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Markov’s inequality

I Let E be an e-variable for H

I Rejection threshold based on Markov’s inequality: for P ∈ H,

P

(
E ≥ 1

α

)
≤ α

I Markov’s inequality is attainable

• P(E = 1/α) = α = 1− P(E = 0)

I Often too conservative

I The attending e-variable is very special

I Almost sharp if E is a obtained by an H-martingale first

hitting 1/α
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Markov’s inequality

0 1/α

It has to look like red and 1/α has to precisely fall on the right leg

to make Markov sharp
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Rejection probability bounds for e-values

We will assume

I No access to the underlying data

I Only having the e-values

I Some side information on the underlying e-variables that the

tester trusts
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Rejection probability bounds for e-values

I For this work it suffices to consider H = {P}

I E : a set of e-variables (to be specified later)

I E0: the set of all e-variables

I For γ > 0, define the quantity

Rγ(E) = sup
E∈E

P(E ≥ 1/γ)

I Rγ(E) is the worst-case type I error of e-tests based on

thresholds of 1/γ

I Rγ(E0) = γ for γ ∈ (0, 1]
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Rejection probability bounds for e-values

Our goal:

I Compute Rγ(E) for γ ∈ (0, 1] and various E
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Thresholds for e-values

Lemma 1

For α ∈ (0, 1), the quantity

Tα(E) := inf{t ≥ 1 : R1/t(E) ≤ α}

satisfies

Tα(E) =

(
sup
E∈E

inf{x ∈ R : P(X ≤ x) ≥ 1− α}
)
∨ 1.

If γ 7→ Rγ(E) is continuous, then Tα(E) is the smallest real

number t ≥ 1 such that P(E ≥ t) ≤ α for all E ∈ E .

I This result and the next have nothing to do with e-variables
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Calibrators

I The function γ 7→ R1/γ(E) serves as a refinement of e-to-p

calibrators

I For a subset E of e-variables, we say that a function

f : [0,∞]→ [0,∞) is an e-to-p calibrator on E if f is

decreasing and f (E ) is a p-variable for all E ∈ E
I x 7→ (1/x) ∧ 1 is the only admissible e-to-p calibrator on E0

• Weakly smaller than any other e-to-p calibrator Vovk/W.’21

I For various subsets E of E0, we can find better e-to-p

calibrators based on R1/γ(E)
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Calibrators

Theorem 1

The function x 7→ R1/x (E) on [0,∞] is an e-to-p calibrator on E ,

and it is the smallest such calibrator.

I By computing Rγ(E) or an upper bound on it, we can convert

e to p better than x 7→ (1/x) ∧ 1

I Useful in case p-values are needed (e.g., BH procedure with

other p-values)

I always have a smallest element (not true for p-to-e calibrators)
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Decreasing densities

All distributional descriptions are based on P

ED = {E ∈ E0 : E has a decreasing density on its support}

I Allow point-mass at the left end-point of the support

I Examples: Exponential, Pareto

Theorem 2

For γ ∈ (0, 1), Rγ(ED) = γ/2 and R1(ED) = 1.

I Worst-case type I error with threshold 1/γ is halved

I Tα(ED) = 1/(2α)

Ruodu Wang (wang@uwaterloo.ca) E-power and improved e-tests 12/48

wang@uwaterloo.ca


Thresholds for e-values Distributional assumptions Comonotonicity Improving e-BH E-power

Decreasing densities

All distributional descriptions are based on P

ED = {E ∈ E0 : E has a decreasing density on its support}

I Allow point-mass at the left end-point of the support

I Examples: Exponential, Pareto

Theorem 2

For γ ∈ (0, 1), Rγ(ED) = γ/2 and R1(ED) = 1.

I Worst-case type I error with threshold 1/γ is halved

I Tα(ED) = 1/(2α)

Ruodu Wang (wang@uwaterloo.ca) E-power and improved e-tests 12/48

wang@uwaterloo.ca


Thresholds for e-values Distributional assumptions Comonotonicity Improving e-BH E-power

Unimodal densities

EU = {E ∈ E0 : E has a unimodal density on R}

I Allow point-mass at the model

I Examples: log-normal, gamma

Theorem 3

For γ ∈ (0, 1], Rγ(EU) = (γ/2) ∧ (2γ − 1).

I Worst-case type I error with threshold 1/γ is halved if

γ ≤ 2/3 (the most practical situation)
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Log-concavity

ELCD = {E ∈ E0 : E has a log-concave density on R}

ELCS = {E ∈ E0 : E has a log-concave survival function on R}

ELCF = {E ∈ E0 : E has a log-concave distribution function on R}

I Density can be 0 on (−∞, a) or (a,∞), or both

I ELCD ⊆ ELCS; ELCD ⊆ ELCF

I ELCD ⊆ EU and ED ⊆ ELCF

I LCD: normal, uniform, Laplace, exponential, gamma with

shape parameter ≥ 1 (all confined to [0,∞) for us)

I Log-normal and Pareto distributions are LCF but not LCS
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Log-concavity

Theorem 4

For γ ∈ (0, 1),

Rγ(ELCS) = exp{sγ/γ} ≤ exp{1− 1/γ},

where sγ is the unique solution to the equation exp{s/γ} = s + 1.

