K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ [결] 게 9 Q @

Infinite-mean Pareto distributions in decision making

Ruodu Wang

<http://sas.uwaterloo.ca/~wang>

Department of Statistics and Actuarial Science

University of Waterloo

International Congress on Insurance: Mathematics and Economics Chicago, July 2024

Content

Yuyu Chen (Melbourne)

Paul Embrechts (ETH Zurich)

Taizhong Hu (UST China)

Zhenzheng Zou (UST China)

K ロ K K 伊 K K ミ K K ミ K ミ| 主| 白 Y Q Q Q

- I Chen/Embrechts/W., An unexpected stochastic dominance: Pareto distributions, dependence, and diversification Operations Research, 2024
- Chen/Embrechts/W., Risk exchange under infinite-mean Pareto models

Working paper, 2024, [arXiv:2403.20171](https://arxiv.org/abs/2403.20171)

Chen/Hu/W./Zou, Diversification for infinite-mean Pareto distributions

Working paper, 2024, [arXiv:2404.18467](https://arxiv.org/abs/2404.18467)

Table of Contents

- 2 [An unexpected stochastic dominance](#page-11-0)
- 3 [A risk exchange market](#page-23-0)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Simple probabilistic question

- Suppose that X and X' are identically distributed
- \blacktriangleright Is it possible that

 $\mathbb{P}(X < X') = 1?$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Simple probabilistic question

- Suppose that X and X' are identically distributed
- \blacktriangleright Is it possible that

$$
\mathbb{P}(X < X') = 1?
$$

NO ... because if it holds true then there exists $x \in \mathbb{R}$ such that

$$
\mathbb{P}(X < x) > \mathbb{P}(X' < x),
$$

violating the assumption of identical distribution

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

Simple probabilistic question

- Suppose that X, Y, X', Y' are identically distributed
- \blacktriangleright Is it possible that

 $\mathbb{P}(X + Y < X' + Y') = 1?$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Simple probabilistic question

- Suppose that X, Y, X', Y' are identically distributed
- \blacktriangleright Is it possible that

$$
\mathbb{P}(X+Y
$$

 NO ... if X has finite mean ... because

$$
\mathbb{E}[X+Y]=\mathbb{E}[X'+Y']
$$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Simple probabilistic question

- Suppose that X, Y, X', Y' are identically distributed
- \blacktriangleright Is it possible that

$$
\mathbb{P}(X+Y
$$

 NO ... if X has finite mean ... because

$$
\mathbb{E}[X+Y]=\mathbb{E}[X'+Y']
$$

What if X does not have finite mean?

Pareto distribution

For θ , $\alpha > 0$, the Pareto distribution is given by the cdf

$$
P_{\alpha,\theta}(x)=1-\left(\frac{\theta}{x}\right)^{\alpha}, \ \ x\geq \theta
$$

- \blacktriangleright θ : scale parameter
- \triangleright α : tail parameter
- Pareto $(\alpha) = P_{\alpha,1}$
- \triangleright Pareto(α) has an infinite mean \iff α ∈ (0, 1)
	- extremely heavy-tailed
- \triangleright the most common heavy-tailed distribution used in actuarial science

Infinite-mean models

Data from insurance, natural catastrophes, finance, and operational risk

 \blacktriangleright aircraft insurance \blacktriangleright aircraft insurance ▶ fire insurance Beirlant/Dierckx/Goegebeur/Matthys'99 **Example 2** commercial property insurance **Example 2 Biffis/Chavez'14 Example 2 E** In wind catastrophes **Rizzo'09** ▶ nuclear power accidents Hofert/Wüthrich'12; Sornette/Maillart/Kröger'13 **In operational risk Moscadelli'04** and the Moscadelli'04 ■ cyber risk Eling/Wirfs'19; Eling/Schnell'20 ▶ returns from technological innovations Silverberg/Verspagen'07

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Our goals

Setup

- \triangleright losses $X_1, \ldots, X_n \sim \text{Pareto}(\alpha)$; particular interest: $\alpha \leq 1$
- Exposure vector $\theta = (\theta_1, \dots, \theta_n)$
- $\blacktriangleright \Delta_n = \{\boldsymbol{\theta} \in [0,1]^n : \sum_{i=1}^n \theta_i = 1\}$: standard *n*-simplex
- \blacktriangleright $[n] = \{1, \ldots, n\}$
- \triangleright a non-diversified portfolio: X_1
- ightharpoonup a diversified portfolio: $\sum_{i=1}^{n} \theta_i X_i$

Questions:

- \blacktriangleright Which of X_1 and $\sum_{i=1}^n \theta_i X_i$ is more dangerous?
- \triangleright What is the implication on a risk exchange economy?

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [콘] 및 19 Q @

Stochastic dominance

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [특] 늘 19 Q @

Stochastic dominance

Definition 1 (Stochastic order and convex order)

For two random variables X and Y .

- ► stochastic order $X \leq_{st} Y$ holds if $\mathbb{P}(X > x) \leq \mathbb{P}(Y > x)$ for all $x \in \mathbb{R}$;
- ► convex order $X \leq_{\text{cx}} Y$ holds if $\mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)]$ for all convex functions u such that the two expectations exist;
- In strict stochastic order $X \leq_{st} Y$ holds if $\mathbb{P}(X > x) < \mathbb{P}(Y > x)$ for all $x > \text{ess-inf}X$.

