イロト イボト イヨト イヨト

## E-power and improvements for e-tests

## Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo



Canada



Game-theoretic Statistical Inference Mathematisches Forschungsinstitut Oberwolfach May 2024

| Agenda                  |                            |                           |                            |                        |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |

- 1 Thresholds for e-values
- 2 Thresholds under distributional assumptions
- 3 Comonotonic e-variables
- Improving the e-BH procedure
- 5 E-power

Based on joint work with Christopher Blier-Wong (Waterloo-Toronto)

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
| 0000000                 |                            | 0000000        | 00000000       | 00000000000 |
| Markov's ineq           | juality                    |                |                |             |

- Let E be an e-variable for  $\mathcal{H}$
- Rejection threshold based on Markov's inequality: for  $P \in \mathcal{H}$ ,

$$\mathsf{P}\left(\mathsf{E} \ge \frac{1}{\alpha}\right) \le \alpha$$

- Markov's inequality is attainable
  - $P(E = 1/\alpha) = \alpha = 1 P(E = 0)$
- Often too conservative
- The attending e-variable is very special
- Almost sharp if E is a obtained by an  $\mathcal H$ -martingale first hitting  $1/\alpha$

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

イロト イボト イヨト イヨト

Э

E-power

# Markov's inequality



It has to look like red and  $1/\alpha$  has to precisely fall on the right leg to make Markov sharp

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

(日)

E-power 00000000000

# Rejection probability bounds for e-values

We will assume

- No access to the underlying data
- Only having the e-values
- Some side information on the underlying e-variables that the tester trusts

Distributional assumptions

Comonotonicity 0000000 Improving e-BH 00000000

E-power 000000000000

## Rejection probability bounds for e-values

- For this work it suffices to consider  $\mathcal{H} = \{\mathbb{P}\}$
- *E*: a set of e-variables (to be specified later)
- *E*<sub>0</sub>: the set of all e-variables
- For  $\gamma > 0$ , define the quantity

$${\it R}_{\gamma}(\mathcal{E}) = \sup_{m{E}\in\mathcal{E}} \mathbb{P}(m{E}\geq 1/\gamma)$$

 R<sub>γ</sub>(E) is the worst-case type I error of e-tests based on thresholds of 1/γ

• 
$$R_{\gamma}(\mathcal{E}_0) = \gamma$$
 for  $\gamma \in (0,1]$ 

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

E-power

## Rejection probability bounds for e-values

## Our goal:

▶ Compute  $R_{\gamma}(\mathcal{E})$  for  $\gamma \in (0,1]$  and various  $\mathcal{E}$ 

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

・ロッ ・雪 ・ ・ ヨ ・ ・

E-power 000000000000

# Thresholds for e-values

#### Lemma 1

For  $\alpha \in (0,1)$ , the quantity

$$T_{lpha}(\mathcal{E}) := \inf\{t \ge 1 : R_{1/t}(\mathcal{E}) \le lpha\}$$

#### satisfies

$$\mathcal{T}_{lpha}(\mathcal{E}) = \left(\sup_{E \in \mathcal{E}} \inf\{x \in \mathbb{R} : \mathbb{P}(X \leq x) \geq 1 - lpha\}\right) \lor 1.$$

If  $\gamma \mapsto R_{\gamma}(\mathcal{E})$  is continuous, then  $T_{\alpha}(\mathcal{E})$  is the smallest real number  $t \geq 1$  such that  $\mathbb{P}(E \geq t) \leq \alpha$  for all  $E \in \mathcal{E}$ .

This result and the next have nothing to do with e-variables

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
| 000000€0                |                            | 0000000        | 00000000       | 00000000000 |
| Calibrators             |                            |                |                |             |

- ► The function \(\gamma\) \(\mathcal{E}\) \(R\_{1/\gamma}(\mathcal{E})\) serves as a refinement of e-to-p calibrators
- For a subset *E* of e-variables, we say that a function
   *f*: [0,∞] → [0,∞) is an e-to-p calibrator on *E* if *f* is decreasing and *f*(*E*) is a p-variable for all *E* ∈ *E*
- ▶  $x \mapsto (1/x) \land 1$  is the only admissible e-to-p calibrator on  $\mathcal{E}_0$ 
  - Weakly smaller than any other e-to-p calibrator Vovk/W.'21
- For various subsets *E* of *E*<sub>0</sub>, we can find better e-to-p calibrators based on *R*<sub>1/γ</sub>(*E*)

(四) (三) (三) (二)

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
| 0000000●                |                            | 0000000        | 00000000       | 00000000000 |
| с. III                  |                            |                |                |             |

# Calibrators

#### Theorem 1

The function  $x \mapsto R_{1/x}(\mathcal{E})$  on  $[0, \infty]$  is an e-to-p calibrator on  $\mathcal{E}$ , and it is the smallest such calibrator.

