Diversification quotients: Quantifying diversification via risk measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

Department of Operations Research and Financial Engineering
Princeton University, April 2024

Motivation

Content

Based on joint work with

Xia Han (Nankai)

Liyuan Lin (Waterloo)

Agenda

Motivation

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- Portfolio optimization
- 5 Elliptical models
- 6 Empirical results for financial data

Diversification

Motivation

•000000000

How to quantify diversification if you must

Diversification

Motivation

000000000

Portfolio diversification

- Markowitz (mean-variance analysis)
- CAPM (removing idiosyncratic risk)

As least two approaches to quantify diversification

- Heuristic: number of different investments
- Quantitative: formal reasoning
 - via risk reduction or utility improvement

Motivation

000000000

Quantitative setup

- \triangleright \mathcal{X} : a convex cone of random variables, e.g., L^1
- ▶ One-period portfolio loss/payoff vector: $\mathbf{X} \in \mathcal{X}^n$
- ▶ Diversification index: $D: \mathcal{X}^n \to \overline{\mathbb{R}} := [-\infty, \infty]$
 - Convention: smaller D represents better diversification
 - Always write $\mathbf{X} = (X_1, \dots, X_n)$

Examples: diversification ratios (DR) with 0/0 = 0

$$\mathrm{DR^{SD}}(\mathbf{X}) = \frac{\mathrm{SD}(\sum_{i=1}^{n} X_i)}{\sum_{i=1}^{n} \mathrm{SD}(X_i)} \quad \text{and} \quad \mathrm{DR^{var}}(\mathbf{X}) = \frac{\mathrm{var}(\sum_{i=1}^{n} X_i)}{\sum_{i=1}^{n} \mathrm{var}(X_i)}$$

Diversification indices

DR^{SD} and DR^{var} satisfy three natural properties

- [+] Non-negativity: $D(X) \geq 0$ for all $X \in \mathcal{X}^n$
 - with D = 0 being the most diversified
- [LI] Location invariance: D(X + c) = D(X) for all $c \in \mathbb{R}^n$ and $\mathbf{X} \in \mathcal{X}^n$
 - injecting risk-free payoff to each component does not affect D
 - changing initial price of each component does not affect D
- [SI] Scale invariance: $D(\lambda X) = D(X)$ for all $\lambda > 0$ and $X \in \mathcal{X}^n$
 - rescaling of a portfolio does not affect D
 - the counting unit or currency (non-random) does not affect D

Generally not convex

Diversification indices

Motivation

0000000000

- ► SD and var are simple but coarse measures of risk
- By internal needs or regulation, risk should be assessed by risk measures $\phi: \mathcal{X} \to \mathbb{R}$
 - regulatory capital calculation, capital allocation, performance analysis, optimization, ...
 - VaR and ES (CVaR) are popular in banking and insurance regulatory frameworks, such as Basel III/IV and Solvency II
 - monetary/convex/coherent risk measures

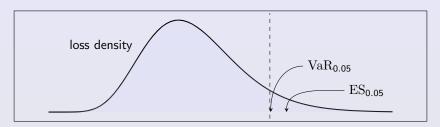
Artzner/Delbaen/Eber/Heath'99; Follmer/Schied'16

What is a suitable diversification index based on risk measures?

VaR and ES

Motivation

0000000000



Value-at-Risk (VaR), $\alpha \in (0,1)$

$$\mathrm{VaR}_{\alpha}:L^{0}\rightarrow\mathbb{R}$$
,

$$VaR_{\alpha}(X) = q_{\alpha}(X)$$
$$= \inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge 1 - \alpha\}$$

(left-quantile)

Expected Shortfall (ES), $\alpha \in (0,1)$

$$\mathrm{ES}_{\alpha}:L^1\to\mathbb{R},$$

$$\mathrm{ES}_{\alpha}(X) = \frac{1}{\alpha} \int_{0}^{\alpha} \mathrm{VaR}_{\beta}(X) \mathrm{d}\beta$$

(also: TVaR/CVaR/AVaR)