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Stochastic dominance

Stochastic dominance

- \triangleright We mainly interpret X as loss
- Stochastic order \iff first-order stochastic dominance
	- $\mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)]$ for all increasing loss functions u
	- $\rho(X) \leq \rho(Y)$ for all increasing risk measures ρ

Equivalence e.g., Theorem 1.A.1 of Shaked/Shantikumar'07

- \blacktriangleright $X \leq_{\rm st} Y \iff \mathbb{P}(X' \leq Y') = 1$ for some $X' \stackrel{\rm d}{=} X$ and $Y' \stackrel{\rm d}{=} Y$
- \blacktriangleright $X <_{\textnormal{st}} Y \iff \mathbb{P}(X' < Y') = 1$ for some $X' \stackrel{\textnormal{d}}{=} X$ and $Y' \stackrel{\textnormal{d}}{=} Y$

イロメ (押) マミメマミメ 耳目 の女の

Finite-mean case

Proposition 1

Let $\theta_1, \ldots, \theta_n > 0$ such that $\sum_{i=1}^n \theta_i = 1$ and X, X_1, \ldots, X_n be identically distributed random variables with finite mean and any dependence structure. Then, $X \leq_{\textnormal{st}} \sum_{i=1}^n \theta_i X_i$ holds if and only if $X_1 = \cdots = X_n$ almost surely.

 \triangleright No non-trivial dominance in case of finite mean

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

000000000000

An unexpected stochastic dominance

Theorem 1

Let X, X_1, \ldots, X_n be iid Pareto(α) random variables, $\alpha \in (0,1]$. For $(\theta_1, \ldots, \theta_n) \in \Delta_n$, we have

$$
X \leq_{\rm st} \sum_{i=1}^n \theta_i X_i.
$$

Moreover, $X <_{\text{st}} \sum_{i=1}^{n} \theta_i X_i$ if $\theta_i > 0$ for at least two $i \in [n]$.

- ► EVT: $\mathbb{P}(\sum_{i=1}^{n} X_i / n > t) \geq \mathbb{P}(X > t)$ for t large enough
- **In Known case:** $n = 2$, $\theta_1 = \theta_2 = \alpha = 1/2$

Example 2.18 in the lecture slides of McNeil/Frey/Embrechts'15

Special thanks to Wenhao Zhu and Yuming Wang, [who](#page-15-0) [pro](#page-17-0)[vi](#page-15-0)[de](#page-16-0)[d](#page-17-0) [a](#page-10-0) [fi](#page-11-0)[r](#page-11-0)[st](#page-23-0) [p](#page-10-0)r[o](#page-22-0)[of](#page-23-0) $\exists \exists \Rightarrow \Diamond \Diamond \Diamond$

An unexpected stochastic dominance

"Unexpected"

 \blacktriangleright The strict dominance

$$
\mathbb{P}\left(\sum_{i=1}^n X_i < \sum_{i=1}^n X_i'\right) = 1
$$

can happen even if $X_i \stackrel{\text{d}}{=} X'_i$ for $i \in [n]$

 \blacktriangleright For Pareto, dominance \iff no finite expectation

イロメ (押) マミメマミメ 耳目 の女の

Generalizations

- \blacktriangleright This result has many generalizations
- \triangleright Notably it holds for weak negative association, a form of negative dependence

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Dominance relation between two diversified portfolios

Definition 2 (Majorization order)

For
$$
\theta \in (\theta_1, ..., \theta_n) \in \mathbb{R}^n
$$
 and $\eta \in (\eta_1, ..., \eta_n) \in \mathbb{R}^n$, θ is

dominated by η in majorization order, denoted by $\theta \preceq \eta$, if

$$
\sum_{i=1}^{n} \theta_i = \sum_{i=1}^{n} \eta_i \text{ and } \sum_{i=1}^{k} \theta(i) \ge \sum_{i=1}^{k} \eta(i) \text{ for } k \in [n-1],
$$

where $\theta_{(i)}$ is the *i-*th order statistic of $\boldsymbol{\theta}$ from the smallest.

- \blacktriangleright Write $\theta \prec \eta$ if $\theta \preceq \eta$ and $\theta \neq \eta$
- \blacktriangleright $\theta \prec \eta \iff$ components of θ are less spread out than η
- \blacktriangleright $(1/n, \ldots, 1/n) \prec \theta \prec (1, 0, \ldots, 0)$ for $\theta \in \Delta_n$
- **IF** Discrete ve[rs](#page-18-0)io[n](#page-23-0) [o](#page-23-0)f convex order \leq_{cx} \leq_{cx} \leq_{cx} [Ma](#page-20-0)rs[hal](#page-19-0)[l/](#page-20-0)[O](#page-10-0)l[ki](#page-22-0)n[/](#page-10-0)[A](#page-11-0)[rn](#page-22-0)o[ld](#page-0-0)['1](#page-42-0)[1](#page-60-0)

Stochastic dominance: Majorization

Theorem 2

Suppose that $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \preceq \eta$. Let ${\mathsf X}$ be a vector of n iid Pareto(α) random variables, $\alpha \in (0,1]$. We have

 $\eta \cdot \mathsf{X} \leq_{\text{st}} \theta \cdot \mathsf{X}.$

Moreover, if $\theta \prec \eta$, then $\eta \cdot \mathsf{X} \leq_{st} \theta \cdot \mathsf{X}$.

