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Background Stochastic dominance Risk exchange Small conjecture

Simple probabilistic question

I Suppose that X and X ′ are identically distributed

I Is it possible that

P(X < X ′) = 1?

NO ... because if it holds true then there exists x ∈ R such that

P(X < x) > P(X ′ < x),

violating the assumption of identical distribution
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Simple probabilistic question

I Suppose that X ,Y ,X ′,Y ′ are identically distributed

I Is it possible that

P(X + Y < X ′ + Y ′) = 1?

NO ... if X has finite mean ... because

E[X + Y ] = E[X ′ + Y ′]

What if X does not have finite mean?
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Pareto distribution

For θ, α > 0, the Pareto distribution is given by the cdf

Pα,θ(x) = 1−
(
θ

x

)α
, x ≥ θ

I θ: scale parameter

I α: tail parameter

I Pareto(α) = Pα,1

I Pareto(α) has an infinite mean ⇐⇒ α ∈ (0, 1]

• extremely heavy-tailed

I the most common heavy-tailed distribution used in actuarial

science
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Infinite-mean models

Data from insurance, natural catastrophes, finance, and operational risk

I aircraft insurance FINMA’21

I fire insurance Beirlant/Dierckx/Goegebeur/Matthys’99

I commercial property insurance Biffis/Chavez’14

I earthquakes Ibragimov/Jaffee/Walden’09

I wind catastrophes Rizzo’09

I nuclear power accidents Hofert/Wüthrich’12; Sornette/Maillart/Kröger’13

I operational risk Moscadelli’04

I cyber risk Eling/Wirfs’19; Eling/Schnell’20

I returns from technological innovations Silverberg/Verspagen’07
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Our goals

Setup

I losses X1, . . . ,Xn ∼ Pareto(α); particular interest: α ≤ 1

I exposure vector θ = (θ1, . . . , θn)

I ∆n = {θ ∈ [0, 1]n :
∑n

i=1 θi = 1}: standard n-simplex

I [n] = {1, . . . , n}

I a non-diversified portfolio: X1

I a diversified portfolio:
∑n

i=1 θiXi

Questions:

I Which of X1 and
∑n

i=1 θiXi is more dangerous?

I What is the implication on a risk exchange economy?
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Stochastic dominance

Definition 1 (Stochastic order and convex order)

For two random variables X and Y :

I stochastic order X ≤st Y holds if P(X > x) ≤ P(Y > x) for

all x ∈ R;

I convex order X ≤cx Y holds if E[u(X )] ≤ E[u(Y )] for all

convex functions u such that the two expectations exist;

I strict stochastic order X <st Y holds if

P(X > x) < P(Y > x) for all x > ess-infX .
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Stochastic dominance
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Stochastic dominance

I We mainly interpret X as loss

I Stochastic order ⇐⇒ first-order stochastic dominance

• E[u(X )] ≤ E[u(Y )] for all increasing loss functions u

• ρ(X ) ≤ ρ(Y ) for all increasing risk measures ρ

Equivalence e.g., Theorem 1.A.1 of Shaked/Shantikumar’07

I X ≤st Y ⇐⇒ P(X ′ ≤ Y ′) = 1 for some X ′
d
= X and Y ′

d
= Y

I X <st Y ⇐⇒ P(X ′ < Y ′) = 1 for some X ′
d
= X and Y ′

d
= Y
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Finite-mean case

Proposition 1

Let θ1, . . . , θn > 0 such that
∑n

i=1 θn = 1 and X ,X1, . . . ,Xn be

identically distributed random variables with finite mean and any

dependence structure. Then, X ≤st
∑n

i=1 θiXi holds if and only if

X1 = · · · = Xn almost surely.

I No non-trivial dominance in case of finite mean
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An unexpected stochastic dominance

Theorem 1

Let X ,X1, . . . ,Xn be iid Pareto(α) random variables, α ∈ (0, 1].

For (θ1, . . . , θn) ∈ ∆n, we have

X ≤st

n∑
i=1

θiXi .

