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@ Recap: Coherent and convex risk measures
© Star-shaped risk measures
© Quasi-star-shaped risk measures

@ Lambda quantiles and the Moulin theorem

Based on the following joint work

» Castagnolit /Cattelan/Maccheroni/Tabaldi/W., Star-shaped risk measures.
Operations Research, 2022

» Han/Wang/W./Xia, Cash-subadditive risk measures without quasi-convexity.
Working paper, 2022, arXiv:2110.12198
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Coherence and convexity
©000

Coherent risk measures

Artzner/Delbaen/Eber/Heath’99 MF

A risk measure p: X — R
» X: a convex cone of random losses
> Default choice: the set of bounded rvs on (Q2, F,P)
A coherent risk measure satisfies
» Monotonicity: p(X) < p(Y)if X <Y
» Cash additivity: p(X +¢) = p(X) 4+ c forall c e R
» Subadditivity: p(X + Y) < p(X) + p(Y)
» Positive homogeneity (PH): p(AX) = Ap(X) for all A >0
— Normalization: p(0) =0
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Coherence and convexity
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Convex risk measures

Follmer/Schied'02 FS; Frittelli/Rosazza Gianin'02 JBF

A normalized monetary risk measure satisfies
» monotonicity, cash additivity, and normalization
A convex risk measure is monetary and convex
> p(AX +(1—=A)Y) < Ap(X) + (1 = X)p(Y) for all A €[0,1]
» With positive homogeneity (PH): convexity <= subadditivity
Motivations for convexity relaxed from coherence
> Liquidity risk: p(AX) > Ap(X) for A > 1 (violating PH)

» A merge may create extra risk: violating subadditivity
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Coherence and convexity
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Acceptance sets

Acceptance set of a normalized monetary risk measure

A, = {X € X p(X) <0}

v

0 € 0A, = boundary of A, (normalization)
» X<Yand YA, = X e A, (monotonicity)

v

A, is convex <= p is convex

v

A, is convex and conic <= p is coherent

p(X)=inf{lmeR: X —me Ay}, X € X (cash additivity)

v

Ruodu Wang  (wang@uwaterloo.ca) Star-shaped risk measures 6/38


wang@uwaterloo.ca
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VaR and ES

loss density

Value-at-Risk (VaR), p € (0,1)

V?LRS L9 5 R,

VaRJ(X) = Fx ' (p)

=inf{x e R: Q(X < x) > p}.

(Ieft—quantile))

Ruodu Wang

(wang@uwaterloo.ca)

Expected Shortfall (ES), p € (0,1)

ESY: L' >R,

1
ESY(X) = ﬁ / VaRJ(X)dgq
P

(also: TVaR/CVaR/AVaR/CTE)

v
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Progress

@ Star-shaped risk measures
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Star-shaped risk measures

In this part we will always assume normalization

we include it in the definition of a monetary risk measure
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Star-shaped risk measures

A star-shaped risk measure is monetary and star-shaped
» Star-shapedness: p(AX) > Ap(X) for all A > 1
Equivalent conditions:
> p(AX) < Ap(X) for all A € (0,1) <=> convexity at 0
» The risk-to-exposure ratio p(AX)/A is increasing in A > 0
» A, is star-shaped at 0: X € 4, = AX € A, forall A € [0,1]
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Star-shaped risk measures

A star-shaped risk measure is monetary and star-shaped
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Star-shaped risk measures

Star-shapedness is
» weaker than convexity or positive homogeneity
> satisfied by all monetary risk measures in practice

For a subadditive monetary risk measure

Star-shapedness <= convexity <= PH <= coherence
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Motivation |: Liquidity risk

A dealer needs to clear a position X with some central clearing

counterparties (CCPs)
» n CCPs with price functions p1, ..., pn
» Liquidity cost = p;(AX)/\ increases in A >0

» C: possible compositions of CCPs (subsets of {1,...,n})