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Diversification pays or not

- \triangleright **X**: a vector of iid $\text{Pareto}(\alpha)$ components
- $\rightarrow \theta \prec \eta \Longrightarrow \theta$ is more diversified

Classic result Theorem 3.A.35 of Shaked/Shantikumar'07

$$
\alpha>1\implies\pmb{\eta}\cdot\pmb{\mathsf{X}}\geq_{\mathrm{cx}}\pmb{\theta}\cdot\pmb{\mathsf{X}}
$$

- \blacktriangleright All risk-averse decision makers prefer the more diversified
- Diversification pays Samuelson'67

Our result

$$
\alpha \leq 1 \implies \eta \cdot \mathbf{X} \leq_{\rm st} \theta \cdot \mathbf{X}
$$

- \triangleright All rational decision makers prefer the less diversified
-

 $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$ $\blacktriangleright \text{ Diversification hurts} \text{ \textcolor{red}{\textbf{I}} \text{ \textcolor{red}{I}} \text{$

Stochastic dominance: Majorization

Corollary 1

For $k, \ell \in \mathbb{N}$ such that $k \leq \ell$, let X_1, \ldots, X_ℓ be iid $\text{Pareto}(\alpha)$

random variables, $\alpha \in (0,1]$. We have

$$
\frac{1}{k}\sum_{i=1}^k X_i \leq_{\textnormal{st}} \frac{1}{\ell}\sum_{i=1}^\ell X_i.
$$

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

A risk exchange market

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ [결] 게 9 Q @

A risk exchange market

Notation

- \blacktriangleright X ithe set of random variables
- \triangleright $X_0 \subset \mathcal{X}$: the set of financial losses
- $\rho: \mathcal{X}_o \to \mathbb{R}$ is a risk measure

Monotonicity

- \triangleright Weak monotonicity: $\rho(X) \leq \rho(Y)$ for $X, Y \in \mathcal{X}_o$ if $X \leq_{\text{st}} Y$
- \triangleright Mild monotonicity: ρ is weakly monotone and $\rho(X) < \rho(Y)$ if $\mathbb{P}(X < Y) = 1$

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Examples of risk measures

For $X \sim F$,

 \blacktriangleright Value-at-Risk (VaR):

$$
\text{VaR}_{q}(X) = F^{-1}(q) = \inf\{t \in \mathbb{R} : F(t) \geq q\}, \ q \in (0,1]
$$

 \blacktriangleright Expected Shortfall (ES):

$$
ES_{p}(X) = \frac{1}{1-p} \int_{p}^{1} VaR_{u}(F)du, p \in (0,1)
$$

 \blacktriangleright Range-VaR (RVaR):

$$
\text{RVaR}_{\rho,q}(X)=\frac{1}{q-\rho}\int_{\rho}^q\text{VaR}_u(\digamma)\text{d}u,\ 0\leq \rho
$$

VaR, ES and RVaR are mildly monotone

A risk exchange market

Risk exchange market

- \blacktriangleright *n* agents
- \blacktriangleright Pareto risks
- \blacktriangleright risk measures

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Distortion risk measures

For a random variable Y, a distortion risk measure ρ is defined as

$$
\rho(Y)=\int_{-\infty}^0 (h(\mathbb{P}(Y>x))-1)\mathrm{d} x+\int_0^\infty h(\mathbb{P}(Y>x))\mathrm{d} x,
$$

where $h : [0, 1] \rightarrow [0, 1]$, called the distortion function, is a nondecreasing function with $h(0) = 0$ and $h(1) = 1$

- \blacktriangleright The class includes VaR, ES, and RVaR
- \triangleright Any distortion risk measure is mildly monotone unless it is a mixture of ess-sup and ess-inf

K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ や 9 Q Q

A risk exchange market

A Pareto risk exchange market with $n > 2$ agents:

- \blacktriangleright $\mathbf{X} = (X_1, \ldots, X_n)$ and $X, X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Pareto}(\alpha)$ with $\alpha > 0$
- \blacktriangleright the initial exposure vector of agent *i* is $\mathbf{a}^i = a_i \mathbf{e}_{i,n}$ with $a_i > 0$

$$
\blacktriangleright \mathbf{p} = (p_1, \ldots, p_n) \in \mathbb{R}_+^n \text{ is the premium vector}
$$

 \blacktriangleright $\mathbf{w}^i \in \mathbb{R}_+^n$ is the exposure vector of agent i over $\mathbf X$ after exchanging risks

The total loss of agent $i \in [n]$ after risk sharing is

$$
L_i(\mathbf{w}^i, \mathbf{p}) = \mathbf{w}^i \cdot \mathbf{X} - (\mathbf{w}^i - \mathbf{a}^i) \cdot \mathbf{p}.
$$

DOG ET A EXAMPLE YOU A

A risk exchange market

Agent $i \in [n]$ is equipped with

- **E** a risk measure ρ_i on \mathcal{X}
	- X is the convex cone generated by X_1, \ldots, X_n and constants
- ► a cost function $c_i(\|\mathbf{w}^i\| \|\mathbf{a}^i\|)$

 \bullet $\mathcal X$ c_i is a non-negative convex function satisfying $c_i(0)=0$

The risk assessment for agent $i \in [n]$ is

$$
\rho_i(L_i(\mathbf{w}^i, \mathbf{p})) + c_i(\|\mathbf{w}^i\| - \|\mathbf{a}^i\|)
$$

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

An equilibrium of the market is $\left(\mathbf{p}^*,\mathbf{w}^{1*},\ldots,\mathbf{w}^{n*}\right)\in(\mathbb{R}_+^n)^{n+1}$ if the following two conditions hold:

(a) Individual optimality:

 $\mathsf{w}^{i*} \in \argmin \left\{ \rho_i \left(L_i(\mathsf{w}^i, \mathsf{p}^*) \right) + c_i(\|\mathsf{w}^i\| - \|\mathsf{a}^i\|) \right\} \text{ for } i \in [n]$ w^i ∈ \mathbb{R}^n_+

(b) Market clearance:

$$
\sum_{i=1}^n \mathbf{w}^{i*} = \sum_{i=1}^n \mathbf{a}^i
$$

In this case, the vector p^* is an equilibrium price, and $(\mathsf{w}^{1*}, \ldots, \mathsf{w}^{n*})$ is an equilibrium allocation

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경 경 → 9 Q @

Theorem 3

In the Pareto risk sharing market, suppose that $\alpha \in (0,1]$, and ρ_1, \ldots, ρ_n are mildly monotone.

