfies SM

=⇒ P
ac∼ Q

ac∼ P and Assumption A holds
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Further results on duet expectiles

Proposition

For P,Q ∈M, assume that Assumption A holds. The duet

expectile ExP,Q is concave (convex) if and only if P ≤ Q (P ≥ Q).

Proposition

Let P,Q ∈M and suppose that Assumption A holds. The

representation ExP,Q = ExS ,Rα for S ,R ∈M1 and α ∈ (0, 1) is

uniquely given by S = P̃, R = Q̃ and α = P(Ω)/(P(Ω) + Q(Ω)).
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