- By computing R<sub>γ</sub>(E) or an upper bound on it, we can convert e to p better than x → (1/x) ∧ 1
- Useful in case p-values are needed (e.g., BH procedure with other p-values)
- always have a smallest element (not true for p-to-e calibrators)

・ 同 ト ・ ヨ ト ・ ヨ ト …

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Thresholds for e-values

## 2 Thresholds under distributional assumptions

## 3 Comonotonic e-variables

Improving the e-BH procedure

## 5 E-power

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
|                         | 00000000000                | 0000000        | 00000000       | 00000000000 |
| Decreasing de           | ensities                   |                |                |             |

All distributional descriptions are based on  $\ensuremath{\mathbb{P}}$ 

 $\mathcal{E}_{\mathrm{D}} = \{ E \in \mathcal{E}_{0} : E \text{ has a decreasing density on its support} \}$ 

- Allow point-mass at the left end-point of the support
- Examples: Exponential, Pareto

< 同 > < 三 > < 三 >

| Decreasing d            | ensities                   |                           |                            |                        |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |

All distributional descriptions are based on  $\ensuremath{\mathbb{P}}$ 

 $\mathcal{E}_{\mathrm{D}} = \{ E \in \mathcal{E}_{0} : E \text{ has a decreasing density on its support} \}$ 

- Allow point-mass at the left end-point of the support
- Examples: Exponential, Pareto

#### Theorem 2

For 
$$\gamma \in (0,1)$$
,  $R_{\gamma}(\mathcal{E}_{\mathrm{D}}) = \gamma/2$  and  $R_{1}(\mathcal{E}_{\mathrm{D}}) = 1$ .

Worst-case type I error with threshold  $1/\gamma$  is halved

• 
$$T_{\alpha}(\mathcal{E}_{\mathrm{D}}) = 1/(2\alpha)$$

・ 回 ト ・ ヨ ト ・ ヨ ト

|                    |  | 0000000 | 0000000 | 0000000000 |  |  |
|--------------------|--|---------|---------|------------|--|--|
|                    |  |         |         |            |  |  |
| Unimodal densities |  |         |         |            |  |  |

 $\mathcal{E}_{\mathrm{U}} = \{ E \in \mathcal{E}_{0} : E \text{ has a unimodal density on } \mathbb{R} \}$ 

- Allow point-mass at the model
- Examples: log-normal, gamma

<ロ> <四> <四> <日> <日> <日> <日> <日> <日> <日> <日> <日 < □> <

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Unimodal der            | nsities                    |                           |                            |                        |

 $\mathcal{E}_{\mathrm{U}} = \{ E \in \mathcal{E}_{0} : E \text{ has a unimodal density on } \mathbb{R} \}$ 

Allow point-mass at the model

Examples: log-normal, gamma

#### Theorem 3

For 
$$\gamma \in (0,1]$$
,  $R_{\gamma}(\mathcal{E}_{\mathrm{U}}) = (\gamma/2) \wedge (2\gamma - 1)$ .

► Worst-case type I error with threshold 1/γ is halved if γ ≤ 2/3 (the most practical situation)

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| log-concavity           | 1                          |                           |                            |                        |

- $\mathcal{E}_{ ext{LCD}} = \{ E \in \mathcal{E}_0 : E ext{ has a log-concave density on } \mathbb{R} \}$
- $\mathcal{E}_{\mathrm{LCS}} = \{ E \in \mathcal{E}_0 : E \text{ has a log-concave survival function on } \mathbb{R} \}$

 $\mathcal{E}_{\mathrm{LCF}} = \{ E \in \mathcal{E}_0 : E \text{ has a log-concave distribution function on } \mathbb{R} \}$ 

- Density can be 0 on  $(-\infty, a)$  or  $(a, \infty)$ , or both
- $\mathcal{E}_{LCD} \subseteq \mathcal{E}_{LCS}$ ;  $\mathcal{E}_{LCD} \subseteq \mathcal{E}_{LCF}$
- $\mathcal{E}_{LCD} \subseteq \mathcal{E}_{U}$  and  $\mathcal{E}_{D} \subseteq \mathcal{E}_{LCF}$
- LCD: normal, uniform, Laplace, exponential, gamma with shape parameter ≥ 1 (all confined to [0,∞) for us)
- Log-normal and Pareto distributions are LCF but not LCS

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| l og-concavity          | I                          |                           |                            |                        |

#### Theorem 4

For  $\gamma \in (0,1)$ ,

$${\it R}_{\gamma}(\mathcal{E}_{
m LCS}) = \exp\{s_{\gamma}/\gamma\} \leq \exp\{1-1/\gamma\},$$

where  $s_{\gamma}$  is the unique solution to the equation  $\exp\{s/\gamma\} = s + 1$ . Further,  $R_1(\mathcal{E}_{LCS}) = 1$ .

#### $\blacktriangleright$ Huge improvement from Markov's bound for small $\gamma$

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Log-concavity           | /                          |                           |                            |                        |

#### Proposition 1

For  $\gamma \in (0,1]$ , we have

$$e^{-1/\gamma} \leq R_{\gamma}(\mathcal{E}_{ ext{LCD}}) \leq R_{\gamma}(\mathcal{E}_{ ext{U}}) \wedge R_{\gamma}(\mathcal{E}_{ ext{LCS}}) \leq e^{1-1/\gamma}$$

•  $e^{-1/\gamma}$  is the case of exponential with mean 1

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Log-concavity           | /                          |                           |                            |                        |

#### Proposition 1

For  $\gamma \in (0,1]$ , we have

$$e^{-1/\gamma} \leq R_{\gamma}(\mathcal{E}_{ ext{LCD}}) \leq R_{\gamma}(\mathcal{E}_{ ext{U}}) \wedge R_{\gamma}(\mathcal{E}_{ ext{LCS}}) \leq e^{1-1/\gamma}$$

## • $e^{-1/\gamma}$ is the case of exponential with mean 1

#### Proposition 2

For 
$$\gamma \in (0,1]$$
,  $R_{\gamma}(\mathcal{E}_{\mathrm{LCF}}) = \gamma$ .

