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Thresholds for e-values
©0000000

Markov's inequality

» Let E be an e-variable for H

> Rejection threshold based on Markov's inequality: for P € H,

P (E > 1) <
o
» Markov's inequality is attainable
® PE=1/a)=a=1—-P(E=0)
» Often too conservative
» The attending e-variable is very special
» Almost sharp if E is a obtained by an H-martingale first

hitting 1/«
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Thresholds for e-values
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Markov's inequality

It has to look like red and 1/« has to precisely fall on the right leg

to make Markov sharp
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Thresholds for e-values
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Rejection probability bounds for e-values

We will assume
» No access to the underlying data
» Only having the e-values
» Some side information on the underlying e-variables that the

tester trusts
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Thresholds for e-values
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Rejection probability bounds for e-values

>

For this work it suffices to consider H = {P}

v

E: a set of e-variables (to be specified later)

v

&p: the set of all e-variables

v

For v > 0, define the quantity

Ry(€) = Z‘;‘;P(E >1/7)

v

R,(€) is the worst-case type | error of e-tests based on
thresholds of 1/

Ry (&) = for v € (0, 1]

v
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Thresholds for e-values
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Rejection probability bounds for e-values

Our goal:
» Compute R, (€) for v € (0, 1] and various &£
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Thresholds for e-values
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Thresholds for e-values

For a € (0,1), the quantity

To(€) :=inf{t > 1: Ry (€) < a}
satisfies

To(&) = <ls;_l£inf{x ER:P(X<x)>1- a}) V1.

If v — Ry(E) is continuous, then T, (&) is the smallest real
number t > 1 such that P(E > t) < « for all E € £.

» This result and the next have nothing to do with e-variables
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Thresholds for e-values
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Calibrators

» The function v = Ry/,(€) serves as a refinement of e-to-p
calibrators
> For a subset £ of e-variables, we say that a function
f :[0,00] — [0,00) is an e-to-p calibrator on & if £ is
decreasing and f(E) is a p-variable for all E € £
» x — (1/x) A1 is the only admissible e-to-p calibrator on &
® Weakly smaller than any other e-to-p calibrator Vovk/W.'21
» For various subsets £ of &y, we can find better e-to-p

calibrators based on Ry /(&)
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Thresholds for e-values
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Calibrators

The function x — Ry, (€) on [0,00] is an e-to-p calibrator on &,

and it is the smallest such calibrator.

» By computing R,(€) or an upper bound on it, we can convert

e to p better than x — (1/x) A 1

» Useful in case p-values are needed (e.g., BH procedure with
other p-values)

» always have a smallest element (not true for p-to-e calibrators)
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@ Thresholds under distributional assumptions

wangQuwaterloo.ca) E-power and improved e-tests 11/48



wang@uwaterloo.ca

Distributional assumptions
0®0000000000

Decreasing densities

All distributional descriptions are based on P

Ep = {E € & : E has a decreasing density on its support}

» Allow point-mass at the left end-point of the support

» Examples: Exponential, Pareto
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Distributional assumptions
0®0000000000

Decreasing densities

All distributional descriptions are based on P

Ep = {E € & : E has a decreasing density on its support}

» Allow point-mass at the left end-point of the support

» Examples: Exponential, Pareto

For~ € (0,1), R,(ép) = v/2 and Ri(&p) = 1.

» Worst-case type | error with threshold 1/~ is halved
> Tulép) = 1/(20)
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Distributional assumptions
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Unimodal densities

Euy = {E € & : E has a unimodal density on R}

» Allow point-mass at the model

» Examples: log-normal, gamma
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Distributional assumptions
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Unimodal densities

Euy = {E € & : E has a unimodal density on R}

» Allow point-mass at the model

» Examples: log-normal, gamma

Fory € (0,1], Ry(€u) = (v/2) A (27 —1).

» Worst-case type | error with threshold 1/ is halved if
v < 2/3 (the most practical situation)
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Distributional assumptions
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Log-concavity

Ercp = {E € & : E has a log-concave density on R}
Ercs = {E € & : E has a log-concave survival function on R}

Ercr = {E € & : E has a log-concave distribution function on R}

» Density can be 0 on (—o0, a) or (a,0), or both

> &rep € Eres; €uep C Erer

» &Lep C Eu and Ep C Erer

» LCD: normal, uniform, Laplace, exponential, gamma with
shape parameter > 1 (all confined to [0, c0) for us)

» Log-normal and Pareto distributions are LCF but not LCS
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Distributional assumptions
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Log-concavity

Theorem 4
For v € (0,1),

Ry(€Lcs) = exp{sy/v} < exp{1 —1/~},

where s, is the unique solution to the equation exp{s/~v} = s+ 1.
Further, Ry(&rcs) = 1.

