Risk exchange

Small conjecture

1/37

Infinite-mean Pareto distributions in decision making

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

International Congress on Insurance: Mathematics and Economics Chicago, July 2024 Background 00000 Stochastic dominance

Risk exchange 00000000000000 Small conjecture 00000

Content

Yuyu Chen (Melbourne)

Paul Embrechts (ETH Zurich)

Taizhong Hu (UST China)

Zhenzheng Zou (UST China)

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

- Chen/Embrechts/W., An unexpected stochastic dominance: Pareto distributions, dependence, and diversification
 Operations Research, 2024
- Chen/Embrechts/W., Risk exchange under infinite-mean Pareto models

Working paper, 2024, arXiv:2403.20171

Chen/Hu/W./Zou, Diversification for infinite-mean Pareto distributions

Working paper, 2024, arXiv:2404.18467

Risk exchange 000000000000000 Small conjecture

Table of Contents

- 2 An unexpected stochastic dominance
- 3 A risk exchange market
- 4 A small conjecture

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Risk exchange

Small conjecture

Simple probabilistic question

- ► Suppose that X and X' are identically distributed
- Is it possible that

 $\mathbb{P}(X < X') = 1?$

Risk exchange 000000000000000 Small conjecture

Simple probabilistic question

- Suppose that X and X' are identically distributed
- Is it possible that

$$\mathbb{P}(X < X') = 1?$$

NO ... because if it holds true then there exists $x \in \mathbb{R}$ such that

$$\mathbb{P}(X < x) > \mathbb{P}(X' < x),$$

violating the assumption of identical distribution

< ロ > < 同 > < 三 > < 三 > .

Risk exchange

Small conjecture

Simple probabilistic question

- ► Suppose that *X*, *Y*, *X'*, *Y'* are identically distributed
- Is it possible that

 $\mathbb{P}(X + Y < X' + Y') = 1?$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Risk exchange

Small conjecture

Simple probabilistic question

- ► Suppose that *X*, *Y*, *X'*, *Y'* are identically distributed
- Is it possible that

$$\mathbb{P}(X + Y < X' + Y') = 1?$$

NO ... if X has finite mean ... because

$$\mathbb{E}[X+Y] = \mathbb{E}[X'+Y']$$

◆□ ▶ ◆□ ▶ ▲ ≡ ▶ ▲ ■ ■ ● ● ●

Risk exchange 00000000000000 Small conjecture

◆□ ▶ ◆□ ▶ ▲ ≡ ▶ ▲ ■ ■ ● ● ●

Simple probabilistic question

- ► Suppose that *X*, *Y*, *X'*, *Y'* are identically distributed
- Is it possible that

$$\mathbb{P}(X + Y < X' + Y') = 1?$$

NO ... if X has finite mean ... because

$$\mathbb{E}[X+Y] = \mathbb{E}[X'+Y']$$

What if X does not have finite mean?

Background
00000

Risk exchange 00000000000000 Small conjecture

イロト (雪) (ヨ) (ヨ) (コ)

6/37

Pareto distribution

For $\theta,\alpha>$ 0, the Pareto distribution is given by the cdf

$${\sf P}_{lpha, heta}(x)=1-\left(rac{ heta}{x}
ight)^lpha, \;\; x\geq heta$$

- θ : scale parameter
- α : tail parameter
- Pareto(α) = $P_{\alpha,1}$
- $Pareto(\alpha)$ has an infinite mean $\iff \alpha \in (0, 1]$
 - extremely heavy-tailed
- the most common heavy-tailed distribution used in actuarial science

Infinite-mean models

Data from insurance, natural catastrophes, finance, and operational risk

- aircraft insurance
 fire insurance
 Beirlant/Dierckx/Goegebeur/Matthys'99
 commercial property insurance
 Biffis/Chavez'14
 earthquakes
 Ibragimov/Jaffee/Walden'09
 wind catastrophes
 Rizzo'09
- nuclear power accidents Hofert/Wüthrich'12; Sornette/Maillart/Kröger'13
- operational risk
 - cyber risk

Eling/Wirfs'19; Eling/Schnell'20

Moscadelli'04

returns from technological innovations
Silverberg/Verspagen'07

Background 0000€	Stochastic dominance 0000000000	Risk exchange 000000000000	Small conjecture

Our goals

Setup

- Iosses X₁,..., X_n ~ Pareto(α); particular interest: α ≤ 1
- exposure vector $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)$
- $\Delta_n = \{ \boldsymbol{\theta} \in [0,1]^n : \sum_{i=1}^n \theta_i = 1 \}$: standard *n*-simplex
- $\blacktriangleright [n] = \{1, \ldots, n\}$
- a non-diversified portfolio: X_1
- a diversified portfolio: $\sum_{i=1}^{n} \theta_i X_i$

Questions:

- Which of X_1 and $\sum_{i=1}^n \theta_i X_i$ is more dangerous?
- What is the implication on a risk exchange economy?

> < = > < = > = = = < < <

Background 00000 Stochastic dominance

Risk exchange

Small conjecture

Stochastic dominance

Risk exchange 000000000000000

Stochastic dominance

Definition 1 (Stochastic order and convex order)

For two random variables X and Y:

- stochastic order X ≤_{st} Y holds if P(X > x) ≤ P(Y > x) for all x ∈ R;
- ► convex order X ≤_{cx} Y holds if E[u(X)] ≤ E[u(Y)] for all convex functions u such that the two expectations exist;
- strict stochastic order X <_{st} Y holds if

 P(X > x) < ℙ(Y > x) for all x > ess-infX.