#### The assumption of LCF is too weak

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Distributional assumptions

Comonotonicity 0000000 Improving e-BH 00000000 E-power 000000000000

## Log-transformed random variables

- $\mathcal{E}_{LS} = \{ E \in \mathcal{E}_0 : \log E \text{ has a symmetric distribution} \}$
- $\mathcal{E}_{LU} = \{ E \in \mathcal{E}_0 : \log E \text{ has a unimodal distribution} \}$
- $\mathcal{E}_{LUS} = \{ E \in \mathcal{E}_0 : \log E \text{ has a unimodal and symmetric distribution} \}$ 
  - $\mathcal{E}_{\mathrm{LD}} = \{ E \in \mathcal{E}_0 : \mathsf{log} \ E \ \mathsf{has} \ \mathsf{a} \ \mathsf{decreasing} \ \mathsf{density} \ \mathsf{on} \ \mathsf{its} \ \mathsf{support} \}$

 $\mathcal{E}_{LN} = \{ E \in \mathcal{E}_0 : E \text{ has a log-normal distribution} \}$ 

- E-variables are often multiplicative ...
- Require  $\mathbb{P}(E = 0) = 0$ , so that log *E* is real-valued
- $\blacktriangleright \ \mathcal{E}_{\rm LN} \subseteq \mathcal{E}_{\rm LUS} \subseteq \mathcal{E}_{\rm LS}$
- The point-mass distributions  $x \in (0, 1]$  are included

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E-power 000000000000

## Log-transformed random variables

## Proposition 3

For 
$$\gamma \in (0,1)$$
,  $R_{\gamma}(\mathcal{E}_{\mathrm{LS}}) = \gamma \wedge (1/2)$  and  $R_{1}(\mathcal{E}_{\mathrm{LS}}) = 1$ .

#### Proposition 4

For  $\gamma \in (0,1]$ ,  $R_{\gamma}(\mathcal{E}_{LU}) = \gamma$ .

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E-power 000000000000

## Log-transformed random variables

#### Proposition 3

For 
$$\gamma \in (0,1)$$
,  $R_{\gamma}(\mathcal{E}_{\mathrm{LS}}) = \gamma \wedge (1/2)$  and  $R_{1}(\mathcal{E}_{\mathrm{LS}}) = 1$ .

#### Proposition 4

For  $\gamma \in (0,1]$ ,  $R_{\gamma}(\mathcal{E}_{\mathrm{LU}}) = \gamma$ .

#### Proposition 5

For  $\gamma \in (0, 1)$ ,  $R_{\gamma}(\mathcal{E}_{LN}) = \Phi(-\sqrt{-2\log \gamma})$ , where  $\Phi$  is the standard normal cdf, and  $R_1(\mathcal{E}_{LN}) = 1$ .

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

E-power 00000000000

## Log-transformed random variables

#### Theorem 5

For  $\gamma \in (0, 1]$ , $\frac{\gamma}{e} \leq R_{\gamma}(\mathcal{E}_{\mathrm{LD}}) = R_{\gamma}(\mathcal{E}_{\mathrm{LUS}}) \leq \frac{\gamma}{e} \left(\frac{1}{1 - \gamma^2} \lor e\right).$ 

• Improvable with a factor of  $\approx e$ 

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
|                         |                            |                           |                            |                        |

## Summary of worse-case type I errors

Comparison of worse-case type I errors for different conditions on the shapes of the e-variable distributions



Distributional assumptions

Comonotonicity

Improving e-BH 00000000 E-power 000000000000

# Summary of improved thresholds

Comparison of thresholds different conditions on the shapes of the e-variable distributions



Distributional assumptions

Comonotonicity

Improving e-BH 00000000

E-power 000000000000

## Summary of improved thresholds

|                                                             |       |       | $\alpha$ |      |      |      |
|-------------------------------------------------------------|-------|-------|----------|------|------|------|
|                                                             | 0.001 | 0.01  | 0.02     | 0.05 | 0.1  | 0.2  |
| $\mathcal{E}_0, \mathcal{E}_{\rm LS}, \mathcal{E}_{\rm LU}$ | 1000  | 100   | 50       | 20   | 10   | 5    |
| $\mathcal{E}_{\mathrm{D}}, \mathcal{E}_{\mathrm{U}}$        | 500   | 50    | 25       | 10   | 5    | 2.5  |
| $\mathcal{E}_{\rm D}, \mathcal{E}_{\rm LUS}$                | 368   | 36.82 | 18.45    | 7.49 | 3.93 | 2.28 |
| $\mathcal{E}_{\mathrm{LN}}$                                 | 118   | 14.97 | 8.24     | 3.87 | 2.27 | 1.42 |
| $\mathcal{E}_{	ext{LCD}}, \mathcal{E}_{	ext{LCS}}$          | 6.91  | 4.65  | 4        | 3.15 | 2.56 | 2    |

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Thresholds for e-values

## 2 Thresholds under distributional assumptions

## 3 Comonotonic e-variables

Improving the e-BH procedure

## 5 E-power

Э

| 0000000    | 00000000000   | 000000 | 0000000 | 00000000000 |
|------------|---------------|--------|---------|-------------|
| Comonotoni | a a variables |        |         |             |

- A set of random variables is comonotonic if each element is an increasing function of a common random variable (e.g., data)
- ▶ For testing  $Q_{\theta_0}$  against  $Q_{\theta}$ , a common e-variable is

$$E_{ heta} = rac{\mathrm{d} Q_{ heta}}{\mathrm{d} Q_{ heta_0}}$$

For testing {Q<sub>θ₀</sub>} against {Q<sub>θ</sub> : θ ∈ Θ<sub>1</sub>}, one can use the mixture e-variable

$$E_{\nu} = \int_{\Theta_1} \frac{\mathrm{d} Q_{ heta}}{\mathrm{d} Q_{ heta_0}} \nu(\mathrm{d} heta)$$

where  $\nu$  is a distribution on  $\Theta_1$ 

•  $(E_{\theta})_{\theta \in \Theta_1}$  may be comonotonic, e.g., one-sided Gaussian