Dealer's optimal clearing problem Glasserman/Moallemi/Yuan'16 OR
min min (04 ’ X=X b = p(X
iy g {30000 | = =
st. icA Vi€A IEA
> p is star-shaped but not convex (even if p1,..., p, are convex)
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Motivation |lI: Aggregation of opinions or prices

> pi, i € |: convex risk measures, expert opinions/prices
» Most conservative (convex)

max p;(X

icl piX)

» Most competitive (star-shaped but non-convex)

X
g pitx)

» a-max-min (star-shaped but non-convex)

amaxp; (X) + (1 — a)min p; (X)

v

Median (star-shaped but non-convex)

median{p; (X) | i € I}
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Motivation |ll: Non-concave utilities

Utility-based shortfall risk measures
pu(X) =inf{m € R | Ep[u(m — X)] > u(0)}, XeXx

.o .
u is concave & p, is convex u(x)!
& strong risk aversion

(empirically challengeable)

» Star-shaped at 0 utility functions >
A+ u(A)/A is decreasing on
(0,00) and (—o00,0); u(0) =0

Landsberger/Meilijson’90 JET

» u star-shaped & p,, star-shaped
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Representation |

For a mapping p : X — R, the following are equivalent:

(i) p is a star-shaped (resp. positively homogeneous and

monetary) risk measure;

(ii) there exists a collection I' of convex (resp. coherent) risk

measures such that

p(X) = min~y(X), XeX.
yel

Proof: Any star-shaped acceptance set A (with 0 € 0.A) is the

union of convex acceptance sets A, (with 0 € 0.A,)
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Proof sketch

boundary 0.A,

~
hened

A

.
Ay R AP \ Ay
The intuition behind the representation in case Q = {w1,w>}, where
Ay ={X € X : X < XY — p(Y)) for some X € [0,1]}
Star-shaped risk measures 16/38
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Representation |l

> P: probability measures Q < P on (Q, F); X = L>°(Q, F,P)
> A normalized panelty is ay : P — [0, 0o] with infgep oy (Q) =0

> A convex risk measure v on X satisfying Fatou continuity has

representation, for some normalized penalty c.,

¥(X) = sup {Eq[X] — 0, (Q)}, X exX
QeP

Proposition

A mapping p: X — R is a star-shaped risk measure if and only if

there exists a collection {cav } eF of normalized penalties such that

p(X) = ul sup {Eo[X] -0y (Q)}, Xe&.

T = = =
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Closure under operations

For a collection of star-shaped risk measures, their average,
supremum, infimum, and inf-convolution (when defined) are

star-shaped risk measures.

> A closure property useful for many operations in finance
» This closure property also holds for

® |aw-invariant star-shaped risk measures
® SSD-consistent star-shaped risk measures

® positively homogeneous risk measures

but not for convex or coherent risk measures
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Example |: scenario-based VaR and ES

Scenario-based risk measures W./Ziegel'21 FS

» Q: a finite collection Q of probability measures

MaXVaRﬂg(X) = max{VaRg(X) | Q € 9}
MaxES$(X) = max{ES(X) | Q € Q}

MedVaR$(X) = median{VaR§ (X) | Q € Q}
MedES(X) = median{ESJ(X) | Q € O}

» MaxVaR, MedVaR and MedES are star-shaped but not convex

» MaxES is star-shaped and convex
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Example Il: benchmark VaR

The benchmark-loss VaR Bignozzi/Burzoni/Munari'20 JRI

LVaRZ(X) = sup {VaRZ(X) — g(a)}
a€e(0,1)

where g : (0,1) — R is increasing with sup,cg g (0+) =0
> LVaRg(? is a star-shaped risk measure
> neither positively homogeneous nor convex

The adjusted ES of Burzoni/Munari/W.'22 JBF

ESZ(X) = sup {ESJ(X) - g(a)}
a€(0,1)

is convex (hence star-shaped)
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Consistent risk measures