Further, R1(ELCS) = 1.

I Huge improvement from Markov’s bound for small γ
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Log-concavity

Proposition 1

For γ ∈ (0, 1], we have

e−1/γ ≤ Rγ(ELCD) ≤ Rγ(EU) ∧ Rγ(ELCS) ≤ e1−1/γ .

I e−1/γ is the case of exponential with mean 1

Proposition 2

For γ ∈ (0, 1], Rγ(ELCF) = γ.

I The assumption of LCF is too weak
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Log-transformed random variables

ELS = {E ∈ E0 : log E has a symmetric distribution}

ELU = {E ∈ E0 : log E has a unimodal distribution}

ELUS = {E ∈ E0 : log E has a unimodal and symmetric distribution}

ELD = {E ∈ E0 : log E has a decreasing density on its support}

ELN = {E ∈ E0 : E has a log-normal distribution}

I E-variables are often multiplicative ...

I Require P(E = 0) = 0, so that log E is real-valued

I ELN ⊆ ELUS ⊆ ELS
I The point-mass distributions x ∈ (0, 1] are included
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Log-transformed random variables

Proposition 3

For γ ∈ (0, 1), Rγ(ELS) = γ ∧ (1/2) and R1(ELS) = 1.

Proposition 4

For γ ∈ (0, 1], Rγ(ELU) = γ.

Proposition 5

For γ ∈ (0, 1), Rγ(ELN) = Φ(−
√
−2 log γ), where Φ is the

standard normal cdf, and R1(ELN) = 1.
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Log-transformed random variables

Theorem 5

For γ ∈ (0, 1],

γ

e
≤ Rγ(ELD) = Rγ(ELUS) ≤ γ

e

(
1

1− γ2
∨ e

)
.

I Improvable with a factor of ≈ e
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Summary of worse-case type I errors

Comparison of worse-case type I errors for different conditions on

the shapes of the e-variable distributions
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Summary of improved thresholds

Comparison of thresholds different conditions on the shapes of the

e-variable distributions
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Summary of improved thresholds

α

0.001 0.01 0.02 0.05 0.1 0.2

E0, ELS, ELU 1000 100 50 20 10 5

ED, EU 500 50 25 10 5 2.5

ED, ELUS 368 36.82 18.45 7.49 3.93 2.28

ELN 118 14.97 8.24 3.87 2.27 1.42

ELCD, ELCS 6.91 4.65 4 3.15 2.56 2
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Comonotonic e-variables

I A set of random variables is comonotonic if each element is an

increasing function of a common random variable (e.g., data)

I For testing Qθ0 against Qθ, a common e-variable is

Eθ =
dQθ
dQθ0

I For testing {Qθ0} against {Qθ : θ ∈ Θ1}, one can use the

mixture e-variable

Eν =

∫
Θ1

dQθ
dQθ0

ν(dθ)

where ν is a distribution on Θ1

I (Eθ)θ∈Θ1 may be comonotonic, e.g., one-sided Gaussian
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Supremum of comonotonic e-variables

Proposition 6

Suppose that {Eθ : θ ∈ Θ} is a collection of comonotonic

e-variables for a hypothesis Q. Then

sup
Q∈Q

Q

(
sup
θ∈Θ

Eθ ≥ 1/α

)
≤ α.

I If {Qθ : θ ∈ Θ} is a collection of comonotonic e-variables, then

we can take the supremum e-variables instead of a mixture
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Example

I We are testing N(0, 1) against N(µ, 1) for µ 6= 0

I We have n independent observations X1, . . . ,Xn

I Likelihood ratio e-variable:

Eµ = exp(µSn − nµ2/2),

where Sn =
∑n

i=1 Xi

I {Eµ : µ > 0} is a collection of comonotonic e-variables
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Example

I If the prior ν is N(0, 1), then the mixture test (two-sided

alternative) is

Eν(n) =
1√
n + 1

exp

(
S2

2n + 2

)
I Suppose the alternative is µ > 0, we can use

Y (n) = sup
µ>0

exp
(
µSn − nµ2/2

)
= exp

(
(Sn)2

+

2n

)
I Taking the supremum does not necessarily generalize to

optional stopping: Y (n) is only a valid test for fixed n

Ruodu Wang (wang@uwaterloo.ca) E-power and improved e-tests 27/48

wang@uwaterloo.ca


Thresholds for e-values Distributional assumptions Comonotonicity Improving e-BH E-power