- (i) All equilibria $(\mathsf{p}^*,\mathsf{w}^{1*},\ldots,\mathsf{w}^{n*})$ (if they exist) satisfy that $\mathsf{p}^*=(\rho,\ldots,\rho)$ for some $\rho\in\mathbb{R}_+$ and $\left(\mathsf{w}^{1*},\ldots,\mathsf{w}^{n*}\right)$ is an *n*-permutation of (a^1, \ldots, a^n) .
- (ii) Suppose that ρ_1, \ldots, ρ_n are distortion risk measures on X. The tuple $((p, \ldots, p), a^1, \ldots, a^n)$ is an equilibrium if p satisfies

$$
c'_{i+}(0) \ge p - \rho_i(X) \ge c'_{i-}(0) \quad \text{ for } i \in [n].
$$

 \blacktriangleright The condition in (ii) is almost necessary for (p, \ldots, p) to be an equilibrium price K ロ ▶ K @ ▶ K 로 ▶ K 로 ▶ 로 로 H > 19 Q Q

Conclusions

- \triangleright No agent will hold two assets
- \triangleright No risk sharing is beneficial
- \blacktriangleright Implication: In the presence of catastrophic losses, large insurance companies should not share losses with each other
- \triangleright Similar results hold under trading or diversification constraints such as $w \in V_b$ with $b \in [0,1)$ and

$$
V_b = \left\{ (w_1, \ldots, w_n) \in \mathbb{R}_+^n : w_j \ge b \sum_{i=1}^n w_i \text{ for } j \in [n] \right\}
$$

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

Risk exchange with external agents

- ightharpoonup n internal agents and $m = kn$ external agents
- \triangleright Internal agents have the same mildly monotone distortion risk measure ρ_I , cost function c_I , and initial loss exposure a
- \triangleright External agents have the same mildly monotone distortion risk measure ρ_F and cost function c_F
- \triangleright c_I and c_E: strictly convex and continuously differentiable except at 0 with $c_1(0) = c_F(0) = 0$
- \blacktriangleright $\mathbf{u}^{j} \in \mathbb{R}_{+}^{n}$: exposure vector of external agent $j \in [m]$ after risk sharing
- \triangleright For external agent *i*, the loss after risk sharing is

$$
L_E(\mathbf{u}^j, \mathbf{p}) = \mathbf{u}^j \cdot \mathbf{X} - \mathbf{u}^j \cdot \mathbf{p},
$$

► external agent $j \in [m]$ minimizes $\rho_E \left(L_E(\mathbf{u}^j, \mathbf{p}) \right) + c_E (\|\mathbf{u}^j\|)$ (트) - 시트 > (트)로 ⊙ Q ⊙

Risk exchange with external agents

An equilibrium of this market is $(\boldsymbol{p}^*,\boldsymbol{w}^{1*},\ldots,\boldsymbol{w}^{n*},\boldsymbol{u}^{1*},\ldots,\boldsymbol{u}^{m*})\in (\mathbb{R}_+^n)^{n+m+1}$ satisfying

(a) Individual optimality:

$$
\mathbf{w}^{i*} \in \underset{\mathbf{w}^{i} \in \mathbb{R}_{+}^{n}}{\arg \min} \left\{ \rho_{I} \left(L_{i}(\mathbf{w}^{i}, \mathbf{p}^{*}) \right) + c_{I}(\|\mathbf{w}^{i}\| - \|\mathbf{a}^{i}\|) \right\} \text{ for } i \in [n];
$$
\n
$$
\mathbf{u}^{j*} \in \underset{\mathbf{w}^{i} \in \mathbb{R}_{+}^{n}}{\arg \min} \left\{ \rho_{E} \left(L_{E}(\mathbf{u}^{j}, \mathbf{p}^{*}) \right) + c_{E}(\|\mathbf{u}^{j}\|) \right\} \text{ for } j \in [m]
$$

(b) Market clearance:

$$
\sum_{i=1}^n \mathbf{w}^{i*} + \sum_{j=1}^m \mathbf{u}^{j*} = \sum_{i=1}^n \mathbf{a}^i
$$

K @ ▶ K 블 ▶ K 틀 ▶ [틀] > 9 Q @

Conclusions

- \blacktriangleright This model can be completely solved
- \triangleright No agent will hold two assets
- \triangleright Risk sharing is beneficial among internal and external agents under a mild cost-benefit inequality
- \triangleright A necessary condition for a non-trivial equilibrium is $\rho_F(X) < \rho_I(X)$ (external agents have a lower risk premium)
- \triangleright Implication: In the presence of catastrophic losses, a large insurance company may seek reinsurance from external reinsurers

KOD KAD KED KED EE MAA

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Risk exchange with external agents

Quadratic cost

Suppose that $c_I(x) = \lambda_I x^2$, and $c_E(x) = \lambda_E x^2$, $x \in \mathbb{R}$, where

 $\lambda_I, \lambda_E > 0.$ We can compute the equilibrium price

$$
p = \frac{k\lambda_I}{k\lambda_I + \lambda_E} \rho_E(X) + \frac{\lambda_E}{k\lambda_I + \lambda_E} \rho_I(X).
$$