Moreover, X <st
∑n

i=1 θiXi if θi > 0 for at least two i ∈ [n].

I EVT: P(
∑n

i=1 Xi/n > t) ≥ P(X > t) for t large enough

I Known case: n = 2, θ1 = θ2 = α = 1/2

Example 2.18 in the lecture slides of McNeil/Frey/Embrechts’15

Special thanks to Wenhao Zhu and Yuming Wang, who provided a first proof
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An unexpected stochastic dominance

“Unexpected”

I The strict dominance

P

(
n∑

i=1

Xi <

n∑
i=1

X ′i

)
= 1

can happen even if

Xi
d
= X ′i for i ∈ [n]

I For Pareto, dominance

⇐⇒ no finite expectation
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Generalizations

I This result has many generalizations

I Notably it holds for weak negative association, a form of

negative dependence
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Dominance relation between two diversified portfolios

Definition 2 (Majorization order)

For θ ∈ (θ1, . . . , θn) ∈ Rn and η ∈ (η1, . . . , ηn) ∈ Rn, θ is

dominated by η in majorization order, denoted by θ � η, if

n∑
i=1

θi =
n∑

i=1

ηi and
k∑

i=1

θ(i) ≥
k∑

i=1

η(i) for k ∈ [n − 1],

where θ(i) is the i-th order statistic of θ from the smallest.

I Write θ ≺ η if θ � η and θ 6= η

I θ � η ⇐⇒ components of θ are less spread out than η

I (1/n, . . . , 1/n) � θ � (1, 0, . . . , 0) for θ ∈ ∆n

I Discrete version of convex order ≤cx Marshall/Olkin/Arnold’11
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Stochastic dominance: Majorization

Theorem 2

Suppose that θ,η ∈ Rn
+ satisfy θ � η. Let X be a vector of n iid

Pareto(α) random variables, α ∈ (0, 1]. We have

η · X ≤st θ · X.

Moreover, if θ ≺ η, then η · X <st θ · X.
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Diversification pays or not

I X: a vector of iid Pareto(α) components

I θ � η =⇒ θ is more diversified

Classic result Theorem 3.A.35 of Shaked/Shantikumar’07

α > 1 =⇒ η · X ≥cx θ · X

I All risk-averse decision makers prefer the more diversified

I Diversification pays Samuelson’67

Our result

α ≤ 1 =⇒ η · X ≤st θ · X

I All rational decision makers prefer the less diversified

I Diversification hurts Ibragimov/Jaffee/Walden’11
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Stochastic dominance: Majorization

Corollary 1

For k, ` ∈ N such that k ≤ `, let X1, . . . ,X` be iid Pareto(α)

random variables, α ∈ (0, 1]. We have

1

k

k∑
i=1

Xi ≤st
1

`

∑̀
i=1

Xi .
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A risk exchange market

Notation

I X : the set of random variables

I Xρ ⊆ X : the set of financial losses

I ρ : Xρ → R is a risk measure

Monotonicity

I Weak monotonicity: ρ(X ) ≤ ρ(Y ) for X ,Y ∈ Xρ if X ≤st Y

I Mild monotonicity: ρ is weakly monotone and ρ(X ) < ρ(Y ) if

P(X < Y ) = 1

Ruodu Wang (wang@uwaterloo.ca) Infinite-mean Pareto distributions 20/37

wang@uwaterloo.ca


Background Stochastic dominance Risk exchange Small conjecture

A risk exchange market

Notation

I X : the set of random variables

I Xρ ⊆ X : the set of financial losses

I ρ : Xρ → R is a risk measure

Monotonicity

I Weak monotonicity: ρ(X ) ≤ ρ(Y ) for X ,Y ∈ Xρ if X ≤st Y

I Mild monotonicity: ρ is weakly monotone and ρ(X ) < ρ(Y ) if

P(X < Y ) = 1

Ruodu Wang (wang@uwaterloo.ca) Infinite-mean Pareto distributions 20/37

wang@uwaterloo.ca


Background Stochastic dominance Risk exchange Small conjecture

Examples of risk measures

For X ∼ F ,

I Value-at-Risk (VaR):