Natural candidate

Motivation

000000000

Tasche'07; McNeil/Frey/Embrechts'15

$$DR^{\phi}(\mathbf{X}) = \frac{\phi\left(\sum_{i=1}^{n} X_{i}\right)}{\sum_{i=1}^{n} \phi(X_{i})}$$

$$D \quad [+] \quad [LI] \quad [SI]$$

$$DR^{\phi} \quad No \quad No \quad \phi \text{ pos. hom.}$$

- DR is impossible to interpret if "negative over negative"
- similar problem if we use "difference" instead of "ratio"
- awkward for optimization
- ▶ wrong incentives in some simple models (⇒ next slide)
- ▶ ⇒ a new index is needed if risk measures are used

- ◆□▶ ◆圖▶ ◆圖▶ ◆圖■ 釣۹@

Ruodu Wang

Motivation

000000000

Diversification indices based on risk measures

Consider three models (same mean and covariance)

- 1. iid standard normal: $\mathbf{Z} = (Z_1, \dots, Z_n)$
- 2. iid shock: $\mathbf{Y} = (\xi_1 Z_1, \dots, \xi_n Z_n)$ where ξ_1, \dots, ξ_n are iid heavy-tailed shocks independent of \mathbf{Z}
- 3. common shock: $\mathbf{Y}' = (\xi Z_1, \dots, \xi Z_n)$ where $\xi \stackrel{\mathrm{d}}{=} \xi_1$ is a heavy-tailed shock independent of \mathbf{Z}

Consider three models (same mean and covariance)

- 1. iid standard normal: $\mathbf{Z} = (Z_1, \dots, Z_n)$
- 2. iid shock: $\mathbf{Y} = (\xi_1 Z_1, \dots, \xi_n Z_n)$ where ξ_1, \dots, ξ_n are iid heavy-tailed shocks independent of **Z**
- 3. common shock: $\mathbf{Y}' = (\xi Z_1, \dots, \xi Z_n)$ where $\xi \stackrel{d}{=} \xi_1$ is a heavy-tailed shock independent of **Z**

Intuitive relation on diversification (smaller \Rightarrow better):

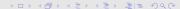
Model
$$1 \leq Model 2 < Model 3$$

▶ If $\xi^2 \sim ig(\nu/2, \nu/2)$, then $\mathbf{Y} \sim it_n(\nu)$ and $\mathbf{Y}' \sim t(\nu, \mathbf{0}, I_n)$

Table: DR, where
$$\alpha = 0.05$$
 and $n = 10$

D	$\mathrm{DR}^{\mathrm{VaR}_{\alpha}}$	$\mathrm{DR}^{\mathrm{ES}_{lpha}}$	$\mathrm{DR}^{\mathrm{SD}}$	$\mathrm{DR}^{\mathrm{var}}$
$oxed{Z \sim \mathrm{N}(0, \mathit{I}_n)}$	0.3162	0.3162	0.3162	1
$\mathbf{Y} \sim \mathrm{it}_n(3)$	0.3568	0.3058	0.3162	1
$\mathbf{Y}' \sim \mathrm{t}(3, 0, I_n)$	0.3162	0.3162	0.3162	1
Z better than Y	Yes	No	No	No
f Y better than $f Y'$	No	Yes	No	No

$$\mathrm{DR^{SD}}(\mathbf{Z}) = \mathrm{DR^{SD}}(\mathbf{Y}') = \mathrm{DR^{SD}}(\mathbf{Y}) = 1/\sqrt{n}$$



Ruodu Wang

Question: Can we find a diversification index that is

- based on a specified risk measure (e.g., VaR or ES)
- satisfying the three natural properties [+], [SI] and [LI]
- consistent with common portfolio dependence structures
- natural to interpret

Motivation

000000000

- able to capture heavy tails and common shocks
- convenient to compute and optimize for portfolio selection?