Example

I Data from N(0.3, 1)

I Null hypothesis N(0, 1)

• 10,000 replications

• α = 0.05

• average sample needed to archive power
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Example

n β

Test Threshold 10 50 100 500 0.5 0.9 0.95 0.99

Tα(E0) 0 0.36 0.69 1 67 179 227 361

Eµ with

µ = 0.3

Tα(EU) 0.03 0.49 0.77 1 52 158 206 321

Tα(ELUS) 0.05 0.54 0.80 1 45 145 193 312

Tα(ELN) 0.17 0.67 0.86 1 31 124 171 286

OS 0 0.46 0.80 1 54 138 177 272

Tα(E0) 0.02 0.36 0.59 0.97 75 283 391 681

Eµ with

µ = 0.4

Tα(EU) 0.07 0.46 0.66 0.98 59 257 362 647

Tα(ELUS) 0.10 0.50 0.69 0.98 51 247 347 633

Tα(ELN) 0.23 0.59 0.75 0.98 34 219 322 604

OS 0.03 0.49 0.75 0.99 51 179 246 451

Tα(E0) 0.07 0.37 0.71 1 67 153 183 253

Supremum Tα(EU) 0.12 0.49 0.80 1 52 128 159 221

Tα(ELN) 0.24 0.68 0.91 1 31 95 119 174

Mixture

Tα(E0) 0.02 0.14 0.39 1 122 240 280 371

Tα(EU) 0.03 0.20 0.48 1 104 217 254 338
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E-BH procedure

I K hypotheses

I e1, . . . , eK : e-values

I e[1] ≥ · · · ≥ e[K ]: order statistics

E-BH procedure

The e-BH procedure G(α) : [0,∞]K → 2K for α > 0 rejects

hypotheses with the largest k∗ e-values, where

k∗ = max

{
k ∈ K :

ke[k]

K
≥ 1

α

}
.

I The e-BH procedure applied to arbitrarily dependent (AD)

e-values has FDR at most K0α/K
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Boosting e-values in the e-BH procedure

I Under AD, find constant b ≥ 1 such that

E[T (αbE )] ≤ α,

where K/K := {K/k : k ∈ K}, and

T (x) =
K

dK/xe
1{x≥1} with T (∞) = K .

I Under positive regression dependence on a subset (PRDS),

find b ≥ 1 such that

max
x∈K/K

xP(αbE ≥ x) ≤ α
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Boosting e-values in the e-BH procedure

I To avoid reliance on K , consider the relaxed conditions:

• under AD, E
[
αbE1{αbE≥1}

]
≤ α

• under PRDS, maxx≥1 xP(αbE ≥ x) ≤ α
I Assuming continuity, define the boosting factor for null

hypotheses E ∈ E
• under AD as BAD

α (E), where

BAD
α (E) = inf

E∈E
sup
{
c ≥ 1 : E

[
αcE1{αcE≥1}

]
≤ α

}
• under PRDS as BPR

α (E), where

BPR
α (E) = inf

E∈E
sup

{
c ≥ 1 : max

x≥1
xP(αcE ≥ x) ≤ α

}
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Boosting e-values in the e-BH procedure

Theorem 6

For some α ∈ (0, 1), let cAD
1 (α) be the unique constant b ≥ 1

such that

e−1/(αb)(1 + αb) = α/e

and cAD
2 (α) be the unique constant b′ ≥ 1 such that

e−1/(αb′)(1 + αb′) = α

Then,

cAD
1 (α) ≤ BAD

α (ELCS) ≤ cAD
2 (α).

I Under AD with nulls E ∈ ELCS, we can boost e-values by

17.35, 9.82, 4.74 and 2.83 for α = 0.01, 0.02, 0.05 and 0.1
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Boosting e-values in the e-BH procedure

Theorem 7

Define

cPR1 (α) =
1

α− α logα
; cPR2 (α) =

e, α ≥ 1/e

− 1
α logα , α ≤ 1/e

.

We have that

cPR1 (α) ≤ BPR
α (ELCS) ≤ cPR2 (α).