» pis SSD-consistent if p(X) < p(Y) whenever X <icx Y
® X <iex Y: Ep[f(X)] < Ep[f(Y)] for all increasing convex f

» Classic definition of risk aversion Rothschild/Stiglitz'70 JET

» Satisfied by all finite-valued law-invariant convex risk measures
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Consistent risk measures

A SSD-consistent monetary risk measure p on X = L>*(Q, F,P)

has representation as an infimum of adjusted ES Mao/W.'20 SIFIN

p(X)=inf sup {ESI(X)—g(a)} XeXx (MW
8€Y 0e(0,1)

for some set G of increasing g : (0,1) — R with sup,.5 g(0+) =0

A mapping p : X — R is an SSD-consistent star-shaped risk

measure if and only if its has a representation (MW) in which G is

a star-shaped set.

> This result can be generalized without cash additivity
® e.g., return risk measures Laeven/Rosazza Gianin/Zullino’24 IME
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Progress

© Quasi-star-shaped risk measures
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Cash-subadditive risk measures

El Karoui/Ravanelli'09 MF

(No longer assume normalization)
» Cash additivity: $1 more loss = $1 more capital (time 0)
> No problem if interest rate is a constant
» Stochastic discount factor D <1
> p(X) = po(DX) with monetary pg
> p(X +c) = po(DX + Dc) < po(DX + ¢) = p(X) + ¢
Giving rise to

» Cash subadditivity: p(X 4 ¢) < p(X) + ¢ for all ¢ > 0
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Quasi-star-shapedness
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Quasi-convexity

Cerreia-Vioglio/Maccheroni/Marinacci/Montrucchio’'ll MF

For cash-subadditive risk measures, convexity is no longer natural

» Quasi-convexity: p(AX 4+ (1 — A)Y) < max{p(X), p(Y)} for
all A € [0,1]

> For monetary p, convexity < quasi-convexity

» Representation (Ps: set of finitely additive probabilities)
X) = R(Eg[X],Q), Xe X
p(X) s (EqlX], Q)

for some R : R x Pr — R satisfying some conditions
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Example |: Expected insured claim

Let f: Ry — R, be 1-Lipschitz (insured or retained loss)
» p(X) = Ep[f(X)] is a cash-subadditive risk measure
Example: p(X) = Ep[min{(X — d)4, L}]

» insured loss with deductible and limit

v

cash subadditive

> not quasi-convex or quasi-concave

v

its range D, = [0, L]

v

Ep can be replaced by any monetary risk measure
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Example II: Risk measures based on eligible assets

» An acceptance set A C X
A reference asset S = (Sp, St) € X2, where ST >0

v

v

Define Falka/Koch-Medina/Munari'14 FS

pA75(X):inf{m€R:X—;nSTGA}, XeX
0

» The minimal needed capital S to meet the acceptability
specified by A
pAs is cash subadditive if P(S1 < Sp) =0

v

v

In general not quasi-convex
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Quasi-star-shapedness and quasi-normalization

For a normalized monetary p,
> Star-shapedness: p(AX) < Ap(X) for all A € [0,1]
is equivalent to convexity at each constant t € R
> p(AX + (1= N)t) < Ap(X) + (1 — A)p(t) for all X € [0,1]
Quasi-star-shapedness (QSS): quasi-convexity at each constant t € R
> QSS: p(AX + (1 — A)t) < max{p(X), p(t)} for all A € [0,1]
Normalization in this context: p(t) =t for all t € R
> Quasi-normalization: p(t) =t for all t in the range D, of p

® eg, p(X)=E[XAK]
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Quasi-star-shapedness and quasi-normalization

Proposition

For monotone cash-additive risk measures,

(i) normalization <= quasi-normalization;
(ii) star-shapedness <= quasi-star-shapedness;
(iii) convexity <= quasi-convexity.