▲□▶ ▲圖▶ ▲圖▶ ▲圖★ 釣A@

Stochastic dominance

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Risk exchange 00000000000000

Stochastic dominance

- We mainly interpret X as loss
- Stochastic order \iff first-order stochastic dominance
 - $\mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)]$ for all increasing loss functions u
 - $\rho(X) \leq \rho(Y)$ for all increasing risk measures ρ

Equivalence

e.g., Theorem 1.A.1 of Shaked/Shantikumar'07

- $X \leq_{\mathrm{st}} Y \iff \mathbb{P}(X' \leq Y') = 1$ for some $X' \stackrel{\mathrm{d}}{=} X$ and $Y' \stackrel{\mathrm{d}}{=} Y$
- $X <_{\mathrm{st}} Y \iff \mathbb{P}(X' < Y') = 1$ for some $X' \stackrel{\mathrm{d}}{=} X$ and $Y' \stackrel{\mathrm{d}}{=} Y$

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Risk exchange 00000000000000

Finite-mean case

Proposition 1

Let $\theta_1, \ldots, \theta_n > 0$ such that $\sum_{i=1}^n \theta_n = 1$ and X, X_1, \ldots, X_n be identically distributed random variables with finite mean and any dependence structure. Then, $X \leq_{st} \sum_{i=1}^n \theta_i X_i$ holds if and only if $X_1 = \cdots = X_n$ almost surely.

No non-trivial dominance in case of finite mean

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Risk exchange 00000000000000 Small conjecture

An unexpected stochastic dominance

Theorem 1

Let $X, X_1, ..., X_n$ be iid $Pareto(\alpha)$ random variables, $\alpha \in (0, 1]$. For $(\theta_1, ..., \theta_n) \in \Delta_n$, we have

$$X \leq_{\mathrm{st}} \sum_{i=1}^n heta_i X_i.$$

Moreover, $X <_{st} \sum_{i=1}^{n} \theta_i X_i$ if $\theta_i > 0$ for at least two $i \in [n]$.

- EVT: $\mathbb{P}(\sum_{i=1}^{n} X_i/n > t) \ge \mathbb{P}(X > t)$ for t large enough
- Known case: n = 2, $\theta_1 = \theta_2 = \alpha = 1/2$

Example 2.18 in the lecture slides of McNeil/Frey/Embrechts'15

Special thanks to Wenhao Zhu and Yuming Wang, who provided a first proof at so the second sec

Risk exchange 00000000000000 Small conjecture

An unexpected stochastic dominance

"Unexpected"

The strict dominance

$$\mathbb{P}\left(\sum_{i=1}^n X_i < \sum_{i=1}^n X_i'
ight) = 1$$

can happen even if $X_i \stackrel{\mathrm{d}}{=} X_i'$ for $i \in [n]$

For Pareto, dominance
 mo finite expectation

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Generalizations

- This result has many generalizations
- Notably it holds for weak negative association, a form of negative dependence

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Risk exchange 00000000000000 Small conjecture

Dominance relation between two diversified portfolios

Definition 2 (Majorization order)

For
$$\boldsymbol{\theta} \in (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$$
 and $\boldsymbol{\eta} \in (\eta_1, \dots, \eta_n) \in \mathbb{R}^n$, $\boldsymbol{\theta}$ is

dominated by η in majorization order, denoted by $heta \preceq \eta$, if

$$\sum_{i=1}^n \theta_i = \sum_{i=1}^n \eta_i \text{ and } \sum_{i=1}^k \theta_{(i)} \ge \sum_{i=1}^k \eta_{(i)} \text{ for } k \in [n-1],$$

where $\theta_{(i)}$ is the *i*-th order statistic of θ from the smallest.

- Write $oldsymbol{ heta}\prec oldsymbol{\eta}$ if $oldsymbol{ heta}\preceq oldsymbol{\eta}$ and $oldsymbol{ heta}\neq oldsymbol{\eta}$
- $heta \preceq \eta \iff$ components of heta are less spread out than η
- ▶ $(1/n, \dots, 1/n) \preceq oldsymbol{ heta} \preceq (1, 0, \dots, 0)$ for $oldsymbol{ heta} \in \Delta_n$
- ► Discrete version of convex order \leq_{cx} Marshall/Olkin/Arnold'11

Risk exchange

Small conjecture

Stochastic dominance: Majorization

Theorem 2

Suppose that $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \leq \eta$. Let X be a vector of n iid $Pareto(\alpha)$ random variables, $\alpha \in (0, 1]$. We have

 $\boldsymbol{\eta} \cdot \mathbf{X} \leq_{\mathrm{st}} \boldsymbol{\theta} \cdot \mathbf{X}.$

Moreover, if $\theta \prec \eta$, then $\eta \cdot \mathbf{X} <_{\mathrm{st}} \theta \cdot \mathbf{X}$.