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

E-power 000000000000

## Supremum of comonotonic e-variables

#### Proposition 6

Suppose that  $\{E_{\theta} : \theta \in \Theta\}$  is a collection of comonotonic e-variables for a hypothesis Q. Then

$$\sup_{Q\in\mathcal{Q}} Q\left(\sup_{\theta\in\Theta} E_{\theta} \geq 1/\alpha\right) \leq \alpha.$$

If {Q<sub>θ</sub> : θ ∈ Θ} is a collection of comonotonic e-variables, then we can take the supremum e-variables instead of a mixture

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Example                 |                            |                           |                            |                        |

- We are testing N(0,1) against  $N(\mu,1)$  for  $\mu \neq 0$
- We have *n* independent observations  $X_1, \ldots, X_n$
- Likelihood ratio e-variable:

$$E_{\mu}=\exp(\mu S_n-n\mu^2/2),$$

where  $S_n = \sum_{i=1}^n X_i$ 

•  $\{E_{\mu} : \mu > 0\}$  is a collection of comonotonic e-variables

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Fxample                 |                            |                           |                            |                        |

• If the prior  $\nu$  is N(0,1), then the mixture test (two-sided alternative) is

$$E_{\nu}(n) = rac{1}{\sqrt{n+1}} \exp\left(rac{S^2}{2n+2}
ight)$$

 $\blacktriangleright$  Suppose the alternative is  $\mu >$  0, we can use

$$Y(n) = \sup_{\mu>0} \exp\left(\mu S_n - n\mu^2/2\right) = \exp\left(\frac{(S_n)_+^2}{2n}\right)$$

Taking the supremum does not necessarily generalize to optional stopping: Y(n) is only a valid test for fixed n

く 戸 と く ヨ と く ヨ と

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>00000●0 | Improving e-BH<br>00000000 | E-power<br>000000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|-------------------------|
|                         |                            |                           |                            |                         |

► Data from N(0.3,1)

Example

- ▶ Null hypothesis N(0,1)
  - 10,000 replications
  - α = 0.05
  - average sample needed to archive power

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

| Thresho<br>000000 | lds for e-values           | Distributiona                                    | al assumpt<br>2000 |      | Comono<br>00000 | tonicity<br>⊃● | Imp<br>00 | oroving e-<br>000000 | BH   | E-power |   |
|-------------------|----------------------------|--------------------------------------------------|--------------------|------|-----------------|----------------|-----------|----------------------|------|---------|---|
| Exa               | mple                       |                                                  |                    |      |                 |                |           |                      |      |         |   |
|                   |                            |                                                  |                    |      | n               |                |           |                      | β    |         |   |
|                   | Test                       | Threshold                                        | 10                 | 50   | 100             | 500            | 0.5       | 0.9                  | 0.95 | 0.99    |   |
|                   |                            | $\mathcal{T}_{lpha}(\mathcal{E}_0)$              | 0                  | 0.36 | 0.69            | 1              | 67        | 179                  | 227  | 361     |   |
|                   | E with                     | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{U}})$   | 0.03               | 0.49 | 0.77            | 1              | 52        | 158                  | 206  | 321     |   |
|                   | $L_{\mu}$ with $\mu = 0.2$ | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{LUS}})$ | 0.05               | 0.54 | 0.80            | 1              | 45        | 145                  | 193  | 312     |   |
|                   | $\mu = 0.3$                | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{LN}})$  | 0.17               | 0.67 | 0.86            | 1              | 31        | 124                  | 171  | 286     |   |
|                   |                            | OS                                               | 0                  | 0.46 | 0.80            | 1              | 54        | 138                  | 177  | 272     |   |
| -                 |                            | $\mathcal{T}_{lpha}(\mathcal{E}_0)$              | 0.02               | 0.36 | 0.59            | 0.97           | 75        | 283                  | 391  | 681     | - |
|                   |                            | $\mathcal{T}_{\alpha}(\mathcal{E}_{\mathrm{U}})$ | 0.07               | 0.46 | 0.66            | 0.98           | 59        | 257                  | 362  | 647     |   |

| E with      | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{U}})$   | 0.07 | 0.46 | 0.66 | 0.98 | 59  | 257 | 362 | 647           |
|-------------|--------------------------------------------------|------|------|------|------|-----|-----|-----|---------------|
| $\mu = 0.4$ | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{LUS}})$ | 0.10 | 0.50 | 0.69 | 0.98 | 51  | 247 | 347 | 633           |
| $\mu = 0.4$ | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{LN}})$  | 0.23 | 0.59 | 0.75 | 0.98 | 34  | 219 | 322 | 604           |
|             | OS                                               | 0.03 | 0.49 | 0.75 | 0.99 | 51  | 179 | 246 | 451           |
|             | $\mathcal{T}_{lpha}(\mathcal{E}_0)$              | 0.07 | 0.37 | 0.71 | 1    | 67  | 153 | 183 | 253           |
| Supremum    | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{U}})$   | 0.12 | 0.49 | 0.80 | 1    | 52  | 128 | 159 | 221           |
|             | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{LN}})$  | 0.24 | 0.68 | 0.91 | 1    | 31  | 95  | 119 | 174           |
|             | $\mathcal{T}_{lpha}(\mathcal{E}_{0})$            | 0.02 | 0.14 | 0.39 | 1    | 122 | 240 | 280 | 371           |
| Mixture     | $\mathcal{T}_{lpha}(\mathcal{E}_{\mathrm{U}})$   | 0.03 | 0.20 | 0.48 | 1    | 104 | 217 | 254 | ▶ 33 <u>8</u> |