I Under PRDS with nulls E ∈ ELCS, we can boost e-values by

17.84, 10.18, 5.01 and 3.03 for α = 0.01, 0.02, 0.05 and 0.1
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Example

I Assume null e-variable follows Exp(1)

• Remark that E ∈ ELCS

I Assume alternative follows Gamma(1 + Θ, 1/(1 + Θ)), where

Θ follows Exp(1/b)

• If b = 0, the alternative reduces to the null

• We set b = 4; mean under the alternative is 41

I Let K = 1000, K0 = 500

I Simulate K e-values under the null and alternative with

negative dependence between 500 pairs
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Example

Number of discoveries and observed FDP for

I base e-BH

I boosted e-BH under AD with E ∈ ELCS

I boosted e-BH under AD with E
d∼ Exp(1) W./Ramdas’22

I p-BH procedure with P = exp(−E ) (no FDR proof)

e-BH boosted ELCS boosted Exp(1) p-BH

α Discov. Discov. FDP Discov. FDP Discov. FDP

0.01 0 68.7 0 158.7 0 340.7 0.00505

0.02 0 135.0 0 201.7 0 356.0 0.01005

0.05 0 196.8 0 252.7 0 382.3 0.02497

0.10 0 235.7 0 292.2 0 411.9 0.05001
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E-power

I Power of p-variable under an alternative Q:

Q(P ≤ α)

Question

How do we e-valuate the power?
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E-power

I Q: an alternative probability

I E : an e-variable testing P (against Q)

We have seen a lot about this object Shafer, Grünwald, Ramdas, ...

ΨQ(E ) = EQ [log E ]

which we call the e-power Vovk/W.’24 NEJSDS

Why ΨQ(E )?
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E-power

About ΨQ(E ) = EQ [log E ] there are many nice things

I Relations to likelihood ratios, optimal growth rate, RIPr, ...

I EQ [E ] ≤ 1 =⇒ ΨQ(E ) ≤ 0

I ΨQ(E1) > 0 and ΨQ(E2) > 0, E1,E2 independent

=⇒ ΨQ(E1E2) > 0 and ΨQ(E1/2 + E2/2) > 0

(independence is not really needed)

I ΨQ(E ) > 0 and λ ∈ (0, 1) =⇒ ΨQ((1− λ) + λE ) > 0
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E-power

There are also troubles ...

I It is not well defined for all E

• An extreme example is Q(E = 0) > 0 and Q(E =∞) > 0, but

there are finite examples

I ΨQ(E ) = −∞ for Q(E = 0) > 0 may be sensible, ... but −∞
also for E = exp(m − X ) with X

d∼ Pareto(1) and m ∈ R?

I ΨQ(E1E2) = ΨQ(E1) + ΨQ(E2) regardless of E1 and E2
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E-power

Let us be formal

I Fix (Ω,F) and a probability Q

I Let X be a set of bounded nonnegative measurable functions

(e-variables for some P)

I For now we exclude unbounded random variables

I A candidate e-power function Π : X → [−∞,∞]
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E-power

What are some good properties?

P1 Law-invariance: Π(E ) is determined by the distribution of E

under Q

P2 Strict monotonicity: Π(E1) ≤ Π(E2) if E1 ≤ E2, and

Π(E1) < Π(E2) if Q(E1 < E2) = 1

P3 Multiplicative invariance: Π(E1) > Π(E2) =⇒
Π(EE1) > Π(EE2) for E independent of E1,E2 under Q

P4 Consistency: For E1,E2, . . . , iid under Q with Π(E1) > 0,

Q

(
n∏

k=1

Ek >
1

α

)
→ 1 as n→∞ for all α ∈ (0, 1)

P5 Symmetry: Π(E−1) = −Π(E ) if E−1 ∈ X
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Characterization

Theorem 8

A function Π : X → [−∞,∞] satisfies P1-P5 if and only if there

exists a strictly increasing and symmetric function f such that

Π(E ) = f (EQ [log E ]) for all E ∈ X .

I Proof based on a recent result Mu/Pomatto/Strack/Tamuz’24 ECMA

I Justified ΨQ as an e-power function

I Can be extended beyond X as long as ΨQ(E ) is well-defined

I Did not address the problem of undefinedness of ΨQ(E )

Impossible to get rid of the undesirable properties if we wish to

keep the desirable ones
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E-power

Write

Lt(E ) =
1

t
logEQ [E t ] for t ∈ R \ {0}; L0(E ) = EQ [log E ]

L−∞(E ) = ess-infQ log E ; L∞(E ) = ess-supQ log E ;

I I: the set of all strictly increasing functions on [−∞,∞]

I M(R): the set of all positive finite measures on [−∞,∞]

P1-P3 ⇐⇒

Π(E ) = f

(∫ ∞
−∞

Lt(E )dµ(t)

)
for some µ ∈M(R) and f ∈ I

P1-P4 ⇐⇒

Π(E ) = f

(∫ 0

−∞
Lt(E )dµ(t)

)
for some µ ∈M(R) and f ∈ I
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Take-away messages

I A factor of 2 does not hurt in many situations

I Taking a supremum does not hurt in some situations

I Like it or not, the e-power is an axiomatically justified notion

... but with e-removable (?) drawbacks
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Thank you

Thank you for your kind attention

Based on joint work with

Christopher Blier-Wong

(Watrerloo)
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