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Diversification pays or not

- X: a vector of iid $Pareto(\alpha)$ components
- $heta \preceq \eta \Longrightarrow heta$ is more diversified

Classic result

Theorem 3.A.35 of Shaked/Shantikumar'07

$$\alpha > 1 \implies \boldsymbol{\eta} \cdot \mathbf{X} \geq_{\mathrm{cx}} \boldsymbol{\theta} \cdot \mathbf{X}$$

- All risk-averse decision makers prefer the more diversified
- Diversification pays

Samuelson'67

Our result

$$lpha \leq 1 \implies \boldsymbol{\eta} \cdot \mathbf{X} \leq_{\mathrm{st}} \boldsymbol{\theta} \cdot \mathbf{X}$$

- All rational decision makers prefer the less diversified
- Diversification hurts

Ibragimov/Jaffee/Walden'11

Risk exchange

Small conjecture

Stochastic dominance: Majorization

Corollary 1

For $k, \ell \in \mathbb{N}$ such that $k \leq \ell$, let X_1, \ldots, X_ℓ be iid $Pareto(\alpha)$ random variables, $\alpha \in (0, 1]$. We have

$$rac{1}{k}\sum_{i=1}^k X_i \leq_{ ext{st}} rac{1}{\ell}\sum_{i=1}^\ell X_i.$$

◆□ ▶ ◆□ ▶ ▲ = ▶ ▲ = ▶ ▲ □ ▶ ◆ □ ▶

Small conjecture

A risk exchange market

A risk exchange market

Notation

- \mathcal{X} : the set of random variables
- $\mathcal{X}_{\rho} \subseteq \mathcal{X}$: the set of financial losses
- $\rho: \mathcal{X}_{\rho} \to \mathbb{R}$ is a risk measure

Monotonicity

- Weak monotonicity: $\rho(X) \leq \rho(Y)$ for $X, Y \in \mathcal{X}_{\rho}$ if $X \leq_{\mathrm{st}} Y$
- Mild monotonicity: *ρ* is weakly monotone and *ρ*(X) < *ρ*(Y) if
 ℙ(X < Y) = 1

イロト (母) (ヨト (ヨト) ヨヨ ろくで

◆□ ▶ ▲母 ▶ ▲目 ▼ ▲日 ▼ ● ▲

Examples of risk measures

For $X \sim F$,

► Value-at-Risk (VaR):

$$\operatorname{VaR}_q(X) = F^{-1}(q) = \inf\{t \in \mathbb{R} : F(t) \ge q\}, \ q \in (0,1]$$

Expected Shortfall (ES):

$$\mathrm{ES}_p(X) = \frac{1}{1-p} \int_p^1 \mathrm{VaR}_u(F) \mathrm{d} u, \ p \in (0,1)$$

Range-VaR (RVaR):

$$\operatorname{RVaR}_{p,q}(X) = rac{1}{q-p} \int_p^q \operatorname{VaR}_u(F) \mathrm{d} u, \ 0 \leq p < q < 1$$

VaR, ES and RVaR are mildly monotone

Risk exchange 00●00000000000

Small conjecture

A risk exchange market

Risk exchange market

- n agents
- Pareto risks
- risk measures

< □ > < □ > < Ξ > < Ξ > < Ξ ≥ < Ξ = の < @

Distortion risk measures

For a random variable Y, a distortion risk measure ρ is defined as

$$\rho(Y) = \int_{-\infty}^{0} (h(\mathbb{P}(Y > x)) - 1) \mathrm{d}x + \int_{0}^{\infty} h(\mathbb{P}(Y > x)) \mathrm{d}x,$$

where $h: [0,1] \rightarrow [0,1]$, called the distortion function, is a nondecreasing function with h(0) = 0 and h(1) = 1

- The class includes VaR, ES, and RVaR
- Any distortion risk measure is mildly monotone unless it is a mixture of ess-sup and ess-inf

◆□ ▶ ▲母 ▶ ▲目 ▼ ▲日 ▼ ● ▲

A risk exchange market

A Pareto risk exchange market with $n \ge 2$ agents:

- ▶ $\mathbf{X} = (X_1, \dots, X_n)$ and $X, X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \text{Pareto}(\alpha)$ with $\alpha > 0$
- ▶ the initial exposure vector of agent *i* is $\mathbf{a}^i = a_i \mathbf{e}_{i,n}$ with $a_i > 0$

▶
$$\mathbf{p} = (p_1, \dots, p_n) \in \mathbb{R}^n_+$$
 is the premium vector

wⁱ ∈ ℝⁿ₊ is the exposure vector of agent i over X after exchanging risks

The total loss of agent $i \in [n]$ after risk sharing is

$$\mathcal{L}_i(\mathbf{w}^i,\mathbf{p}) = \mathbf{w}^i\cdot\mathbf{X} - (\mathbf{w}^i - \mathbf{a}^i)\cdot\mathbf{p}.$$

イロト (母) (ヨト (ヨト) ヨヨ ろくで

A risk exchange market

Agent $i \in [n]$ is equipped with

- a risk measure ρ_i on \mathcal{X}
 - \mathcal{X} is the convex cone generated by X_1, \ldots, X_n and constants

► a cost function
$$c_i(\|\mathbf{w}^i\| - \|\mathbf{a}^i\|)$$

• $\mathcal{X} c_i$ is a non-negative convex function satisfying $c_i(0) = 0$

The risk assessment for agent $i \in [n]$ is

$$\rho_i(L_i(\mathbf{w}^i,\mathbf{p})) + c_i(\|\mathbf{w}^i\| - \|\mathbf{a}^i\|)$$

イロッ イボッ イヨッ イヨッ ショー シタマ

An equilibrium of the market is $(\mathbf{p}^*, \mathbf{w}^{1*}, \dots, \mathbf{w}^{n*}) \in (\mathbb{R}^n_+)^{n+1}$ if the following two conditions hold:

(a) Individual optimality:

 $\mathbf{w}^{i*} \in \underset{\mathbf{w}^{i} \in \mathbb{R}^{n}_{+}}{\arg\min} \left\{ \rho_{i} \left(L_{i}(\mathbf{w}^{i}, \mathbf{p}^{*}) \right) + c_{i}(\|\mathbf{w}^{i}\| - \|\mathbf{a}^{i}\|) \right\} \text{ for } i \in [n]$

(b) Market clearance:

$$\sum_{i=1}^n \mathbf{w}^{i*} = \sum_{i=1}^n \mathbf{a}^i$$

In this case, the vector \mathbf{p}^* is an equilibrium price, and $(\mathbf{w}^{1*},\ldots,\mathbf{w}^{n*})$ is an equilibrium allocation

◆□ > ◆母 > ◆ヨ > ◆ヨ > 毛目 のへで

Theorem 3

In the Pareto risk sharing market, suppose that $\alpha \in (0, 1]$, and ρ_1, \ldots, ρ_n are mildly monotone.

- (i) All equilibria (p*, w^{1*},..., w^{n*}) (if they exist) satisfy that
 p* = (p,...,p) for some p ∈ ℝ₊ and (w^{1*},..., w^{n*}) is an n-permutation of (a¹,..., aⁿ).
- (ii) Suppose that ρ_1, \ldots, ρ_n are distortion risk measures on \mathcal{X} . The tuple $((p, \ldots, p), \mathbf{a}^1, \ldots, \mathbf{a}^n)$ is an equilibrium if p satisfies

$$c'_{i+}(0) \ge p - \rho_i(X) \ge c'_{i-}(0)$$
 for $i \in [n]$.

► The condition in (ii) is almost necessary for (p,..., p) to be an equilibrium price

Conclusions

- No agent will hold two assets
- No risk sharing is beneficial
- Implication: In the presence of catastrophic losses, large insurance companies should not share losses with each other
- Similar results hold under trading or diversification constraints such as w ∈ V_b with b ∈ [0, 1) and

$$V_b = \left\{ (w_1, \dots, w_n) \in \mathbb{R}^n_+ : w_j \ge b \sum_{i=1}^n w_i \text{ for } j \in [n] \right\}$$

イロト (雪) (ヨ) (ヨ) (コ)

Risk exchange with external agents

- *n* internal agents and m = kn external agents
- Internal agents have the same mildly monotone distortion risk measure ρ₁, cost function c₁, and initial loss exposure a
- External agents have the same mildly monotone distortion risk measure ρ_E and cost function c_E
- ▶ c_l and c_E : strictly convex and continuously differentiable except at 0 with $c_l(0) = c_E(0) = 0$
- $\mathbf{u}^j \in \mathbb{R}^n_+$: exposure vector of external agent $j \in [m]$ after risk sharing
- For external agent *j*, the loss after risk sharing is

$$L_E(\mathbf{u}^j,\mathbf{p}) = \mathbf{u}^j \cdot \mathbf{X} - \mathbf{u}^j \cdot \mathbf{p},$$

• external agent $j \in [m]$ minimizes $\rho_E \left(L_E(\mathbf{u}^j, \mathbf{p}) \right) + c_E(\|\mathbf{u}^j\|)$

돌▶ ◀ 돌▶ ' 돌| ᆂ ' � � �

Risk exchange

Risk exchange with external agents

An equilibrium of this market is $(\mathbf{p}^*, \mathbf{w}^{1*}, \dots, \mathbf{w}^{n*}, \mathbf{u}^{1*}, \dots, \mathbf{u}^{m*}) \in (\mathbb{R}^n_+)^{n+m+1}$ satisfying (a) Individual optimality:

 $\mathbf{w}^{i*} \in \underset{\mathbf{w}^{i} \in \mathbb{R}^{n}_{+}}{\operatorname{arg\,min}} \left\{ \rho_{I} \left(L_{i}(\mathbf{w}^{i}, \mathbf{p}^{*}) \right) + c_{I}(\|\mathbf{w}^{i}\| - \|\mathbf{a}^{i}\|) \right\} \text{ for } i \in [n];$ $\mathbf{u}^{j*} \in \underset{\mathbf{u}^{j} \in \mathbb{R}^{n}_{+}}{\operatorname{arg\,min}} \left\{ \rho_{E} \left(L_{E}(\mathbf{u}^{j}, \mathbf{p}^{*}) \right) + c_{E}(\|\mathbf{u}^{j}\|) \right\} \text{ for } j \in [m]$

(b) Market clearance:

$$\sum_{i=1}^n \mathsf{w}^{i*} + \sum_{j=1}^m \mathsf{u}^{j*} = \sum_{i=1}^n \mathsf{a}^i$$

30/37

イロッ イボッ イヨッ イヨッ ショー シタマ

Conclusions

- This model can be completely solved
- No agent will hold two assets
- Risk sharing is beneficial among internal and external agents under a mild cost-benefit inequality
- A necessary condition for a non-trivial equilibrium is $\rho_E(X) < \rho_I(X)$ (external agents have a lower risk premium)
- Implication: In the presence of catastrophic losses, a large insurance company may seek reinsurance from external reinsurers

イロッ イボッ イヨッ イヨッ ショー シタマ

Stochastic dominance

Risk exchange

Small conjecture

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Risk exchange with external agents