Progress

Motivation

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- 4 Portfolio optimization
- 5 Elliptical models
- 6 Empirical results for financial data

Risk measures

Motivation

A risk measure $\phi: \mathcal{X} \to \mathbb{R}$

Artzner/Delbaen/Eber/Heath'99

- [M] Monotonicity: $\phi(X) \leq \phi(Y)$ for all $X, Y \in \mathcal{X}$ with $X \leq Y$
- [CA] Constant additivity: $\phi(X+c) = \phi(X) + c$ for all $c \in \mathbb{R}$ and $X \in \mathcal{X}$
- [PH] Positive homogeneity: $\phi(\lambda X) = \lambda \phi(X)$ for all $\lambda \in (0, \infty)$ and $X \in \mathcal{X}$
- [SA] Subadditivity: $\phi(X+Y) \leq \phi(X) + \phi(Y)$ for all $X, Y \in \mathcal{X}$
 - Coherent risk measures (incl. ES): [M], [CA], [PH] & [SA]
 - ▶ VaR_{α} : [M], [CA] & [PH] \Leftarrow call this an MCP risk measure

Setting

Motivation

- $\blacktriangleright \mathcal{X} = L^{\infty}$ and $\phi : \mathcal{X} \to \mathbb{R}$ is a risk measure
- $ightharpoonup X = (X_1, ..., X_n); Y = (Y_1, ..., Y_n)$
- $ightharpoonup X \stackrel{\mathrm{m}}{\succ} \mathbf{Y}$: $\phi(X_i) < \phi(Y_i)$ for each i
- **X** $\stackrel{\text{m}}{\succ}$ **Y**: $\phi(X_i) < \phi(Y_i)$ for each *i*
- ▶ $\mathbf{X} \stackrel{\text{m}}{\sim} \mathbf{Y}$: $\phi(X_i) = \phi(Y_i)$ for each i (marginal equivalence)

Axiom R

- $[R]_{\phi}$ Rationality under ϕ -marginal equivalence: $D(X) \leq D(Y)$ for $\mathbf{X}, \mathbf{Y} \in \mathcal{X}^n$ satisfying $\mathbf{X} \stackrel{\mathrm{m}}{\sim} \mathbf{Y}$ and $\sum_{i=1}^n X_i \leq \sum_{i=1}^n Y_i$.
 - Given marginal equivalence, preference for less loss

Diversification quotients

Motivation

- ▶ **0** is the *n*-vector of zeros \Longrightarrow assign $D(\mathbf{0}) = 0$
- ▶ A duplicate portfolio: $\mathbf{X}^{\mathrm{du}} = (X, \dots, X) \Longrightarrow D(\mathbf{X}^{\mathrm{du}}) = 1$?
- ▶ **0** is also duplicate \Longrightarrow assign $D(\mathbf{X}^{\mathrm{du}}) < 1$
- ▶ A worse-than-duplicate portfolio $\mathbf{X}^{\text{wd}} = (X_1, \dots, X_n)$: $\mathbf{X}^{\mathrm{wd}} \stackrel{\mathrm{m}}{\succ} \mathbf{X}^{\mathrm{du}}$ and $\sum_{i=1}^{n} X_i \geq nX$ for some $\mathbf{X}^{\mathrm{du}} = (X, \dots, X)$
- ▶ Assign $D(\mathbf{X}^{\text{wd}}) \ge 1$

Axiomatic theory

000000000000

Diversification disasters

e.g., Ibragimov/Jaffee/Walden'11

Axiom N

[N]_{ϕ} Normalization: $D(\mathbf{0}) = 0$, $D(\mathbf{X}) \leq 1$ if **X** is duplicate, and D(X) > 1 if X is worse than duplicate.

000000000000

Axiom C

Motivation

[C]
$$_{\phi}$$
 Continuity: For $\{\mathbf{Y}^k\}_{k\in\mathbb{N}}\subseteq\mathcal{X}^n$ and $\mathbf{X}\in\mathcal{X}^n$ satisfying $\mathbf{Y}^k\overset{\mathrm{m}}{\sim}\mathbf{X}$ for each k , if $(\sum_{i=1}^nX_i-\sum_{i=1}^nY_i^k)_+\overset{L^{\infty}}{\longrightarrow}0$ as $k\to\infty$, then $(D(\mathbf{X})-D(\mathbf{Y}^k))_+\to0$