In contrast, for monotone cash-subadditive risk measures, the

above equivalence does not hold.
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Quasi-star-shapedness
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a (...) risk measure

is an infimum of (...) risk measures

Mao/W."20

CA, SSD-consistent

CA, convex, law-invariant

Jia/Xia/Zhao'20

CA

CA, convex

Castagnoli et al.'22

CA, star-shaped, normalized

CA, convex, normalized

CS, SSD-consistent

CS, quasi-convex, law-invariant

CS

CS, quasi-convex

Han et al.’22

CS, QSS, normalized

CS, quasi-convex, normalized

CS, QSS, quasi-normalized

CS, quasi-convex, quasi-normalized

Laeven et al.’24

QSS, SSD-consistent

convex, SSD-consistent

Always assume monotonicity; CA: cash additive; CS: cash subadditive
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Representation |l

Proposition

A functional p : X — R is a monotone cash-subadditive risk
measure if and only if there exists a set R of upper
semi-continuous, quasi-concave, increasing and 1-Lipschitz in the
first argument functions R : R x Pr — R such that

X) = mi R (Eq[X for all X € X.
20S) = ity e (b, € fore
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Progress

@ Lambda quantiles and the Moulin theorem
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A-Value-at-Risk Frittelli/Maggis/Peri'14 MF
AVaR(X) =inf{x e R: P(X < x) >A(x)}, XeX

for some decreasing function A : R — [0, 1] not constantly 0

» Ais a constant a € (0,1) = AVaR = VaR}

» Cash subadditive, not cash additive

» Not quasi-convex

» Axiomatized via locality Bellini/Peri’22 SIFIN
» Root in political science Moulin'80 Pub. Cho.
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Properties of A-VaR

The risk measure ANVaR. has the representation, for all X € X,

— B P _ P
AVaR(X) = inf {VaR,\(X)(X) v x} = sup {VaR,\(X)(X) A x} .

Moreover, AVaR is

> cash subadditive but generally not cash additive;

> quasi-star-shaped but generally not star-shaped;

» quasi-normalized but generally not normalized.
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The Moulin Theorem

On strategy-proofness and single peakedness

H Moulin - Public Choice, 1980 - Springer

Conclusion This paper investigates one of the possible weakening of the (too demanding)
assumptions of the Gibbard-Satterthwaite theorem. Namely we deal with a class of voting ...
Y% Save 99 Cite Cited by 1177 Related articles All 9 versions 99

2. The characterization theorem

Theorem

The following two statements are equivalent:

(i) the voting scheme 7 from K" into & is strategy-proof, anonymous,
and efficient;

(ii) there exist (n — 1) real numbers o, . ..,0, _; ER U {+ o0, — 0} such
that:

V... xp)ERY m(xy, ..., Xp) = My, .., X, 0, ooy Q)
median
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The Moulin Theorem

> Xi,...,X,. the most preferred policies by voters

> 7. voting scheme

» 7(x1,...,X%n): the policy based on the disclosed xi, ..., x,
> Voters prefer the policy to be close to their most preferred
» Strategy-proof: No voters have incentives to disclose falsely
» Anonymous: All voters are treated equal

» Efficient: The policy cannot be Pareo-improved
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The Moulin Theorem

> oy =00

» A: cdf of Unif{ay,...,an} (some points are infinite)
> Fx: cdf of X ~ Unif{xy,...,x,}

»A=1-A

AVaR(X) = inf{x e R: P(X < x) > A(x)}
=inf{x e R: Fx(x) + A(x) > 1}
= VaRy 5((Fx +4)/2)

=m(X1, ...y Xny Q1y ey Q1)

v

AVaR(X) is the median of the average of Fx and 1 — A

» There is no loss of generality to think this way
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Thank you for your kind attention

Working papers series on the theory of risk measures

http://sas.uwaterloo.ca/~wang/pages/WPS1.html
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