Quadratic cost

Suppose that $c_I(x) = \lambda_I x^2$, and $c_E(x) = \lambda_E x^2$, $x \in \mathbb{R}$, where $\lambda_I, \lambda_F > 0$. We can compute the equilibrium price

$$p = \frac{k\lambda_I}{k\lambda_I + \lambda_E} \rho_E(X) + \frac{\lambda_E}{k\lambda_I + \lambda_E} \rho_I(X).$$

We also have the equilbrium allocations $\mathbf{u}^* = (u, \dots, u)$ and $\mathbf{w}^* = (w, \dots, w)$ where

$$u = \frac{\rho_I(X) - \rho_E(X)}{2(k\lambda_I + \lambda_E)} \quad \text{and} \quad w = \frac{k(\rho_E(X) - \rho_I(X))}{2(k\lambda_I + \lambda_E)} + a.$$

Stochastic dominance

Risk exchange

Small conjecture •0000

A small conjecture

イロト (母) (ヨト (ヨト) ヨヨ ろくで

A small conjecture

Our main result \implies for independent losses Y_1, \ldots, Y_n following GPD with the same tail parameter $\alpha = 1/\xi \leq 1$, it holds that

$$\sum_{i=1}^n \mathrm{VaR}_p(Y_i) \leq \mathrm{VaR}_p\left(\sum_{i=1}^n Y_i
ight), ext{ for all } p \in (0,1)$$

- With strict inequality
- This also holds under weighted sums and majorization

Conjecture

This holds in case of different tail parameters as well.

Stochastic dominance

Risk exchange 00000000000000

Infinite-mean Pareto models with different tail parameters

Estimated parameters of infinite-mean GPDs

Moscadelli'04

イロト (雪) (ヨ) (ヨ) (コ)

i	1	2	3	4	5	6
ξi	1.19	1.17	1.01	1.39	1.23	1.22
β_i	774	254	233	412	107	243

Table: The estimated parameters ξ_i and β_i , $i \in [6]$

GPD is parametrized by G_{ξ,β}(x) = 1 − (1 + ξx/β)^{-1/ξ} for x ≥ 0, where ξ ≥ 0 and β > 0

Background 00000 Stochastic dominance

Risk exchange

Small conjecture

Infinite-mean Pareto models with different tail parameters

Figure: Curves of $\operatorname{VaR}_p(\sum_{i=1}^n Y_i)$ and $\sum_{i=1}^n \operatorname{VaR}_p(Y_i)$ for the n = 6 GPD losses

Background	Stochastic dominance	Risk exchange	Small conjecture
00000	0000000000	000000000000	000●0

Summary

Main results

- Diversification penalty exists in many infinite-mean setups
 - The conclusion flips for infinite-mean gains instead of losses (e.g., entrepreneurship)
- Pareto risk exchange markets
 - Infinite-mean with only internal agents
 no trade
 - Finite-mean with only internal agents
 - Infinite-mean with external agents
 trade only externally

Many open questions

- Majorization with negative association
- Different tail parameters
- Other extremely heavy-tailed distributions

trade

Background 00000 Stochastic dominance

Risk exchange

Small conjecture

Vilfredo FD Pareto (1848–1923)

Thank you for your kind attention

Yuyu Chen (Melbourne) Ruodu Wang

Paul Embrechts (ETH Zurich) (wang@uwaterloo.ca)

Taizhong Hu Zhenzheng Zou (UST China) (UST China) Infinite-mean Pareto distributions

ା≡ ୬୍ର୍େ 37/37

An unexpected stochastic dominance

<u>Proof sketch</u> for $\theta = (1/n, \dots, 1/n)$ and non-strict dominance.

- ▶ Define $S: (u_1, ..., u_n) \mapsto \min_{i \in [n]} \frac{n}{i} u_{(i)}$ where $u_{(i)}$ is the *i*-th order statistic of $(u_1, ..., u_n)$ from the smallest
- The Simes theorem:

If U_1, \ldots, U_n are iid U[0,1] then $S(U_1, \ldots, U_n)$ is U[0,1]

• Comparison: for $u_1, \ldots, u_n > 0$,

Chen/Liu/Tan/W.'23

Simes'86

$$u_{1}^{-1} + \dots + u_{n}^{-1} \ge j u_{(j)}^{-1} \text{ for all } j \in [n]$$

$$\implies u_{1}^{-1} + \dots + u_{n}^{-1} \ge n(S(u_{1}, \dots, u_{n}))^{-1}$$

$$\implies \underbrace{U_{1}^{-1}}_{\operatorname{Pa}(1)} + \dots + \underbrace{U_{n}^{-1}}_{\operatorname{Pa}(1)} \ge n(S(U_{1}, \dots, U_{n}))^{-1} \stackrel{\mathrm{d}}{=} n \underbrace{U_{1}^{-1}}_{\operatorname{Pa}(1)}$$

▶ Inequality for generalized means: for $\alpha < 1$, Hardy-Littlewood-Pólya'34

$$\left(\frac{1}{n}\left(u_{1}^{-1/\alpha}+\dots+u_{n}^{-1/\alpha}\right)\right)^{-\alpha} \leq \left(\frac{1}{n}\left(u_{1}^{-1}+\dots+u_{n}^{-1}\right)\right)^{-1}$$

$$\implies \underbrace{U_{1}^{-\alpha}}_{\operatorname{Pa}(\alpha)}+\dots+\underbrace{U_{n}^{-\alpha}}_{\operatorname{Pa}(\alpha)} \geq n(S(U_{1},\dots,U_{n}))^{-\alpha} \stackrel{\mathrm{d}}{=} n\underbrace{U_{1}^{-\alpha}}_{\operatorname{Pa}(\alpha)} \quad \text{if } u_{1}^{-\alpha}$$