VaRq(X ) = F−1(q) = inf{t ∈ R : F (t) ≥ q}, q ∈ (0, 1]

I Expected Shortfall (ES):

ESp(X ) =
1

1− p

∫ 1

p

VaRu(F )du, p ∈ (0, 1)

I Range-VaR (RVaR):

RVaRp,q(X ) =
1

q − p

∫ q

p

VaRu(F )du, 0 ≤ p < q < 1

VaR, ES and RVaR are mildly monotone
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A risk exchange market

Risk exchange market

I n agents

I Pareto risks

I risk measures
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Distortion risk measures

For a random variable Y , a distortion risk measure ρ is defined as

ρ(Y ) =

∫ 0

−∞
(h(P(Y > x))− 1)dx +

∫ ∞
0

h(P(Y > x))dx ,

where h : [0, 1]→ [0, 1], called the distortion function, is a

nondecreasing function with h(0) = 0 and h(1) = 1

I The class includes VaR, ES, and RVaR

I Any distortion risk measure is mildly monotone unless it is a

mixture of ess-sup and ess-inf
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A risk exchange market

A Pareto risk exchange market with n ≥ 2 agents:

I X = (X1, . . . ,Xn) and X ,X1, . . . ,Xn
iid∼ Pareto(α) with α > 0

I the initial exposure vector of agent i is ai = aiei ,n with ai > 0

I p = (p1, . . . , pn) ∈ Rn
+ is the premium vector

I wi ∈ Rn
+ is the exposure vector of agent i over X after

exchanging risks

The total loss of agent i ∈ [n] after risk sharing is

Li (w
i ,p) = wi · X− (wi − ai ) · p.
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A risk exchange market

Agent i ∈ [n] is equipped with

I a risk measure ρi on X
• X is the convex cone generated by X1, . . . ,Xn and constants

I a cost function ci (‖wi‖ − ‖ai‖)
• X ci is a non-negative convex function satisfying ci (0) = 0

The risk assessment for agent i ∈ [n] is

ρi (Li (w
i ,p)) + ci (‖wi‖ − ‖ai‖)
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Equilibrium analysis in a risk exchange economy

An equilibrium of the market is
(
p∗,w1∗, . . . ,wn∗) ∈ (Rn

+)n+1 if

the following two conditions hold:

(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn

+

{
ρi
(
Li (w

i ,p∗)
)

+ ci (‖wi‖ − ‖ai‖)
}

for i ∈ [n]

(b) Market clearance:
n∑

i=1

wi∗ =
n∑

i=1

ai

In this case, the vector p∗ is an equilibrium price, and

(w1∗, . . . ,wn∗) is an equilibrium allocation
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Equilibrium analysis in a risk exchange economy

Theorem 3

In the Pareto risk sharing market, suppose that α ∈ (0, 1], and ρ1, . . . , ρn

are mildly monotone.

(i) All equilibria
(
p∗,w1∗, . . . ,wn∗) (if they exist) satisfy that

p∗ = (p, . . . , p) for some p ∈ R+ and
(
w1∗, . . . ,wn∗) is an

n-permutation of (a1, . . . , an).

(ii) Suppose that ρ1, . . . , ρn are distortion risk measures on X . The

tuple
(
(p, . . . , p), a1, . . . , an

)
is an equilibrium if p satisfies

c ′i+(0) ≥ p − ρi (X ) ≥ c ′i−(0) for i ∈ [n].