We also have the equlibrium allocations $\mathbf{u}^* = (u, \dots, u)$ and $w^* = (w, \ldots, w)$ where

$$
u = \frac{\rho_I(X) - \rho_E(X)}{2(k\lambda_I + \lambda_E)} \quad \text{and} \quad w = \frac{k(\rho_E(X) - \rho_I(X))}{2(k\lambda_I + \lambda_E)} + a.
$$

A small conjecture

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [특] 늘 19 Q @

Our main result \implies for independent losses Y_1, \ldots, Y_n following GPD with the same tail parameter $\alpha = 1/\xi \leq 1$, it holds that

$$
\sum_{i=1}^{n} \text{VaR}_{p}(\mathbf{Y}_{i}) \leq \text{VaR}_{p} \left(\sum_{i=1}^{n} \mathbf{Y}_{i} \right), \text{ for all } p \in (0,1)
$$

- \triangleright With strict inequality
- \triangleright This also holds under weighted sums and majorization

Conjecture

This holds in case of different tail parameters as well.

Infinite-mean Pareto models with different tail parameters

Estimated parameters of infinite-mean GPDs Moscadelli'04

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

Table: The estimated parameters ξ_i and β_i , $i \in [6]$

► GPD is parametrized by $G_{\xi,\beta}(\mathsf{x})=1-\left(1+\xi\mathsf{x}/\beta\right)^{-1/\xi}$ for $x > 0$, where $\xi > 0$ and $\beta > 0$

Infinite-mean Pareto models with different tail parameters

Figure: Curves of $\text{VaR}_p(\sum_{i=1}^n Y_i)$ and $\sum_{i=1}^n \text{VaR}_p(Y_i)$ for the $n = 6$ GPD losses

∢ロ ▶ ィ伊 ▶ ィミ ▶ ィミ ▶

Summary

Main results

- \triangleright Diversification penalty exists in many infinite-mean setups
	- The conclusion flips for infinite-mean gains instead of losses (e.g., entrepreneurship)
- \blacktriangleright Pareto risk exchange markets
	- Infinite-mean with only internal agents **no trade**
	- Finite-mean with only internal agents
	- Infinite-mean with external agents trade only externally

Many open questions

- \blacktriangleright Majorization with negative association
- Different tail parameters
- Other extremely heavy-tailed distributio[ns](#page-40-0)

Vilfredo FD Pareto (1848–1923)

Thank you for your kind attention

Yuyu Chen (Melbourne)

Paul Embrechts (ETH Zurich)

Taizhong Hu (UST China) Zhenzheng Zo[u](#page-42-0) [\(](#page-43-0)[US](#page-41-0)[T C](#page-42-0)[hi](#page-43-0)[na](#page-36-0)[\)](#page-37-0) Ruodu Wang (<wang@uwaterloo.ca>) [Infinite-mean Pareto distributions 37/37](#page-0-0)

 $E = \Omega Q$

An unexpected stochastic dominance

Proof sketch for $\theta = (1/n, \ldots, 1/n)$ and non-strict dominance.

- Define $S: (u_1, \ldots, u_n) \mapsto \min_{i \in [n]} \frac{n}{i} u_{(i)}$ where $u_{(i)}$ is the *i*-th order statistic of (u_1, \ldots, u_n) from the smallest
- The Simes theorem: Simes'86

If U_1, \ldots, U_n are iid U[0, 1] then $S(U_1, \ldots, U_n)$ is U[0, 1]

Comparison: for $u_1, \ldots, u_n > 0$, Chen/Liu/Tan/W.'23

$$
u_1^{-1} + \dots + u_n^{-1} \ge ju_{(j)}^{-1} \text{ for all } j \in [n]
$$

\n
$$
\implies u_1^{-1} + \dots + u_n^{-1} \ge n(S(u_1, \dots, u_n))^{-1}
$$

\n
$$
\implies \underbrace{U_1^{-1}}_{\text{Pa}(1)} + \dots + \underbrace{U_n^{-1}}_{\text{Pa}(1)} \ge n(S(U_1, \dots, U_n))^{-1} \stackrel{d}{=} n \underbrace{U_1^{-1}}_{\text{Pa}(1)}
$$

Inequality for generalized means: for $\alpha < 1$, Hardy-Littlewood-Pólya'34

$$
\left(\frac{1}{n}(u_1^{-1/\alpha}+\cdots+u_n^{-1/\alpha})\right)^{-\alpha} \le \left(\frac{1}{n}(u_1^{-1}+\cdots+u_n^{-1})\right)^{-1}
$$
\n
$$
\implies \underbrace{U_1^{-\alpha}}_{\text{Pa}(\alpha)} + \cdots + \underbrace{U_n^{-\alpha}}_{\text{Pa}(\alpha)} \ge n(S(U_1,\ldots,U_n))^{-\alpha} \stackrel{d}{=} n\underbrace{U_1^{-\alpha}}_{\text{on}(\alpha)}.
$$

The Simes theorem and its impact

An improved Bonferroni procedure for multiple tests of significance

RJ Simes - Biometrika, 1986 - academic.oup.com

..., the Bonferroni procedure is still ... the procedure is conservative and lacks power if several highly correlated tests are undertaken. This paper introduces a modified Bonferroni procedure, ... Save 57 Cite Cited by 2719 Related articles All 12 versions

Controlling the false discovery rate: a practical and powerful approach to multiple testing

Y Beniamini, Y Hochberg - Journal of the Roval statistical ..., 1995 - Wiley Online Library

... From this point of view, a desirable error rate to control may be the expected proportion of errors among the rejected hypotheses, which we term the **false discovery rate** (FDR). This ... Save 5 Cite Cited by 100404 Related articles All 39 versions

BH'95 Theorem: For iid U[0, 1] p-values, the BH procedure at level α has false discovery rate $\alpha K_0/K$.