The Simes theorem and its impact

An improved Bonferroni procedure for multiple tests of significance

RJ Simes - Biometrika, 1986 - academic.oup.com

..., the **Bonferroni procedure** is still ... the **procedure** is conservative and lacks power if several highly correlated tests are undertaken. This paper introduces a modified **Bonferroni procedure**, ... $\stackrel{1}{2}$ Save 5% Cite Cited by 2719 Related articles All 12 versions

Controlling the **false discovery rate**: a practical and powerful approach to multiple testing

Y Benjamini, Y Hochberg - Journal of the Royal statistical ..., 1995 - Wiley Online Library

... From this point of view, a desirable error **rate** to control may be the expected proportion of errors among the rejected hypotheses, which we term the **false discovery rate** (FDR). This ... $\frac{1}{2}$ Save $\frac{50}{2}$ Cite Cited by 100404 Related articles All 39 versions

BH'95 Theorem: For iid U[0,1] p-values, the BH procedure at level α has false discovery rate $\alpha K_0/K$.

Simes'86 Theorem: For iid U[0,1] p-values, if $K_0 = K$, then the BH procedure at level α has false discovery rate α .

Stochastic dominance: Generalizations

Diversification penalty also exists in the following setups, all with infinite mean

- Negative dependence
- Super-Pareto distributions
- Insurance portfolios: Random number and weights
- ► Tail risks: Tail distributions being infinite-mean Pareto
- Truncated risks: Pareto losses truncated at high levels
- Catastrophe losses: Pareto losses triggered by catastrophes
- Different indices: Pareto losses with different tail parameters

Stochastic dominance: Negative dependence

Definition 3 (Joag-Dev/Proschan'83)

A random vector $\mathbf{Z} = (Z_1, \dots, Z_n)$ is negatively associated (NA) if for every pair of disjoint sets A, B of [n],

 $\operatorname{cov}(f(\mathbf{Z}_A), g(\mathbf{Z}_B)) \leq 0,$

where $\mathbf{Z}_A = (Z_k)_{k \in A}$, $\mathbf{Z}_B = (Z_k)_{k \in B}$, and f and g are both increasing coordinatewise.

- One of the most popular notions of negative dependence
- Invariant under transforms (marginal-free, copula)

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Stochastic dominance: Negative dependence

Definition 4

A set $S \subseteq \mathbb{R}^k$, $k \in \mathbb{N}$ is decreasing if $\mathbf{x} \in S$ implies $\mathbf{y} \in S$ for all $\mathbf{y} \leq \mathbf{x}$. Random variables X_1, \ldots, X_n are weakly negatively associated (WNA) if for any $i \in [n]$, decreasing set $S \subseteq \mathbb{R}^{n-1}$, and $x \in \mathbb{R}$ with $\mathbb{P}(X_i \leq x) > 0$,

$$\mathbb{P}(\mathbf{X}_{-i} \in S \mid X_i \leq x) \leq \mathbb{P}(\mathbf{X}_{-i} \in S),$$

where $\mathbf{X}_{-i} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n).$

- Weaker than NA in general
- Gaussian: NA \iff WNA \iff nonpositive correlations

Super-Pareto distribution

Definition 5

A random variable X with essential infimum $z_X \in \mathbb{R}$ is super-Pareto (or has a super-Pareto distribution) if the function $g: x \mapsto 1/\mathbb{P}(X > x)$ is strictly increasing and concave on $[z_X, \infty)$. Moreover, X is regular if $z_X > 0$ and $g(x) \le x/z_X$ for $x \ge z_X$.

- For α ∈ (0,1], g : x → 1/(1 − P_{α,θ}(x)) = (x/θ)^α ∨ 1 is strictly increasing, concave, and bounded by x/θ on [θ,∞) ⇒ all extremely heavy-tailed Pareto distributions are super-Pareto and regular
- The super-Pareto property is preserved under increasing, convex, and non-constant transforms

Stochastic dominance: Negative dependence

WNAID: WNA and identically distributed

Theorem 4

Suppose that X_1, \ldots, X_n are super-Pareto and WNAID, and $X \stackrel{d}{=} X_1$. For $(\theta_1, \ldots, \theta_n) \in \Delta_n$, we have

$$X \leq_{\mathrm{st}} \sum_{i=1}^n heta_i X_i.$$

Moreover, $X <_{st} \sum_{i=1}^{n} \theta_i X_i$ holds if $\theta_i > 0$ for at least two $i \in [n]$.