» Huge improvement from Markov's bound for small
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Distributional assumptions
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Log-concavity

Proposition 1

For v € (0,1], we have

e 1 < Ry(gLCD) < R»Y(EU) N Ry(chs) < el=1/7,

» e 1/7 is the case of exponential with mean 1
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Distributional assumptions
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Log-concavity

Proposition 1

For v € (0,1], we have

e 1 < Ry(gLCD) < R»Y(EU) N Ry(chs) < el=1/7,

» e 1/7 is the case of exponential with mean 1

Proposition 2

FOI”Y € (0, 1], R’y(gLCF) =7.

» The assumption of LCF is too weak
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Distributional assumptions
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Log-transformed random variables

s = {E € & : log E has a symmetric distribution}

ELu = {E € & : log E has a unimodal distribution}
Erus = {E € & : log E has a unimodal and symmetric distribution}
Ep = {E € & : log E has a decreasing density on its support }

En = {E € & : E has a log-normal distribution}

» E-variables are often multiplicative ...
» Require P(E = 0) = 0, so that log E is real-valued
» &N C Erus C s

» The point-mass distributions x € (0, 1] are included
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Distributional assumptions
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Log-transformed random variables

Proposition 3
Forv € (0,1), Ry(éLs) = v A (1/2) and Ri(&s) = 1.

Proposition 4
For v € (0,1], Ry(éLu) = 7-
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Distributional assumptions
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Log-transformed random variables

Proposition 3
For~ € (0,1), Ry(&Ls) = v A (1/2) and Ry(ELs) = 1.

Proposition 4
For v € (0,1], Ry(éLu) = 7-

Proposition 5

For~v € (0,1), Ry(éLn) = ®(—+/—2log~), where ® is the
standard normal cdf, and R (&) = 1.
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Distributional assumptions
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Log-transformed random variables

For v € (0,1],

Y Y 1
- < Rfy(c‘:LD) = R’y(gLUS) < - (1 — 2 V e) .

» Improvable with a factor of ~ e
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Distributional assumptions
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Summary of worse-case type | errors

Comparison of worse-case type | errors for different conditions on

the shapes of the e-variable distributions

1
I R)(SO)
— Ry(ép)
08 R.(&0)
R, (Ercs)
..... Ry(ELcp)
Ry (&Ls)
0.6 - s
— Ry(&1N)
& xR (ELus)
0.4
0.2 |-
/& T
0 | . . . . . .
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Distributional assumptions
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Summary of improved thresholds

Comparison of thresholds different conditions on the shapes of the
e-variable distributions
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Distributional assumptions
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Summary of improved thresholds

&o, ELs, Ly
ép, &y

&b, ELus
ELN

ELep, ELcs

Ruodu Wang

o

0.001 0.01 0.02 005 01 0.2
1000 100 50 20 10 5
500 50 25 10 5 25
368 36.82 1845 7.49 393 228
118 1497 8.24 3.87 227 142
6.91 4.65 4 315 256 2
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© Comonotonic e-variables
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Comonotonicity
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Comonotonic e-variables

» A set of random variables is comonotonic if each element is an

increasing function of a common random variable (e.g., data)

> For testing Qp, against Qp, a common e-variable is

_ 4Gy
dQg,

» For testing {Qp, } against {Qy : 6 € ©1}, one can use the

mixture e-variable

Eq

d
E, = / 4 )
(S} dQﬁ’o
where v is a distribution on ©7

> (Eg)pco, may be comonotonic, e.g., one-sided Gaussian
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Comonotonicity
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Supremum of comonotonic e-variables

Suppose that {Ey : 6 € ©} is a collection of comonotonic

e-variables for a hypothesis Q. Then

sup @ (sup Ey > l/a) < a.
QeQ e

> If {Qy : 6 € O} is a collection of comonotonic e-variables, then

we can take the supremum e-variables instead of a mixture
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Comonotonicity
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» We are testing N(0, 1) against N(yu, 1) for u # 0