Ruodu Wang (wang@uwaterloo.ca)

E-power and improved e-tests



2 Thresholds under distributional assumptions

3 Comonotonic e-variables

Improving the e-BH procedure

## 5 E-power

イロト イボト イヨト イヨト

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>⊙●000000 | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E DU                    |                            |                           |                            |                        |

## E-BH procedure

- ► K hypotheses
- ▶  $e_1, \ldots, e_K$ : e-values

• 
$$e_{[1]} \geq \cdots \geq e_{[K]}$$
: order statistics

## E-BH procedure

The e-BH procedure  $\mathcal{G}(\alpha) : [0, \infty]^{\mathcal{K}} \to 2^{\mathcal{K}}$  for  $\alpha > 0$  rejects hypotheses with the largest  $k^*$  e-values, where

$$k^* = \max\left\{k \in \mathcal{K} : \frac{ke_{[k]}}{K} \ge \frac{1}{lpha}
ight\}.$$

► The e-BH procedure applied to arbitrarily dependent (AD) e-values has FDR at most K<sub>0</sub>α/K

Distributional assumptions

Comonotonicity 0000000 Improving e-BH

E-power

# Boosting e-values in the e-BH procedure

• Under AD, find constant  $b \ge 1$  such that

 $\mathbb{E}[T(\alpha b E)] \leq \alpha,$ 

where  $K/\mathcal{K} := \{K/k : k \in \mathcal{K}\}$ , and

$$T(x) = rac{K}{\lceil K/x \rceil} \mathbb{1}_{\{x \ge 1\}}$$
 with  $T(\infty) = K$ .

► Under positive regression dependence on a subset (PRDS), find b ≥ 1 such that

$$\max_{x \in \mathcal{K}/\mathcal{K}} x \mathbb{P}(\alpha b E \ge x) \le \alpha$$

Distributional assumptions

Comonotonicity 0000000 Improving e-BH 00000000

< ロ > < 同 > < 三 > < 三 > 、

E-power 000000000000

# Boosting e-values in the e-BH procedure

- ► To avoid reliance on K, consider the relaxed conditions:
  - under AD,  $\mathbb{E}\left[\alpha b E \mathbb{1}_{\{\alpha b E \geq 1\}}\right] \leq \alpha$
  - under PRDS,  $\max_{x \ge 1} x \mathbb{P}(\alpha bE \ge x) \le \alpha$
- Assuming continuity, define the boosting factor for null hypotheses  $E \in \mathcal{E}$ 
  - under AD as  $B^{
    m AD}_lpha(\mathcal{E})$ , where

$$B^{\mathrm{AD}}_{\alpha}(\mathcal{E}) = \inf_{\mathcal{E} \in \mathcal{E}} \sup \left\{ c \ge 1 : \mathbb{E} \left[ \alpha c \mathcal{E} \mathbb{1}_{\{\alpha c \mathcal{E} \ge 1\}} \right] \le \alpha \right\}$$

• under PRDS as  $B^{\mathrm{PR}}_lpha(\mathcal{E})$ , where

$$B^{\mathrm{PR}}_{\alpha}(\mathcal{E}) = \inf_{E \in \mathcal{E}} \sup \left\{ c \geq 1 : \max_{x \geq 1} x \mathbb{P}(\alpha c E \geq x) \leq \alpha \right\}$$

Distributional assumptions

Comonotonicity

Improving e-BH 0000●000 E-power 000000000000

# Boosting e-values in the e-BH procedure

#### Theorem 6

For some  $\alpha \in (0,1)$ , let  $c_1^{\mathrm{AD}}(\alpha)$  be the unique constant  $b \geq 1$  such that

$$e^{-1/(\alpha b)}(1+\alpha b) = \alpha/e$$

and  $c_2^{AD}(\alpha)$  be the unique constant  $b' \ge 1$  such that

$$e^{-1/(\alpha b')}(1+\alpha b') = \alpha$$

Then,

$$c_1^{\mathrm{AD}}(\alpha) \leq B_{lpha}^{\mathrm{AD}}\left(\mathcal{E}_{\mathrm{LCS}}
ight) \leq c_2^{\mathrm{AD}}(lpha).$$

• Under AD with nulls  $E \in \mathcal{E}_{LCS}$ , we can boost e-values by 17.35, 9.82, 4.74 and 2.83 for  $\alpha = 0.01, 0.02, 0.05$  and 0.1

Distributional assumptions

Comonotonicity

Improving e-BH 00000000

< ロ > < 同 > < 三 > < 三 > 、

E-power 000000000000

# Boosting e-values in the e-BH procedure

Theorem 7

Define

$$c_1^{\mathrm{PR}}(\alpha) = rac{1}{lpha - lpha \log lpha}; \qquad c_2^{\mathrm{PR}}(lpha) = egin{cases} e, & lpha \geq 1/e \ -rac{1}{lpha \log lpha}, & lpha \leq 1/e \end{cases}$$

We have that

$$c_1^{\operatorname{PR}}(\alpha) \leq B_{\alpha}^{\operatorname{PR}}(\mathcal{E}_{\operatorname{LCS}}) \leq c_2^{\operatorname{PR}}(\alpha).$$

• Under PRDS with nulls  $E \in \mathcal{E}_{LCS}$ , we can boost e-values by 17.84, 10.18, 5.01 and 3.03 for  $\alpha = 0.01, 0.02, 0.05$  and 0.1