- Marginally equivalent portfolios X and Y
- ▶ Total risk of **X** is not much worse than **Y** in L^{∞}
 - $\implies D(\mathbf{X})$ is not much worse than $D(\mathbf{Y})$
- Robustness with respect to statistical errors

0000000000000

Motivation

- ► Simplex: $\Delta_n = \{ \mathbf{x} \in [0,1]^n : x_1 + \dots + x_n = 1 \}$
- ▶ Portfolio loss vector: $\mathbf{w} \odot \mathbf{X} = (w_1 X_1, \dots, w_n X_n)$

Axiom PC

- [PC] Portfolio convexity: The set $\{\mathbf{w} \in \Delta_n : D(\mathbf{w} \odot \mathbf{X}) \leq d\}$ is convex for each $\mathbf{X} \in \mathcal{X}^n$ and $d \in \mathbb{R}$.
 - Pooling two well diversified portfolios does not lead to a poorly diversified one
 - "Convexity can also be viewed as the formal expression of a basic inclination of economic agents for diversification."
 - Mas-Colell/Whinston/Green'95, Microeconomic Theory, p.44

◆□▶ ◆周▶ ◆目▶ ◆目▶ ●目 めなべ

Elliptical models

Portfolio convexity

Axiomatic theory

000000000000

Remark. For any diversification index D,

- ▶ [PC] is quasi-convexity of $\mathbf{w} \mapsto D(\mathbf{w} \odot \mathbf{X})$
- ▶ Convexity or quasi-convexity of $X \mapsto D(X)$ is not desirable
 - For well-diversified (X, Y) and Z = (X + Y)/2, we want $D(Z,Z) > \max\{D(X,Y),D(Y,X)\}$
- ▶ Convexity of $\mathbf{w} \mapsto D(\mathbf{w} \odot \mathbf{X})$ is not desirable
 - $D((\mathbf{w}/2 + \mathbf{v}/2) \odot \mathbf{X}) \approx D(\mathbf{w} \odot \mathbf{X})$ if \mathbf{v} has very small scale

0000000000000

Motivation

Our axioms will characterize the following class

Definition 1 (Diversification quotients)

For $X \in \mathcal{X}^n$, the diversification quotient based on the decreasing class ρ at level $\alpha \in I$ is defined by $DQ^{\rho}_{\alpha}(\mathbf{X}) = \alpha^*/\alpha$, where

$$\alpha^* = \inf \left\{ \beta \in I : \rho_{\beta} \left(\sum_{i=1}^n X_i \right) \leq \sum_{i=1}^n \rho_{\alpha}(X_i) \right\}.$$

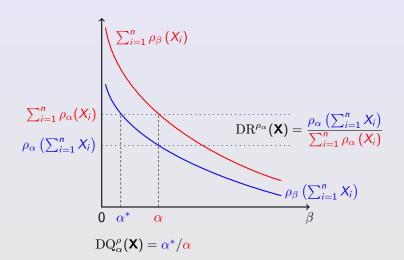
- ▶ Convention: $\inf(\varnothing) = \overline{\alpha}$
- \triangleright Examples of $(\rho_{\alpha})_{\alpha \in I}$: $(VaR_{\alpha})_{\alpha \in (0,1)}$, $(ES_{\alpha})_{\alpha \in (0,1)}$
- DQ can be defined for any decreasing family ρ
- We assume MCP ρ throughout

Diversification quotients

Axiomatic theory

0000000000000

Motivation



Comparing DQ and DR on VaR

$$\triangleright S = \sum_{i=1}^n X_i$$

•
$$s_{\alpha} = \sum_{i=1}^{n} \operatorname{VaR}_{\alpha}(X_{i})$$

Comparing

Motivation

$$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}(\mathbf{X}) = rac{\mathbb{P}\left(S > s_{lpha}
ight)}{lpha} \quad ext{and} \quad \mathrm{DR}^{\mathrm{VaR}_{lpha}}(\mathbf{X}) = rac{\mathrm{VaR}_{lpha}\left(S
ight)}{s_{lpha}}$$

Duality:

- DQ measures the "probability improvement"
- DR measures the "quantile improvement"

Characterization

Motivation

Theorem 1

Suppose that ϕ is an MCP risk measure. A diversification index $D: \mathcal{X}^n \to \overline{\mathbb{R}}$ satisfies [+], [LI], [SI], $[R]_{\phi}$, $[N]_{\phi}$ and $[C]_{\phi}$ if and only if D is DQ_{α}^{ρ} for some α and decreasing class ρ of MCP risk measures with $\rho_{\alpha} = \phi$.