 Intuition: Negative dependence makes large losses less likely to happen together, but our first result shows that it less risky if large losses happen together

Stochastic dominance: Insurance risks

Proposition 2

Let X, X_1, X_2, \ldots be iid $Pareto(\alpha)$, $\alpha \in (0, 1]$, $W_j > 0$ for $j = 1, 2, \ldots$, and N be a counting random variable, such that X, $\{X_i\}_{i \in \mathbb{N}}, \{W_i\}_{i \in \mathbb{N}}$, and N are independent. We have

$$X \mathbbm{1}_{\{N \ge 1\}} \leq_{\mathrm{st}} rac{\sum_{i=1}^N W_i X_i}{\sum_{i=1}^N W_i} \quad \text{and} \quad \sum_{i=1}^N W_i X \leq_{\mathrm{st}} \sum_{i=1}^N W_i X_i.$$

• Classic collective risk model: $W_1 = W_2 = \cdots = 1$

$$X_1 \mathbb{1}_{\{N \ge 1\}} \leq_{\mathrm{st}} \frac{1}{N} \sum_{i=1}^N X_i$$
 and $NX_1 \leq_{\mathrm{st}} \sum_{i=1}^N X_i$

• If $\mathbb{P}(N \ge 2) \neq 0$, then strict dominance holds

Stochastic dominance: Tail risks

For $\alpha > 0$, we say that Y has a Pareto(α) distribution beyond $x \ge 1$ if $\mathbb{P}(Y > t) = t^{-\alpha}$ for $t \ge x$

Proposition 3

Let $Y, Y_1, ..., Y_n$ be iid random variables distributed as $Pareto(\alpha)$ beyond $x \ge 1$ and $\alpha \in (0, 1]$. Assume $Y \ge_{st} X \sim Pareto(\alpha)$. For $(\theta_1, ..., \theta_n) \in \Delta_n$ and $t \ge x$, $\mathbb{P}(\sum_{i=1}^n \theta_i Y_i > t) \ge \mathbb{P}(Y > t)$, and the inequality is strict if t > 1 and $\theta_i > 0$ for at least two $i \in [n]$.

• If
$$X, X_1, \ldots, X_n$$
 are $Pareto(\alpha)$ beyond m , then

$$X \lor m \leq_{\mathrm{st}} \sum_{i=1}^{n} \theta_i (X_i \lor m); \quad (X-m)_+ \leq_{\mathrm{st}} \sum_{i=1}^{n} \theta_i (X_i-m)_+$$

Stochastic dominance: Truncated risks

Proposition 4

Let X, X_1, \ldots, X_n be iid $Pareto(\alpha)$ random variables, $\alpha \in (0, 1]$, and $Y_i = X_i \wedge c_i$ where $c_i \ge 1$ for each $i \in [n]$. Suppose that $(\theta_1, \ldots, \theta_n) \in \Delta_n$ with $\theta_i > 0$ for $i \in [n]$, and denote by $c = \min\{c_1\theta_1, \ldots, c_n\theta_n\}$. We have

$$\mathbb{P}\left(\sum_{i=1}^{n} heta_{i}Y_{i}>t
ight)=\mathbb{P}\left(\sum_{i=1}^{n} heta_{i}X_{i}>t
ight)>\mathbb{P}\left(X>t
ight)$$

for $t \in (1, c]$.

イロト (雪) (ヨ) (ヨ) (コ)

47/37

Stochastic dominance: Catastrophe losses

Theorem 5

Let X_1, \ldots, X_n be iid $Pareto(\alpha)$ random variables, $\alpha \in (0, 1]$, and A_1, \ldots, A_n be any events independent of (X_1, \ldots, X_n) . For $(\theta_1, \ldots, \theta_n) \in \Delta_n$, we have

$$\lambda X \mathbb{1}_A \leq_{\mathrm{st}} \sum_{i=1}^n \theta_i X_i \mathbb{1}_{A_i},$$

where $\lambda \geq 1$, $X \sim \text{Pareto}(\alpha)$, and A is independent of X satisfying $\lambda \mathbb{P}(A) = \sum_{i=1}^{n} \theta_i \mathbb{P}(A_i).$

 larger losses with low frequency is better than smaller losses with high frequency

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Majorization: Catastrophe losses and tail risks

Theorem 6

Let X_1, \ldots, X_n be iid $Pareto(\alpha)$ random variables with $\alpha \in (0, 1]$, and A_1, \ldots, A_n be events with equal probability that are independent of X_1, \ldots, X_n . Let $\mathbf{Y} = (X_1 \mathbb{1}_{A_1}, \ldots, X_n \mathbb{1}_{A_n})$. If $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \leq \eta$, then $\theta \cdot \mathbf{Y} \geq_{st} \eta \cdot \mathbf{Y}$.

$$\blacktriangleright \|(\theta_1,\ldots,\theta_n)\| = \sum_{i=1}^n |\theta_i|$$

Proposition 5

Let $\mathbf{Y} = (Y_1, \dots, Y_n)$ be a vector of iid $\operatorname{Pareto}(\alpha)$ random variables beyond $c \ge 1$ with $\alpha \in (0, 1]$ and $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \prec \eta$. Then $\mathbb{P}(\theta \cdot \mathbf{Y} > x) > \mathbb{P}(\eta \cdot \mathbf{Y} > x)$ for $x > c \|\theta\|$.

Different tail parameters

▶ $\theta^{\uparrow} = (\theta_{(1)}, \dots, \theta_{(n)})$: increasing rearrangement of θ

Proposition 6

Suppose that $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \leq \eta$. Let $\mathbf{X} = (X_1, \dots, X_n)$ be a vector of independent components with $X_i \sim \text{Pareto}(\alpha_i)$ with $0 < \alpha_1 \leq \cdots \leq \alpha_n \leq 1$. We have

$$oldsymbol{\eta}^{\uparrow}\cdot oldsymbol{\mathsf{X}} \leq_{ ext{st}} oldsymbol{ heta}^{\uparrow}\cdot oldsymbol{\mathsf{X}}.$$

Moreover, if $\theta \prec \eta$, then $\eta^{\uparrow} \cdot \mathbf{X} <_{\mathrm{st}} \theta^{\uparrow} \cdot \mathbf{X}$.