I The condition in (ii) is almost necessary for (p, . . . , p) to be an

equilibrium price
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Equilibrium analysis in a risk exchange economy

Conclusions

I No agent will hold two assets

I No risk sharing is beneficial

I Implication: In the presence of catastrophic losses, large

insurance companies should not share losses with each other

I Similar results hold under trading or diversification constraints

such as w ∈ Vb with b ∈ [0, 1) and

Vb =

{
(w1, . . . ,wn) ∈ Rn

+ : wj ≥ b
n∑

i=1

wi for j ∈ [n]

}
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Risk exchange with external agents

I n internal agents and m = kn external agents

I Internal agents have the same mildly monotone distortion risk

measure ρI , cost function cI , and initial loss exposure a

I External agents have the same mildly monotone distortion risk

measure ρE and cost function cE

I cI and cE : strictly convex and continuously differentiable except at

0 with cI (0) = cE (0) = 0

I uj ∈ Rn
+: exposure vector of external agent j ∈ [m] after risk sharing

I For external agent j , the loss after risk sharing is

LE (uj ,p) = uj · X− uj · p,

I external agent j ∈ [m] minimizes ρE
(
LE (uj ,p)

)
+ cE (‖uj‖)
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Risk exchange with external agents

An equilibrium of this market is

(p∗,w1∗, . . . ,wn∗,u1∗, . . . ,um∗) ∈ (Rn
+)n+m+1 satisfying

(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn

+

{
ρI
(
Li (w

i ,p∗)
)

+ cI (‖wi‖ − ‖ai‖)
}

for i ∈ [n];

uj∗ ∈ arg min
uj∈Rn

+

{
ρE
(
LE (uj ,p∗)

)
+ cE (‖uj‖)

}
for j ∈ [m]

(b) Market clearance:

n∑
i=1

wi∗ +
m∑
j=1

uj∗ =
n∑

i=1

ai
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Equilibrium analysis in a risk exchange economy

Conclusions

I This model can be completely solved

I No agent will hold two assets

I Risk sharing is beneficial among internal and external agents

under a mild cost-benefit inequality

I A necessary condition for a non-trivial equilibrium is

ρE (X ) < ρI (X ) (external agents have a lower risk premium)

I Implication: In the presence of catastrophic losses, a large

insurance company may seek reinsurance from external

reinsurers
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Risk exchange with external agents

Quadratic cost

Suppose that cI (x) = λI x
2, and cE (x) = λEx

2, x ∈ R, where

λI , λE > 0. We can compute the equilibrium price

p =
kλI

kλI + λE
ρE (X ) +

λE
kλI + λE

ρI (X ).

We also have the equlibrium allocations u∗ = (u, . . . , u) and

w∗ = (w , . . . ,w) where

u =
ρI (X )− ρE (X )

2(kλI + λE )
and w =

k(ρE (X )− ρI (X ))

2(kλI + λE )
+ a.
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A small conjecture

Our main result =⇒ for independent losses Y1, . . . ,Yn following

GPD with the same tail parameter α = 1/ξ ≤ 1, it holds that

n∑
i=1

VaRp(Yi ) ≤ VaRp

(
n∑

i=1

Yi

)
, for all p ∈ (0, 1)

I With strict inequality

I This also holds under weighted sums and majorization

Conjecture

This holds in case of different tail parameters as well.
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Infinite-mean Pareto models with different tail parameters

Estimated parameters of infinite-mean GPDs Moscadelli’04

i 1 2 3 4 5 6

ξi 1.19 1.17 1.01 1.39 1.23 1.22

βi 774 254 233 412 107 243

Table: The estimated parameters ξi and βi , i ∈ [6]

I GPD is parametrized by Gξ,β(x) = 1− (1 + ξx/β)−1/ξ for

x ≥ 0, where ξ ≥ 0 and β > 0
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Infinite-mean Pareto models with different tail parameters
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Figure: Curves of VaRp(
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i=1 Yi ) and
∑n

i=1 VaRp(Yi ) for the n = 6

GPD losses
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Summary

Main results

I Diversification penalty exists in many infinite-mean setups

• The conclusion flips for infinite-mean gains instead of losses

(e.g., entrepreneurship)

I Pareto risk exchange markets

• Infinite-mean with only internal agents no trade

• Finite-mean with only internal agents trade

• Infinite-mean with external agents trade only externally

Many open questions

I Majorization with negative association

I Different tail parameters

I Other extremely heavy-tailed distributions
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Appendix

An unexpected stochastic dominance

Proof sketch for θ = (1/n, . . . , 1/n) and non-strict dominance.