» We have n independent observations X, ..., X,
> Likelihood ratio e-variable:
E, = exp(uS, — nu?/2),
where S, =>"7 | X;
» {E, : n> 0} is a collection of comonotonic e-variables
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Comonotonicity
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» If the prior v is N(0, 1), then the mixture test (two-sided

alternative) is

E,(n) = 1 ex >
A= T P\ 2n+ 2

» Suppose the alternative is p > 0, we can use

2 (Sn)2
Y (n) = supexp (uSn — np®/2) = exp [ ~———
©n>0 2n

» Taking the supremum does not necessarily generalize to

optional stopping: Y(n) is only a valid test for fixed n
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Comonotonicity

[eJelelele] le}

» Data from N(0.3,1)
» Null hypothesis N(0, 1)
® 10,000 replications
® o=0.05
® average sample needed to archive power
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Comonotonicity

O00000e

n B

Test Threshold 10 50 100 500 0.5 09 095 0.99
To (o) 0 036 0.69 1| 67 179 227 361

£ with To(Eu) | 003 049 0.77 1| 52 158 206 321
M”: 03 Ta(frus) | 0.05 054 0380 1| 45 145 193 312
To(ELn) | 017 067 0.86 1| 31 124 171 286

0s 0 046 0.80 1| 54 138 177 272

To(€) | 002 036 059 097 | 75 283 391 681

£ with To(Eu) | 007 046 066 098 | 59 257 362 647
H”: 04 Te(fLus) | 010 050 0690 008 | 51 247 347 633
Ta(Ern) | 023 059 075 098 | 34 219 322 604

0S 003 049 075 099 | 51 179 246 451

To(&) | 007 037 0.71 1| 67 153 183 253

52 128 159 221
31 95 119 174
122 240 280 371
104 217 254 338

Supremum Ta(Eu) 0.12 0.49 0.80
To(ELN) | 024 0.68 0.91

Ta(&) | 002 014 039

Mixture Ta(Eu) 0.03 0.20 0.48

e
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Improving e-BH
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@ mproving the e-BH procedure
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Improving e-BH
[e] TeleTololele}

E-BH procedure

» K hypotheses
> e1,...,€eK: e-values

> e > -+ > k] order statistics

E-BH procedure

The e-BH procedure G(a) : [0, 00]X — 2% for a: > 0 rejects

hypotheses with the largest k* e-values, where

. ke
k—max{kEIC P _a}.

» The e-BH procedure applied to arbitrarily dependent (AD)
e-values has FDR at most Koo/ K
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Improving e-BH
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Boosting e-values in the e-BH procedure

» Under AD, find constant b > 1 such that
E[T(abE)] < «
where K/K .= {K/k : k € K}, and

T(x) = =711y with T(c0) = K.

(K /]
» Under positive regression dependence on a subset (PRDS),
find b > 1 such that

max xP(abE > x) < «
xEK/K
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Improving e-BH
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Boosting e-values in the e-BH procedure

» To avoid reliance on K, consider the relaxed conditions:

® under AD, E [ozbE]l{abEEl}] <«
® under PRDS, maxy>1 xP(abE > x) < «

» Assuming continuity, define the boosting factor for null
hypotheses E € £

® under AD as BAP(E), where
A ; :
BAP(&) = Elréfgsup {c>1:E [OCCE]l{acEZI}} <a}
® under PRDS as BER(E), where

PRE) = i >1: > x) <
B, (&) ,_':’éfg sup{c >1: Tg{(xﬂ”(acE >x) < a}
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Improving e-BH
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Boosting e-values in the e-BH procedure

For some o € (0,1), let c{*P(a) be the unique constant b > 1

such that

e Vb (1 4 ab)=a/e

and c4P(«) be the unique constant b’ > 1 such that
e V(14 ab) = a

Then,

¢’ (@) < ByP (&rcs) < 6P (a)-

» Under AD with nulls E € &,cs, we can boost e-values by
17.35,9.82,4.74 and 2.83 for o = 0.01,0.02,0.05 and 0.1
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Improving e-BH
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Boosting e-values in the e-BH procedure

Define

1
PR( \ _ . PR(\ _ '
“ (a)_oz—aloga' (@) 1 a<1/e

We have that

cf ¥a) < BER (Ercs) < SR (a).