Risk exchange with external agents

Let

$$L_E(b) = c'_E(b) +
ho_E(X)$$
 and $L_I(b) = c'_I(b) +
ho_I(X), b \in \mathbb{R},$

and write $L_{I}^{-}(0) = c_{I-}'(0) + \rho_{I}(X)$ and $L_{I}^{+}(0) = c_{I+}'(0) + \rho_{I}(X)$.

- L_E(0) and L_I⁻(0) are marginal cost and benefit of entering the market.
- To have internal and external agents participate in risk sharing, one needs

$$\rho_E(X) \le L_E(0)$$

イロト (母) (ヨト (ヨト) ヨヨ ろくで

Result on risk exchange with external agents

In the Pareto risk sharing market of *n* internal and m = kn external agents, let $\alpha \in (0, 1]$ and $\mathcal{E} = (\mathbf{p}, \mathbf{w}^{1*}, \dots, \mathbf{w}^{n*}, \mathbf{u}^{1*}, \dots, \mathbf{u}^{m*})$.

(i) Suppose that $L_E(a/k) < L_I(-a)$. The tuple \mathcal{E} is an equilibrium if and only if $\mathbf{p} = (p, \dots, p)$, $p = L_E(a/k)$, $(\mathbf{u}^{1*}, \dots, \mathbf{u}^{m*})$ is a permutation of $u^*(\mathbf{e}_{\lceil 1/k \rceil, n}, \dots, \mathbf{e}_{\lceil m/k \rceil, n})$, $u^* = a/k$, and $(\mathbf{w}^{1*}, \dots, \mathbf{w}^{n*}) = (\mathbf{0}_n, \dots, \mathbf{0}_n)$.

52/37

Result on risk exchange with external agents

(ii) Suppose that $L_F(a/k) \ge L_I(-a)$ and $L_F(0) < L_I^-(0)$. Let u^* be the unique solution to $L_E(u) = L_I(-ku), u \in (0, a/k]$. The tuple \mathcal{E} is an equilibrium if and only if $\mathbf{p} = (p, \dots, p), p = L_F(u^*),$ $(\mathbf{u}^{1*},\ldots,\mathbf{u}^{m*}) = u^*(\mathbf{e}_{k_1,n},\ldots,\mathbf{e}_{k_m,n})$, and $(\mathbf{w}^{1*},\ldots,\mathbf{w}^{n*}) = (a - ku^*)(\mathbf{e}_{\ell_1,n},\ldots,\mathbf{e}_{\ell_n,n})$, where $k_1, \ldots, k_m \in [n]$ and $\ell_1, \ldots, \ell_n \in [n]$ such that $u^* \sum_{i=1}^m \mathbb{1}_{\{k_i=s\}} + (a - ku^*) \sum_{i=1}^n \mathbb{1}_{\{\ell_i=s\}} = a$ for each $s \in [n]$. Moreover, if $u^* < a/(2k)$, then the tuple \mathcal{E} is an equilibrium if and only if $\mathbf{p} = (p, \dots, p), p = L_E(u^*), (\mathbf{u}^{1*}, \dots, \mathbf{u}^{m*})$ is a permutation of $u^*(\mathbf{e}_{\lceil 1/k \rceil,n},\ldots,\mathbf{e}_{\lceil m/k \rceil,n})$, and $(\mathbf{w}^{1*},\ldots,\mathbf{w}^{n*})$ is a permutation of $(a - ku^*)(\mathbf{e}_{1,n}, \dots, \mathbf{e}_{n,n})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Result on risk exchange with external agents

(iii) Suppose that $L_E(0) \ge L_I^-(0)$. The tuple \mathcal{E} is an equilibrium if and only if $\mathbf{p} = (p, \dots, p)$, $p \in [L_I^-(0), L_E(0) \land L_I^+(0)]$, $(\mathbf{u}^{1*}, \dots, \mathbf{u}^{m*}) = (\mathbf{0}_n, \dots, \mathbf{0}_n)$, and $(\mathbf{w}^{1*}, \dots, \mathbf{w}^{n*})$ is a permutation of $a(\mathbf{e}_{1,n}, \dots, \mathbf{e}_{n,n})$.

Risk exchange market for $\alpha > 1$

Proposition 7

In the Pareto risk sharing market, suppose that $\alpha \in (1, \infty)$, and ρ_1, \ldots, ρ_n are ES_q for some $q \in (0, 1)$. Let

$$\mathbf{w}^{i*} = \frac{a_i}{\sum_{j=1}^n a_j} \sum_{j=1}^n \mathbf{a}^j \text{ for } i \in [n] \text{ and } \mathbf{p}^* = (\mathbb{E}[X_1|A], \dots, \mathbb{E}[X_n|A]),$$

where $A = \{\sum_{i=1}^{n} a_i X_i \ge \operatorname{VaR}_q(\sum_{i=1}^{n} a_i X_i)\}$. The tuple $(\mathbf{p}^*, \mathbf{w}^{1*}, \dots, \mathbf{w}^{n*})$ is an equilibrium.

 If losses are not extremely heavy-tailed, then risk sharing is beneficial