Simes'86 Theorem: For iid U[0, 1] p-values, if $K_0 = K$, then the BH procedure at level α has false discovery rate α .

 2990

Stochastic dominance: Generalizations

Diversification penalty also exists in the following setups, all with infinite mean

- \triangleright Negative dependence
- \blacktriangleright Super-Pareto distributions
- \triangleright Insurance portfolios: Random number and weights
- \triangleright Tail risks: Tail distributions being infinite-mean Pareto
- \triangleright Truncated risks: Pareto losses truncated at high levels
- \triangleright Catastrophe losses: Pareto losses triggered by catastrophes
- \triangleright Different indices: Pareto losses with different tail parameters

∢ 同 ▶ ४ 트 ▶ ४ 트 ▶ - 트 노 - 이익ㅇ

Stochastic dominance: Negative dependence

Definition 3 (Joag-Dev/Proschan'83)

A random vector $\mathbf{Z} = (Z_1, \ldots, Z_n)$ is negatively associated (NA) if for every pair of disjoint sets A , B of $[n]$,

 $\text{cov}(f(\mathbf{Z}_A), g(\mathbf{Z}_B)) \leq 0,$

where $\mathbf{Z}_A = (Z_k)_{k \in A}$, $\mathbf{Z}_B = (Z_k)_{k \in B}$, and f and g are both increasing coordinatewise.

- \triangleright One of the most popular notions of negative dependence
- Invariant under transforms (marginal-free, copula)

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ [결] ≥ 19 Q Q

Stochastic dominance: Negative dependence

Definition 4

A set $S \subseteq \mathbb{R}^k$, $k \in \mathbb{N}$ is decreasing if $\mathsf{x} \in S$ implies $\mathsf{y} \in S$ for all $y \leq x$. Random variables X_1, \ldots, X_n are weakly negatively associated (WNA) if for any $i \in [n]$, decreasing set $S \subseteq \mathbb{R}^{n-1}$, and $x \in \mathbb{R}$ with $\mathbb{P}(X_i \leq x) > 0$,

$$
\mathbb{P}(\mathbf{X}_{-i} \in S \mid X_i \leq x) \leq \mathbb{P}(\mathbf{X}_{-i} \in S),
$$

where $\mathbf{X}_{-i} = (X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n).$

- \triangleright Weaker than NA in general
- \triangleright Gaussian: NA \Longleftrightarrow WNA \Longleftrightarrow nonpositive correlations

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경 경 → 9 Q @

Super-Pareto distribution

Definition 5

A random variable X with essential infimum $z_X \in \mathbb{R}$ is super-Pareto (or has a super-Pareto distribution) if the function $g: x \mapsto 1/\mathbb{P}(X > x)$ is strictly increasing and concave on $[z_X, \infty)$. Moreover, X is regular if $z_x > 0$ and $g(x) \le x/z_x$ for $x > z_x$.

- ► For $\alpha \in (0,1]$, $g: x \mapsto 1/(1 P_{\alpha,\theta}(x)) = (x/\theta)^\alpha \vee 1$ is strictly increasing, concave, and bounded by x/θ on $[\theta, \infty)$ \implies all extremely heavy-tailed Pareto distributions are super-Pareto and regular
- \triangleright The super-Pareto property is preserved under increasing, convex, and non-constant transforms

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『ヨ ヨ イ 이 Q (^

Stochastic dominance: Negative dependence

 \triangleright WNAID: WNA and identically distributed

Theorem 4

Suppose that X_1, \ldots, X_n are super-Pareto and WNAID, and $X\stackrel{\rm d}{=} X_1$. For $(\theta_1,\ldots,\theta_n)\in\Delta_n$, we have

$$
X \leq_{\rm st} \sum_{i=1}^n \theta_i X_i.
$$

Moreover, $X <_{\text{st}} \sum_{i=1}^{n} \theta_i X_i$ holds if $\theta_i > 0$ for at least two $i \in [n]$.

Intuition: Negative dependence makes large losses less likely to happen together, but our first result shows that it less risky if large losses happen together KOD KAD KED KED EE MAA

Stochastic dominance: Insurance risks

Proposition 2

Let X, X_1, X_2, \ldots be iid $\text{Pareto}(\alpha)$, $\alpha \in (0,1]$, $W_i > 0$ for $j = 1, 2, \ldots$, and N be a counting random variable, such that X, $\{X_i\}_{i\in\mathbb{N}}$, $\{W_i\}_{i\in\mathbb{N}}$, and N are independent. We have

$$
X1\!\!1_{\{N\geq 1\}}\leq_{\rm st}\frac{\sum_{i=1}^N W_iX_i}{\sum_{i=1}^N W_i} \quad \text{and} \quad \sum_{i=1}^N W_iX \leq_{\rm st}\sum_{i=1}^N W_iX_i.
$$

Classic collective risk model: $W_1 = W_2 = \cdots = 1$

$$
X_11\!\!1_{\{N\geq 1\}}\leq_{\rm st}\frac{1}{N}\!\sum_{i=1}^N X_i\quad\text{and}\quad N\!X_1\leq_{\rm st}\sum_{i=1}^N X_i
$$

If $\mathbb{P}(N \geq 2) \neq 0$, then strict dominance [ho](#page-49-0)[ld](#page-51-0)[s](#page-49-0)