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
| 00000000                | 00000000000                | 0000000        | 000000€0       | 00000000000 |
| Example                 |                            |                |                |             |

- Assume null e-variable follows Exp(1)
  - Remark that  $E \in \mathcal{E}_{ ext{LCS}}$
- Assume alternative follows  $Gamma(1 + \Theta, 1/(1 + \Theta))$ , where  $\Theta$  follows Exp(1/b)
  - If *b* = 0, the alternative reduces to the null
  - We set b = 4; mean under the alternative is 41
- Let K = 1000,  $K_0 = 500$
- Simulate K e-values under the null and alternative with negative dependence between 500 pairs

< 同 > < 三 > < 三 >

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>0000000● | E-power<br>00000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Fxample                 |                            |                           |                            |                        |

Number of discoveries and observed FDP for

- ► base e-BH
- ▶ boosted e-BH under AD with  $E \in \mathcal{E}_{LCS}$
- ► boosted e-BH under AD with  $E \stackrel{d}{\sim} Exp(1)$  W./Ramdas'22
- ▶ p-BH procedure with  $P = \exp(-E)$  (no FDR proof)

|          | e-BH    | boosted | $\mathcal{E}_{\mathrm{LCS}}$ | boosted | $\operatorname{Exp}(1)$ | p-I     | ЗН      |
|----------|---------|---------|------------------------------|---------|-------------------------|---------|---------|
| $\alpha$ | Discov. | Discov. | FDP                          | Discov. | FDP                     | Discov. | FDP     |
| 0.01     | 0       | 68.7    | 0                            | 158.7   | 0                       | 340.7   | 0.00505 |
| 0.02     | 0       | 135.0   | 0                            | 201.7   | 0                       | 356.0   | 0.01005 |
| 0.05     | 0       | 196.8   | 0                            | 252.7   | 0                       | 382.3   | 0.02497 |
| 0.10     | 0       | 235.7   | 0                            | 292.2   | 0                       | 411.9   | 0.05001 |
|          |         |         |                              |         | < □ >                   |         | (三)三日   |

< ロ > < 同 > < 回 > < 回 > < 回 > <

## Thresholds for e-values

2 Thresholds under distributional assumptions

3 Comonotonic e-variables

Improving the e-BH procedure



Э

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>o●ooooooooo |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

▶ Power of p-variable under an alternative *Q*:

## $Q(P \le \alpha)$

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0●000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

## Power of p-variable under an alternative Q:

 $Q(P \le \alpha)$ 

#### Question

How do we e-valuate the power?

Э

| 00000000 | 0000000000000 | 0000000 | 00000000 | 0000000000 |
|----------|---------------|---------|----------|------------|
| E-power  |               |         |          |            |

- ► Q: an alternative probability
- E: an e-variable testing P (against Q)

We have seen a lot about this object

Shafer, Grünwald, Ramdas, ...

$$\Psi^Q(E) = \mathbb{E}^Q[\log E]$$

which we call the e-power

Vovk/W.'24 NEJSDS

| 00000000 | 000000000000 | 0000000 | 00000000 | 00000000000 |
|----------|--------------|---------|----------|-------------|
| E-power  |              |         |          |             |

- ► Q: an alternative probability
- E: an e-variable testing P (against Q)

We have seen a lot about this object

Shafer, Grünwald, Ramdas, ...

$$\Psi^Q(E) = \mathbb{E}^Q[\log E]$$

which we call the e-power

Vovk/W.'24 NEJSDS

(日) ト イ ヨ ト イ ヨ ト

Why  $\Psi^Q(E)$ ?

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000●0000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-nower                 |                            |                           |                            |                        |

▶ Relations to likelihood ratios, optimal growth rate, RIPr, ...

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000●0000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

▶ Relations to likelihood ratios, optimal growth rate, RIPr, ...

• 
$$\mathbb{E}^{Q}[E] \leq 1 \Longrightarrow \Psi^{Q}(E) \leq 0$$

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000€0000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

▶ Relations to likelihood ratios, optimal growth rate, RIPr, ...

• 
$$\mathbb{E}^{Q}[E] \leq 1 \Longrightarrow \Psi^{Q}(E) \leq 0$$

►  $\Psi^Q(E_1) > 0$  and  $\Psi^Q(E_2) > 0$ ,  $E_1, E_2$  independent  $\implies \Psi^Q(E_1E_2) > 0$  and  $\Psi^Q(E_1/2 + E_2/2) > 0$ 

< 同 > < 目 > < 目 > \_ 目

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000€0000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

Relations to likelihood ratios, optimal growth rate, RIPr, ...

• 
$$\mathbb{E}^{Q}[E] \leq 1 \Longrightarrow \Psi^{Q}(E) \leq 0$$

►  $\Psi^Q(E_1) > 0$  and  $\Psi^Q(E_2) > 0$ ,  $E_1, E_2$  independent  $\implies \Psi^Q(E_1E_2) > 0$  and  $\Psi^Q(E_1/2 + E_2/2) > 0$ 

(independence is not really needed)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000●0000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

Relations to likelihood ratios, optimal growth rate, RIPr, ...