I Define S : (u1, . . . , un) 7→ mini∈[n]
n
i
u(i) where u(i) is the i-th order statistic of

(u1, . . . , un) from the smallest

I The Simes theorem: Simes’86

If U1, . . . ,Un are iid U[0, 1] then S(U1, . . . ,Un) is U[0, 1]

I Comparison: for u1, . . . , un > 0, Chen/Liu/Tan/W.’23

u−1
1 + · · ·+ u−1

n ≥ ju−1
(j)

for all j ∈ [n]

=⇒ u−1
1 + · · ·+ u−1

n ≥ n(S(u1, . . . , un))−1

=⇒ U−1
1︸︷︷︸

Pa(1)

+ · · ·+ U−1
n︸︷︷︸

Pa(1)

≥ n(S(U1, . . . ,Un))−1 d
= n U−1

1︸︷︷︸
Pa(1)

I Inequality for generalized means: for α < 1, Hardy-Littlewood-Pólya’34(
1

n
(u
−1/α
1 + · · ·+ u

−1/α
n )

)−α
≤
(

1

n
(u−1

1 + · · ·+ u−1
n )

)−1

=⇒ U−α1︸ ︷︷ ︸
Pa(α)

+ · · ·+ U−αn︸ ︷︷ ︸
Pa(α)

≥ n(S(U1, . . . ,Un))−α
d
= n U−α1︸ ︷︷ ︸

Pa(α)
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Appendix

The Simes theorem and its impact

BH’95 Theorem: For iid U[0, 1] p-values, the BH procedure at level α

has false discovery rate αK0/K .

Simes’86 Theorem: For iid U[0, 1] p-values, if K0 = K , then the BH

procedure at level α has false discovery rate α.
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Appendix

Stochastic dominance: Generalizations

Diversification penalty also exists in the following setups, all with

infinite mean

I Negative dependence

I Super-Pareto distributions

I Insurance portfolios: Random number and weights

I Tail risks: Tail distributions being infinite-mean Pareto

I Truncated risks: Pareto losses truncated at high levels

I Catastrophe losses: Pareto losses triggered by catastrophes

I Different indices: Pareto losses with different tail parameters
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Appendix

Stochastic dominance: Negative dependence

Definition 3 (Joag-Dev/Proschan’83)

A random vector Z = (Z1, . . . ,Zn) is negatively associated (NA) if

for every pair of disjoint sets A, B of [n],

cov(f (ZA), g(ZB)) ≤ 0,

where ZA = (Zk)k∈A, ZB = (Zk)k∈B , and f and g are both

increasing coordinatewise.

I One of the most popular notions of negative dependence

I Invariant under transforms (marginal-free, copula)
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Appendix

Stochastic dominance: Negative dependence

Definition 4

A set S ⊆ Rk , k ∈ N is decreasing if x ∈ S implies y ∈ S for all

y ≤ x. Random variables X1, . . . ,Xn are weakly negatively

associated (WNA) if for any i ∈ [n], decreasing set S ⊆ Rn−1, and

x ∈ R with P(Xi ≤ x) > 0,

P(X−i ∈ S | Xi ≤ x) ≤ P(X−i ∈ S),

where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

I Weaker than NA in general

I Gaussian: NA ⇐⇒ WNA ⇐⇒ nonpositive correlations
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Appendix

Super-Pareto distribution

Definition 5

A random variable X with essential infimum zX ∈ R is

super-Pareto (or has a super-Pareto distribution) if the function

g : x 7→ 1/P(X > x) is strictly increasing and concave on [zX ,∞).

Moreover, X is regular if zX > 0 and g(x) ≤ x/zX for x ≥ zX .

I For α ∈ (0, 1], g : x 7→ 1/(1− Pα,θ(x)) = (x/θ)α ∨ 1 is

strictly increasing, concave, and bounded by x/θ on [θ,∞)

=⇒ all extremely heavy-tailed Pareto distributions are

super-Pareto and regular

I The super-Pareto property is preserved under increasing,

convex, and non-constant transforms
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Appendix

Stochastic dominance: Negative dependence

I WNAID: WNA and identically distributed

Theorem 4

Suppose that X1, . . . ,Xn are super-Pareto and WNAID, and

X
d
= X1. For (θ1, . . . , θn) ∈ ∆n, we have

X ≤st

n∑
i=1

θiXi .