» Under PRDS with nulls E € &,cs, we can boost e-values by
17.84,10.18,5.01 and 3.03 for & = 0.01,0.02,0.05 and 0.1
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Improving e-BH
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» Assume null e-variable follows Exp(1)
® Remark that E € &,c5
» Assume alternative follows Gamma(l + ©,1/(1 + ©)), where
© follows Exp(1/b)
® |f b =0, the alternative reduces to the null
® \We set b = 4; mean under the alternative is 41
» Let K = 1000, Ko = 500
» Simulate K e-values under the null and alternative with

negative dependence between 500 pairs
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Improving e-BH
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Number of discoveries and observed FDP for
> base e-BH
» boosted e-BH under AD with E € &cs
> boosted e-BH under AD with £ < Exp(1) W./Ramdas'22
» p-BH procedure with P = exp(—E) (no FDR proof)

e-BH boosted £,cs  boosted Exp(1) p-BH

« Discov. Discov. FDP Discov. FDP Discov. FDP

0.01 0 68.7 0 158.7 0 340.7  0.00505
0.02 0 135.0 0 201.7 0 356.0 0.01005
0.05 0 196.8 0 252.7 0 382.3  0.02497
0.10 0 235.7 0 292.2 0 4119  0.05001
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© E-power
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» Power of p-variable under an alternative Q:

Q(P < a)
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» Power of p-variable under an alternative Q:

QP <L)

How do we e-valuate the power?
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E-power
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» Q: an alternative probability
» E: an e-variable testing P (against Q)

We have seen a lot about this object Shafer, Griinwald, Ramdas, ...
VQ(E) = E¥[log E]

which we call the e-power Vovk/W.'24 NEJSDS
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E-power
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» Q: an alternative probability
» E: an e-variable testing P (against Q)

We have seen a lot about this object Shafer, Griinwald, Ramdas, ...
VQ(E) = E¥[log E]
which we call the e-power Vovk/W.'24 NEJSDS

Why WQ(E)?
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E-power
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About W@ (E) = E®[log E] there are many nice things

> Relations to likelihood ratios, optimal growth rate, RIPr, ...
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E-power
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About WQ(E) = E®[log E] there are many nice things
> Relations to likelihood ratios, optimal growth rate, RIPr, ...

» EC[E] <1 = VQ(E)<0
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E-power
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About W@ (E) = E®[log E] there are many nice things
> Relations to likelihood ratios, optimal growth rate, RIPr, ...
» EQ[E] <1 = VQ(E)<0
» WQ(E;) >0 and WQ(E,) > 0, Ey, E; independent
— VWQ(EE) > 0and WO(E /2 + E5/2) >0
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E-power
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About W@ (E) = E®[log E] there are many nice things
> Relations to likelihood ratios, optimal growth rate, RIPr, ...
» EQ[E] <1 = VQ(E)<0
» WQ(E;) >0 and WQ(E,) > 0, Ey, E; independent
= VQ(E1E) > 0 and V(£ /2 + £/2) > 0

(independence is not really needed)
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E-power
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About W@ (E) = E®[log E] there are many nice things
> Relations to likelihood ratios, optimal growth rate, RIPr, ...
» EQ[E] <1 = VQ(E)<0
» WQ(E;) >0 and WQ(E,) > 0, Ey, E; independent
= VQ(E1E) > 0 and V(£ /2 + £/2) > 0

(independence is not really needed)

» WO(E)>0and A € (0,1) = WO((1-\)+AE)>0
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There are also troubles ...
» It is not well defined for all E

® An extreme example is Q(E =0) > 0 and Q(E = o0) > 0, but
there are finite examples

Ruodu Wang  (wang@uwaterloo.ca) E-power and improved e-tests 42/48


wang@uwaterloo.ca

E-power
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There are also troubles ...
» It is not well defined for all E
® An extreme example is Q(E =0) > 0 and Q(E = o0) > 0, but

there are finite examples

» WQ(E) = —oo for Q(E = 0) > 0 may be sensible
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E-power
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There are also troubles ...
> It is not well defined for all E
® An extreme example is Q(E =0) > 0 and Q(E = o0) > 0, but
there are finite examples
» WQ(E) = —o0 for Q(E = 0) > 0 may be sensible, ... but —oco
also for E = exp(m — X) with X 4 Pareto(1) and m € R?
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There are also troubles ...
> It is not well defined for all E
® An extreme example is Q(E =0) > 0 and Q(E = o0) > 0, but
there are finite examples
» WQ(E) = —o0 for Q(E = 0) > 0 may be sensible, ... but —oco
also for E = exp(m — X) with X 4 Pareto(1) and m € R?