Stochastic dominance: Tail risks

For $\alpha > 0$, we say that Y has a $\text{Pareto}(\alpha)$ distribution beyond $x \geq 1$ if $\mathbb{P}(Y > t) = t^{-\alpha}$ for $t \geq x$

Proposition 3

Let Y, Y_1, \ldots, Y_n be iid random variables distributed as $\text{Pareto}(\alpha)$ beyond $x \ge 1$ and $\alpha \in (0,1]$. Assume $Y \ge$ _{st} $X \sim$ Pareto(α). For $(\theta_1,\ldots,\theta_n)\in\Delta_n$ and $t\geq x$, $\mathbb{P}\left(\sum_{i=1}^n\theta_iY_i>t\right)\geq \mathbb{P}\left(\left.Y>t\right)$, and the inequality is strict if $t > 1$ and $\theta_i > 0$ for at least two $i \in [n]$.

If
$$
X, X_1, \ldots, X_n
$$
 are Pareto(α) beyond *m*, then

$$
X \vee m \leq_{\text{st}} \sum_{i=1}^{n} \theta_{i}(X_{i} \vee m); \quad (X-m)_{+} \leq_{\text{st}} \sum_{i=1}^{n} \theta_{i}(X_{i}-m)_{+}
$$

Ruodu Wang (<wang@uwaterloo.ca>) [Infinite-mean Pareto distributions 46/37](#page-0-0)

Stochastic dominance: Truncated risks

Proposition 4

Let X, X_1, \ldots, X_n be iid Pareto(α) random variables, $\alpha \in (0,1]$, and $Y_i = X_i \wedge c_i$ where $c_i \geq 1$ for each $i \in [n]$. Suppose that $(\theta_1,\ldots,\theta_n)\in\Delta_n$ with $\theta_i>0$ for $i\in[n]$, and denote by $c = min\{c_1\theta_1, \ldots, c_n\theta_n\}$. We have

$$
\mathbb{P}\left(\sum_{i=1}^n \theta_i Y_i > t\right) = \mathbb{P}\left(\sum_{i=1}^n \theta_i X_i > t\right) > \mathbb{P}\left(X > t\right)
$$

for $t \in (1, c]$.

K ロ > K @ > K ミ > K ミ > (트) = K) 9,00

Stochastic dominance: Catastrophe losses

Theorem 5

Let X_1, \ldots, X_n be iid Pareto (α) random variables, $\alpha \in (0,1]$, and A_1, \ldots, A_n be any events independent of (X_1, \ldots, X_n) . For $(\theta_1,\ldots,\theta_n)\in\Delta_n$, we have

$$
\lambda X \mathbb{1}_A \leq_{\rm st} \sum_{i=1}^n \theta_i X_i \mathbb{1}_{A_i},
$$

where $\lambda \geq 1$, $X \sim \text{Pareto}(\alpha)$, and A is independent of X satisfying $\lambda \mathbb{P}(A) = \sum_{i=1}^{n} \theta_i \mathbb{P}(A_i).$

 \blacktriangleright larger losses with low frequency is better than smaller losses with high frequency K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경 경 → 9 Q @

Majorization: Catastrophe losses and tail risks

Theorem 6

Let X_1, \ldots, X_n be iid $\text{Pareto}(\alpha)$ random variables with $\alpha \in (0, 1]$, and A_1, \ldots, A_n be events with equal probability that are independent of X_1, \ldots, X_n . Let $\boldsymbol{Y} = (X_1 1_{A_1}, \ldots, X_n 1_{A_n})$. If $\bm{\theta}, \bm{\eta} \in \mathbb{R}^n_+$ satisfy $\bm{\theta} \preceq \bm{\eta}$, then $\bm{\theta} \cdot \mathbf{Y} \geq_{\rm st} \bm{\eta} \cdot \mathbf{Y}$.

$$
\blacktriangleright \Vert (\theta_1,\ldots,\theta_n)\Vert = \sum_{i=1}^n |\theta_i|
$$

Proposition 5

Let $\mathbf{Y} = (Y_1, \ldots, Y_n)$ be a vector of iid $\text{Pareto}(\alpha)$ random variables beyond $c\geq 1$ with $\alpha\in(0,1]$ and $\bm{\theta},\bm{\eta}\in\mathbb{R}^n_+$ satisfy $\theta \prec \eta$. Then $\mathbb{P}(\theta \cdot \mathbf{Y} > x) > \mathbb{P}(\eta \cdot \mathbf{Y} > x)$ for $x > c\|\theta\|$.

 PQQ

 -18

 $\frac{1}{2}$

Different tail parameters

 $\blacktriangleright \theta^\uparrow = (\theta_{(1)}, \ldots, \theta_{(n)})$: increasing rearrangement of θ

Proposition 6

Suppose that $\theta, \eta \in \mathbb{R}^n_+$ satisfy $\theta \preceq \eta$. Let $\mathsf{X} = (X_1, \ldots, X_n)$ be a vector of independent components with $X_i \sim \text{Pareto}(\alpha_i)$ with $0 < \alpha_1 < \cdots < \alpha_n < 1$. We have

$$
\boldsymbol{\eta}^{\uparrow}\cdot\mathbf{X}\leq_{\rm st}\boldsymbol{\theta}^{\uparrow}\cdot\mathbf{X}.
$$

Moreover, if $\bm{\theta} \prec \bm{\eta}$, then $\bm{\eta}^{\uparrow} \cdot \mathbf{X} <_{\text{st}} \bm{\theta}^{\uparrow} \cdot \mathbf{X}$.