Moreover, X <st
∑n

i=1 θiXi holds if θi > 0 for at least two i ∈ [n].

I Intuition: Negative dependence makes large losses less likely

to happen together, but our first result shows that it less risky

if large losses happen together
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Stochastic dominance: Insurance risks

Proposition 2

Let X ,X1,X2, . . . be iid Pareto(α), α ∈ (0, 1], Wj > 0 for

j = 1, 2, . . . , and N be a counting random variable, such that X ,

{Xi}i∈N, {Wi}i∈N, and N are independent. We have

X1{N≥1} ≤st

∑N
i=1 WiXi∑N
i=1 Wi

and
N∑
i=1

WiX ≤st

N∑
i=1

WiXi .

I Classic collective risk model: W1 = W2 = · · · = 1

X11{N≥1} ≤st
1

N

N∑
i=1

Xi and NX1 ≤st

N∑
i=1

Xi

I If P(N ≥ 2) 6= 0, then strict dominance holds
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Stochastic dominance: Tail risks

I For α > 0, we say that Y has a Pareto(α) distribution beyond

x ≥ 1 if P(Y > t) = t−α for t ≥ x

Proposition 3

Let Y ,Y1, . . . ,Yn be iid random variables distributed as Pareto(α)

beyond x ≥ 1 and α ∈ (0, 1]. Assume Y ≥st X ∼ Pareto(α). For

(θ1, . . . , θn) ∈ ∆n and t ≥ x , P (
∑n

i=1 θiYi > t) ≥ P (Y > t), and

the inequality is strict if t > 1 and θi > 0 for at least two i ∈ [n].

I If X ,X1, . . . ,Xn are Pareto(α) beyond m, then

X ∨m ≤st

n∑
i=1

θi (Xi ∨m); (X −m)+ ≤st

n∑
i=1

θi (Xi −m)+
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Stochastic dominance: Truncated risks

Proposition 4

Let X ,X1, . . . ,Xn be iid Pareto(α) random variables, α ∈ (0, 1],

and Yi = Xi ∧ ci where ci ≥ 1 for each i ∈ [n]. Suppose that

(θ1, . . . , θn) ∈ ∆n with θi > 0 for i ∈ [n], and denote by

c = min{c1θ1, . . . , cnθn}. We have

P

(
n∑

i=1

θiYi > t

)
= P

(
n∑

i=1

θiXi > t

)
> P (X > t)

for t ∈ (1, c].
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Stochastic dominance: Catastrophe losses

Theorem 5

Let X1, . . . ,Xn be iid Pareto(α) random variables, α ∈ (0, 1], and

A1, . . . ,An be any events independent of (X1, ...,Xn). For

(θ1, . . . , θn) ∈ ∆n, we have

λX1A ≤st

n∑
i=1

θiXi1Ai
,

where λ ≥ 1, X ∼ Pareto(α), and A is independent of X satisfying

λP(A) =
∑n

i=1 θiP(Ai ).

I larger losses with low frequency is better than smaller losses

with high frequency
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Majorization: Catastrophe losses and tail risks

Theorem 6

Let X1, . . . ,Xn be iid Pareto(α) random variables with α ∈ (0, 1],

and A1, . . . ,An be events with equal probability that are

independent of X1, . . . ,Xn. Let Y = (X11A1 , . . . ,Xn1An). If

θ,η ∈ Rn
+ satisfy θ � η, then θ · Y ≥st η · Y .