• 
$$\mathbb{E}^{Q}[E] \leq 1 \Longrightarrow \Psi^{Q}(E) \leq 0$$

•  $\Psi^Q(E_1) > 0$  and  $\Psi^Q(E_2) > 0$ ,  $E_1, E_2$  independent  $\implies \Psi^Q(E_1E_2) > 0$  and  $\Psi^Q(E_1/2 + E_2/2) > 0$ 

(independence is not really needed)

- ( 同 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( 三 ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( = ) ( =

• 
$$\Psi^Q(E) > 0$$
 and  $\lambda \in (0,1) \Longrightarrow \Psi^Q((1-\lambda) + \lambda E) > 0$ 

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0000●000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| _                       |                            |                           |                            |                        |

E-power

- It is not well defined for all E
  - An extreme example is Q(E = 0) > 0 and Q(E = ∞) > 0, but there are finite examples

3

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0000●000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| _                       |                            |                           |                            |                        |

E-power

- It is not well defined for all E
  - An extreme example is Q(E = 0) > 0 and Q(E = ∞) > 0, but there are finite examples
- $\Psi^Q(E) = -\infty$  for Q(E = 0) > 0 may be sensible

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0000●000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| _                       |                            |                           |                            |                        |

E-power

- It is not well defined for all E
  - An extreme example is Q(E = 0) > 0 and Q(E = ∞) > 0, but there are finite examples
- ▶  $\Psi^Q(E) = -\infty$  for Q(E = 0) > 0 may be sensible, ... but  $-\infty$  also for  $E = \exp(m X)$  with  $X \stackrel{d}{\sim} \text{Pareto}(1)$  and  $m \in \mathbb{R}$ ?

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0000€000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| _                       |                            |                           |                            |                        |

E-power

- It is not well defined for all E
  - An extreme example is Q(E = 0) > 0 and Q(E = ∞) > 0, but there are finite examples
- ▶  $\Psi^Q(E) = -\infty$  for Q(E = 0) > 0 may be sensible, ... but  $-\infty$  also for  $E = \exp(m X)$  with  $X \stackrel{d}{\sim} \text{Pareto}(1)$  and  $m \in \mathbb{R}$ ?
- $\Psi^Q(E_1E_2) = \Psi^Q(E_1) + \Psi^Q(E_2)$  regardless of  $E_1$  and  $E_2$

伺 ト イヨ ト イヨ ト

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000●00000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| _                       |                            |                           |                            |                        |

Let us be formal

E-power

- Fix  $(\Omega, \mathcal{F})$  and a probability Q
- Let X be a set of bounded nonnegative measurable functions (e-variables for some ℙ)
- For now we exclude unbounded random variables
- A candidate e-power function  $\Pi : \mathcal{X} \to [-\infty, \infty]$

伺 ト イヨト イヨト

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000000●0000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

P1 Law-invariance:  $\Pi(E)$  is determined by the distribution of Eunder Q

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000000●0000 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| E-power                 |                            |                           |                            |                        |

- P1 Law-invariance:  $\Pi(E)$  is determined by the distribution of Eunder Q
- P2 Strict monotonicity:  $\Pi(E_1) \leq \Pi(E_2)$  if  $E_1 \leq E_2$ , and  $\Pi(E_1) < \Pi(E_2)$  if  $Q(E_1 < E_2) = 1$

< 口 > < 同 > < 三 > < 三 > 、

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|-------------------------|
| F-nower                 |                            |                           |                            |                         |

- P1 Law-invariance:  $\Pi(E)$  is determined by the distribution of Eunder Q
- P2 Strict monotonicity:  $\Pi(E_1) \leq \Pi(E_2)$  if  $E_1 \leq E_2$ , and  $\Pi(E_1) < \Pi(E_2)$  if  $Q(E_1 < E_2) = 1$
- P3 Multiplicative invariance:  $\Pi(E_1) > \Pi(E_2) \Longrightarrow$  $\Pi(EE_1) > \Pi(EE_2)$  for *E* independent of  $E_1, E_2$  under *Q*

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>000000000000 |
|-------------------------|----------------------------|---------------------------|----------------------------|-------------------------|
| Enower                  |                            |                           |                            |                         |

- P1 Law-invariance:  $\Pi(E)$  is determined by the distribution of Eunder Q
- P2 Strict monotonicity:  $\Pi(E_1) \leq \Pi(E_2)$  if  $E_1 \leq E_2$ , and  $\Pi(E_1) < \Pi(E_2)$  if  $Q(E_1 < E_2) = 1$
- P3 Multiplicative invariance:  $\Pi(E_1) > \Pi(E_2) \Longrightarrow$  $\Pi(EE_1) > \Pi(EE_2)$  for *E* independent of  $E_1, E_2$  under *Q*
- P4 Consistency: For  $E_1, E_2, \ldots$ , iid under Q with  $\Pi(E_1) > 0$ ,

$$Q\left(\prod_{k=1}^{n}E_{k}>rac{1}{lpha}
ight)
ightarrow1$$
 as  $n
ightarrow\infty$  for all  $lpha\in(0,1)$ 

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>oooooo●oooo |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Epower                  |                            |                           |                            |                        |

- P1 Law-invariance:  $\Pi(E)$  is determined by the distribution of Eunder Q
- P2 Strict monotonicity:  $\Pi(E_1) \leq \Pi(E_2)$  if  $E_1 \leq E_2$ , and  $\Pi(E_1) < \Pi(E_2)$  if  $Q(E_1 < E_2) = 1$
- P3 Multiplicative invariance:  $\Pi(E_1) > \Pi(E_2) \Longrightarrow$  $\Pi(EE_1) > \Pi(EE_2)$  for *E* independent of  $E_1, E_2$  under *Q*
- P4 Consistency: For  $E_1, E_2, \ldots$ , iid under Q with  $\Pi(E_1) > 0$ ,

$$Q\left(\prod_{k=1}^{n}E_{k}>rac{1}{lpha}
ight)
ightarrow1$$
 as  $n
ightarrow\infty$  for all  $lpha\in(0,1)$ 