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경 경 → 9 Q @

Risk exchange with external agents

Let

$$
L_E(b) = c'_E(b) + \rho_E(X) \quad \text{and} \quad L_I(b) = c'_I(b) + \rho_I(X), \quad b \in \mathbb{R},
$$

and write $L_I^ \sigma_I^-(0)=c_I^\prime_-(0)+\rho_I(X)$ and L_I^+ $I_I^+(0) = c_{I+}'(0) + \rho_I(X).$

- \blacktriangleright $L_E(0)$ and $L_I^ _I^-(0)$ are marginal cost and benefit of entering the market.
- \triangleright To have internal and external agents participate in risk sharing, one needs

$$
\rho_E(X)\leq L_E(0)
$$

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『ヨ ヨ イ 이 Q (^

Result on risk exchange with external agents

In the Pareto risk sharing market of *n* internal and $m = kn$ external agents, let $\alpha\in(0,1]$ and $\mathcal{E}=(\mathsf{p},\mathsf{w}^{1*},\ldots,\mathsf{w}^{n*},\mathsf{u}^{1*},\ldots,\mathsf{u}^{m*}).$

(i) Suppose that $L_F(a/k) < L_I(-a)$. The tuple $\mathcal E$ is an equilibrium if and only if $\mathbf{p}=(p,\ldots,p)$, $\rho=L_{\pmb{E}}(a/k)$, $(\mathbf{u}^{1*},\ldots,\mathbf{u}^{m*})$ is a permutation of $u^*(\mathbf{e}_{\lceil 1/k \rceil,n},\ldots,\mathbf{e}_{\lceil m/k \rceil,n})$, $u^*=a/k$, and $(w^{1*}, \ldots, w^{n*}) = (0_n, \ldots, 0_n).$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [콘] 및 19 Q @

Result on risk exchange with external agents

(ii) Suppose that $L_E(a/k) \ge L_I(-a)$ and $L_E(0) < L_I^{-1}$ $I_I^-(0)$. Let u^* be the unique solution to $L_E(u) = L_I(-ku)$, $u \in (0, a/k]$. The tuple $\mathcal E$ is an equilibrium if and only if $\mathbf p=(\rho,\ldots,\rho)$, $\rho=L_E(u^*),$ $(\boldsymbol{\mathsf{u}}^{1*},\ldots,\boldsymbol{\mathsf{u}}^{m*})=\textit{u}^*(\boldsymbol{\mathsf{e}}_{\mathsf{k}_1,n},\ldots,\boldsymbol{\mathsf{e}}_{\mathsf{k}_m,n}),$ and $(\mathsf{w}^{1*},\ldots,\mathsf{w}^{n*})=(\mathsf{a}-\mathsf{k}\mathsf{u}^*)(\mathsf{e}_{\ell_1,n},\ldots,\mathsf{e}_{\ell_n,n}),$ where $k_1, \ldots, k_m \in [n]$ and $\ell_1, \ldots, \ell_n \in [n]$ such that $u^*\sum_{j=1}^m \mathbb{1}_{\{k_j=s\}} + (a - k u^*)\sum_{i=1}^n \mathbb{1}_{\{\ell_i=s\}} =$ a for each $s \in [n].$ Moreover, if $u^* < a/(2k)$, then the tuple $\mathcal E$ is an equilibrium if and only if $\mathbf{p}=(p,\ldots,p)$, $\mathbf{\rho}=L_{E}(u^{\ast}),$ $(\mathbf{u}^{1\ast},\ldots,\mathbf{u}^{m\ast})$ is a permutation of $u^*(\mathbf{e}_{\lceil 1/k \rceil, n}, \ldots, \mathbf{e}_{\lceil m/k \rceil, n}),$ and $(\mathbf{w}^{1*}, \ldots, \mathbf{w}^{n*})$ is a permutation of $(a - ku^*)(e_{1,n}, \ldots, e_{n,n}).$

Result on risk exchange with external agents

(iii) Suppose that $L_E(0) \geq L_I^ _I^-(0)$. The tuple ${\cal E}$ is an equilibrium if and only if $\mathbf{p}=(p,\ldots,p)$, $p\in[L_1]$ $I_I^-(0),$ $L_E(0) \wedge L_I^+$ $^+_I(0)],$ $(\boldsymbol{\mathsf{u}}^{1*},\ldots,\boldsymbol{\mathsf{u}}^{m*})=(\boldsymbol{0}_n,\ldots,\boldsymbol{0}_n)$, and $(\boldsymbol{\mathsf{w}}^{1*},\ldots,\boldsymbol{\mathsf{w}}^{n*})$ is a permutation of $a(\mathbf{e}_{1,n},\ldots,\mathbf{e}_{n,n})$.

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『ヨ ヨ イ 이 Q (^

Risk exchange market for $\alpha > 1$

Proposition 7

In the Pareto risk sharing market, suppose that $\alpha \in (1,\infty)$, and ρ_1, \ldots, ρ_n are ES_{α} for some $q \in (0,1)$. Let

$$
\mathbf{w}^{i*} = \frac{a_i}{\sum_{j=1}^n a_j} \sum_{j=1}^n \mathbf{a}^j \text{ for } i \in [n] \text{ and } \mathbf{p}^* = (\mathbb{E}[X_1 | A], \dots, \mathbb{E}[X_n | A]),
$$

where $A = \{\sum_{i=1}^n a_i X_i \geq \text{VaR}_q(\sum_{i=1}^n a_i X_i)\}$. The tuple $(p^*, w^{1*}, \ldots, w^{n*})$ is an equilibrium.

If losses are not extremely heavy-tailed, then risk sharing is beneficial

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 경 경 → 9 Q @