I ‖(θ1, . . . , θn)‖ =
∑n

i=1 |θi |

Proposition 5

Let Y = (Y1, . . . ,Yn) be a vector of iid Pareto(α) random

variables beyond c ≥ 1 with α ∈ (0, 1] and θ,η ∈ Rn
+ satisfy

θ ≺ η. Then P(θ · Y > x) > P(η · Y > x) for x > c‖θ‖.
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Different tail parameters

I θ↑ = (θ(1), . . . , θ(n)): increasing rearrangement of θ

Proposition 6

Suppose that θ,η ∈ Rn
+ satisfy θ � η. Let X = (X1, . . . ,Xn) be a

vector of independent components with Xi ∼ Pareto(αi ) with

0 < α1 ≤ · · · ≤ αn ≤ 1. We have

η↑ · X ≤st θ
↑ · X.

Moreover, if θ ≺ η, then η↑ · X <st θ
↑ · X.
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Appendix

Risk exchange with external agents

Let

LE (b) = c ′E (b) + ρE (X ) and LI (b) = c ′I (b) + ρI (X ), b ∈ R,

and write L−I (0) = c ′I−(0) + ρI (X ) and L+
I (0) = c ′I+(0) + ρI (X ).

I LE (0) and L−I (0) are marginal cost and benefit of entering the

market.

I To have internal and external agents participate in risk

sharing, one needs

ρE (X ) ≤ LE (0) < p < L−I (0) ≤ ρI (X ).
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Result on risk exchange with external agents

In the Pareto risk sharing market of n internal and m = kn external

agents, let α ∈ (0, 1] and E = (p,w1∗, . . . ,wn∗,u1∗, . . . ,um∗).

(i) Suppose that LE (a/k) < LI (−a). The tuple E is an equilibrium

if and only if p = (p, . . . , p), p = LE (a/k), (u1∗, . . . ,um∗) is a

permutation of u∗(ed1/ke,n, . . . , edm/ke,n), u∗ = a/k , and

(w1∗, . . . ,wn∗) = (0n, . . . , 0n).
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Appendix

Result on risk exchange with external agents

(ii) Suppose that LE (a/k) ≥ LI (−a) and LE (0) < L−I (0). Let u∗

be the unique solution to LE (u) = LI (−ku), u ∈ (0, a/k]. The

tuple E is an equilibrium if and only if p = (p, . . . , p), p = LE (u∗),

(u1∗, . . . ,um∗) = u∗(ek1,n, . . . , ekm,n), and

(w1∗, . . . ,wn∗) = (a− ku∗)(e`1,n, . . . , e`n,n), where

k1, . . . , km ∈ [n] and `1, . . . , `n ∈ [n] such that

u∗
∑m

j=1 1{kj=s} + (a− ku∗)
∑n

i=1 1{`i=s} = a for each s ∈ [n].

Moreover, if u∗ < a/(2k), then the tuple E is an equilibrium if and

only if p = (p, . . . , p), p = LE (u∗), (u1∗, . . . ,um∗) is a permutation

of u∗(ed1/ke,n, . . . , edm/ke,n), and (w1∗, . . . ,wn∗) is a permutation

of (a− ku∗)(e1,n, . . . , en,n).

Ruodu Wang (wang@uwaterloo.ca) Infinite-mean Pareto distributions 53/37

wang@uwaterloo.ca


Appendix

Result on risk exchange with external agents

(iii) Suppose that LE (0) ≥ L−I (0). The tuple E is an equilibrium if

and only if p = (p, . . . , p), p ∈ [L−I (0), LE (0) ∧ L+
I (0)],

(u1∗, . . . ,um∗) = (0n, . . . , 0n), and (w1∗, . . . ,wn∗) is a

permutation of a(e1,n, . . . , en,n).
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Risk exchange market for α > 1

Proposition 7

In the Pareto risk sharing market, suppose that α ∈ (1,∞), and

ρ1, . . . , ρn are ESq for some q ∈ (0, 1). Let

wi∗ =
ai∑n
j=1 aj

n∑
j=1

aj for i ∈ [n] and p∗ = (E[X1|A], . . . ,E[Xn|A]),

where A = {
∑n

i=1 aiXi ≥ VaRq(
∑n

i=1 aiXi )}. The tuple(
p∗,w1∗, . . . ,wn∗) is an equilibrium.

I If losses are not extremely heavy-tailed, then risk sharing is

beneficial
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