P5 Symmetry:  $\Pi(E^{-1}) = -\Pi(E)$  if  $E^{-1} \in \mathcal{X}$ 

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>0000000●000 |  |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|--|
|                         |                            |                           |                            |                        |  |

## Characterization

#### Theorem 8

A function  $\Pi:\mathcal{X}\to [-\infty,\infty]$  satisfies P1-P5 if and only if there

exists a strictly increasing and symmetric function f such that

 $\Pi(E) = f(\mathbb{E}^Q[\log E]) \quad \text{for all } E \in \mathcal{X}.$ 

| Thresholds for e-values | Distributional assumptions | Comonotonicity | Improving e-BH | E-power     |
|-------------------------|----------------------------|----------------|----------------|-------------|
| 00000000                |                            | 0000000        | 00000000       | 0000000●000 |
|                         |                            |                |                |             |

## Characterization

#### Theorem 8

A function  $\Pi:\mathcal{X}\to [-\infty,\infty]$  satisfies P1-P5 if and only if there

exists a strictly increasing and symmetric function f such that

 $\Pi(E) = f(\mathbb{E}^Q[\log E]) \quad \text{for all } E \in \mathcal{X}.$ 

- Proof based on a recent result Mu/Pomatto/Strack/Tamuz'24 ECMA
- Justified  $\Psi^Q$  as an e-power function
- Can be extended beyond  $\mathcal{X}$  as long as  $\Psi^Q(E)$  is well-defined
- Did not address the problem of undefinedness of  $\Psi^Q(E)$

Impossible to get rid of the undesirable properties if we wish to keep the desirable ones

| 00000000 | 000000000000 | 0000000 | 00000000 | 00000000000000000000000000000000000000 |
|----------|--------------|---------|----------|----------------------------------------|
| E-power  |              |         |          |                                        |

#### Write

$$L_t(E) = \frac{1}{t} \log \mathbb{E}^Q[E^t] \text{ for } t \in \mathbb{R} \setminus \{0\}; \quad L_0(E) = \mathbb{E}^Q[\log E]$$
$$L_{-\infty}(E) = \text{ess-inf}_Q \log E; \quad L_{\infty}(E) = \text{ess-sup}_Q \log E;$$

- $\mathcal{I}$ : the set of all strictly increasing functions on  $[-\infty,\infty]$
- $\mathcal{M}(\mathbb{R})$ : the set of all positive finite measures on  $[-\infty,\infty]$

< 同 > < 三 > < 三 > -

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000●00 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Enouver                 |                            |                           |                            |                        |

#### Write

UVVEI

$$L_t(E) = \frac{1}{t} \log \mathbb{E}^Q[E^t] \text{ for } t \in \mathbb{R} \setminus \{0\}; \quad L_0(E) = \mathbb{E}^Q[\log E]$$
$$L_{-\infty}(E) = \text{ess-inf}_Q \log E; \quad L_{\infty}(E) = \text{ess-sup}_Q \log E;$$

# *I*: the set of all strictly increasing functions on [-∞,∞] *M*(ℝ): the set of all positive finite measures on [-∞,∞] P1-P3 ⇐⇒

$$\Pi(E) = f\left(\int_{-\infty}^{\infty} L_t(E) \mathrm{d}\mu(t)\right) \text{ for some } \mu \in \mathcal{M}(\mathbb{R}) \text{ and } f \in \mathcal{I}$$

< 口 > < 同 > < 三 > < 三 > 、

| Thresholds for e-values | Distributional assumptions | Comonotonicity<br>0000000 | Improving e-BH<br>00000000 | E-power<br>00000000●00 |
|-------------------------|----------------------------|---------------------------|----------------------------|------------------------|
| Enowor                  |                            |                           |                            |                        |

#### Write

UVVEI

$$L_t(E) = \frac{1}{t} \log \mathbb{E}^Q[E^t] \text{ for } t \in \mathbb{R} \setminus \{0\}; \quad L_0(E) = \mathbb{E}^Q[\log E]$$
$$L_{-\infty}(E) = \text{ess-inf}_Q \log E; \quad L_{\infty}(E) = \text{ess-sup}_Q \log E;$$

 $\blacktriangleright~\mathcal{I}:$  the set of all strictly increasing functions on  $[-\infty,\infty]$ 

•  $\mathcal{M}(\mathbb{R})$ : the set of all positive finite measures on  $[-\infty, \infty]$ P1-P3  $\iff$ 

$$\Pi(E) = f\left(\int_{-\infty}^{\infty} L_t(E) d\mu(t)\right) \text{ for some } \mu \in \mathcal{M}(\mathbb{R}) \text{ and } f \in \mathcal{I}$$

P1-P4  $\iff$  $\Pi(E) = f\left(\int_{-\infty}^{0} L_t(E) d\mu(t)\right)$  for some  $\mu \in \mathcal{M}(\mathbb{R})$  and  $f \in \mathcal{I}$  Distributional assumptions

Comonotonicity

Improving e-BH 00000000

(日)

E-power oooooooooooooooo

## Take-away messages

- A factor of 2 does not hurt in many situations
- Taking a supremum does not hurt in some situations
- Like it or not, the e-power is an axiomatically justified notion

(日)

## Take-away messages

- A factor of 2 does not hurt in many situations
- Taking a supremum does not hurt in some situations
- Like it or not, the e-power is an axiomatically justified notion ... but with e-removable (?) drawbacks

Thank you

Distributional assumptions

Comonotonicity

mproving e-BH

イロト イボト イヨト イヨト

E-power 0000000000

# Thank you for your kind attention

Based on joint work with



Christopher Blier-Wong (Watrerloo)