> VQ(E ) = WQ(E) + WQ(E,) regardless of £; and B,
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Let us be formal
» Fix (2, F) and a probability Q

> Let X be a set of bounded nonnegative measurable functions

(e-variables for some P)
» For now we exclude unbounded random variables

» A candidate e-power function 1 : X — [—o0, 0]
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What are some good properties?

P1 Law-invariance: T(E) is determined by the distribution of E
under @
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P2 Strict monotonicity: M(E1) < MN(E) if E; < Ep, and
NE) <N(E)if QE1 < E) =1
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What are some good properties?

P1 Law-invariance: T(E) is determined by the distribution of E
under @

P2 Strict monotonicity: M(E1) < MN(E) if E; < Ep, and
NE) <N(E)if QE1 < E) =1

P3 Multiplicative invariance: MN(E;) > MN(E) =
M(EE;y) > MN(EE,) for E independent of Ej, E; under Q

P4 Consistency: For Ej, Ej, ..., iid under Q with MN(E;) > 0,

- 1
E — 1 for all 0,1
Q(g k>a>—> as n — oo for all @ € (0,1)
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What are some good properties?

P1 Law-invariance: T(E) is determined by the distribution of E
under @

P2 Strict monotonicity: M(E1) < MN(E) if E; < Ep, and
NE) <N(E)if QE1 < E) =1

P3 Multiplicative invariance: MN(E;) > MN(E) =
M(EE;y) > MN(EE,) for E independent of Ej, E; under Q

P4 Consistency: For Ej, Ej, ..., iid under Q with MN(E;) > 0,

- 1
E — 1 for all 0,1
Q(g k>a>—> as n — oo for all @ € (0,1)

P5 Symmetry: N(E~1) = —M(E) if E-te X

Ruodu Wang  (wang@uwaterloo.ca) E-power and improved e-tests 44/48


wang@uwaterloo.ca

E-power
0000000e000

Characterization

Theorem 8
A function I : X — [—00, 0] satisfies P1-P5 if and only if there

exists a strictly increasing and symmetric function f such that

N(E) = f(EQ[log E]) for all E € X.

Ruodu Wang  (wang@uwaterloo.ca) E-power and improved e-tests 45/48


wang@uwaterloo.ca

E-power
0000000e000

Characterization

Theorem 8
A function I : X — [—00, 0] satisfies P1-P5 if and only if there

exists a strictly increasing and symmetric function f such that

N(E) = f(EQ[log E]) for all E € X.

v

Proof based on a recent result Mu/Pomatto/Strack/Tamuz'24 ECMA
Justified W@ as an e-power function

Can be extended beyond X as long as WQ(E) is well-defined
Did not address the problem of undefinedness of WQ(E)

v

v

v

Impossible to get rid of the undesirable properties if we wish to
keep the desirable ones J

T = = =
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Write
1
Le(E) = - log EQ[E?] for t e R\ {0}; Lo(E) = E[log E]
L_o(E) = ess-infqlog E; Loo(E) = ess-supq log E;

> 7: the set of all strictly increasing functions on [—o0, 0]

» M(R): the set of all positive finite measures on [—o0, o0]
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Write
1
Le(E) = - log EQ[E?] for t e R\ {0}; Lo(E) = E[log E]
L_o(E) = ess-infqlog E; Loo(E) = ess-supq log E;

> 7: the set of all strictly increasing functions on [—o0, 0]
» M(R): the set of all positive finite measures on [—o0, o0]

P1-P3 «—

MNEe)="r (/OO Lt(E)du(t)> for some p € M(R) and f € Z

— 00
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Write
1
Le(E) = - log EQ[E?] for t e R\ {0}; Lo(E) = E[log E]
L_o(E) = ess-infqlog E; Loo(E) = ess-supq log E;

> 7: the set of all strictly increasing functions on [—o0, 0]

» M(R): the set of all positive finite measures on [—o0, o0]

PLP3
N(E) = f (/OO Lt(E)du(t)> for some € M(R) and f € T
P1-P4 s )
N(E) = (/O Lt(E)du(t)> for some 11 € M(R) and f € T
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Take-away messages

» A factor of 2 does not hurt in many situations
» Taking a supremum does not hurt in some situations

» Like it or not, the e-power is an axiomatically justified notion
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Take-away messages

» A factor of 2 does not hurt in many situations
» Taking a supremum does not hurt in some situations

» Like it or not, the e-power is an axiomatically justified notion

... but with e-removable (?) drawbacks
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Thank you for your kind attention

Based on joint work with

Christopher Blier-Wong
(Watrerloo)
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