► First axiomatic characterization of diversification indices

Characterization

Motivation

Theorem 2

Suppose $n \geq 4$ and ϕ is a non-linear coherent risk measure. A diversification index $D: \mathcal{X}^n \to \overline{\mathbb{R}}$ satisfies [+], [LI], [SI], [R] $_{\phi}$, [N] $_{\phi}$, [C] $_{\phi}$ and [PC] if and only if D is $\mathrm{DQ}_{\alpha}^{\rho}$ for some α and decreasing class ρ of coherent risk measures with $\rho_{\alpha} = \phi$.

▶ DQ based on ES satisfies all axioms

Characterization

Motivation

Table: Axioms satisfied by DR^{ϕ} , DB^{ϕ} and DQ^{ρ}_{α} (with $\phi=\rho_{\alpha}$), where \mathcal{X}_{+} is the set of non-negative elements in \mathcal{X} and $\alpha\in(0,1)$

Index	Domain	[+]	[LI]	[SI]	$[R]_{\phi}$	$[N]_{\phi}$	$[C]_{\phi}$	[PC]
$\mathrm{DR}^{\mathrm{VaR}_{\alpha}}/\mathrm{DR}^{\mathrm{ES}_{\alpha}}$	\mathcal{X}^n	×	×	√	X	X	X	X
$\mathrm{DR}^{\mathrm{VaR}_{lpha}}$	\mathcal{X}^n_+	√	×	\checkmark	\checkmark	\checkmark	\checkmark	X
$\mathrm{DR}^{\mathrm{ES}_{lpha}}$	\mathcal{X}^n_+	√	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{DR}^{\mathrm{SD}}$	\mathcal{X}^n	√	\checkmark	\checkmark	×	×	×	\checkmark
$\mathrm{DR}^{\mathrm{var}}$	\mathcal{X}^n	√	\checkmark	\checkmark	X	×	X	X
$-\mathrm{DB}^{\mathrm{VaR}_{lpha}}$	\mathcal{X}^n	×	\checkmark	X	\checkmark	X	\checkmark	X
$-\mathrm{DB}^{\mathrm{ES}_{lpha}}$	\mathcal{X}^n	×	\checkmark	×	\checkmark	X	\checkmark	\checkmark
$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}$	\mathcal{X}^n	√	√	√	√	√	√	X
$\mathrm{DQ}^{\mathrm{ES}}_{lpha}$	\mathcal{X}^n	\checkmark						

◆□ > ◆圖 > ◆喜 > ◆喜 > 喜 = 夕 Q ()

26/60

Ruodu Wang (wang@uwaterloo.ca) Diversification quotients

Progress

Motivation

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- 4 Portfolio optimization
- 6 Elliptical models
- 6 Empirical results for financial data

Some properties

Motivation

A risk measure is sub-linear if it is convex and PH

Proposition 1

Let $\rho = (\rho_{\beta})_{\beta \in I}$ be a decreasing class of sub-linear risk measures and $\alpha \in I$. Then DQ^{ρ}_{α} satisfies [PC]. If $n \geq 3$, ρ_{α} is non-linear and there exists $X \in \mathcal{X}$ such that $\beta \mapsto \rho_{\beta}(X)$ is strictly decreasing, then $\{DQ^{\rho}_{\alpha}(\mathbf{X}): \mathbf{X} \in \mathcal{X}^n\} = [0,1].$

- $ightharpoonup DQ_{\alpha}^{ES}$ has the range [0,1]
- ▶ For $n \ge 2$ and $\alpha \in (0, 1/n)$, DQ_{α}^{VaR} has the range [0, n]

Ruodu Wang

Elliptical models

Some properties

Axiomatic theory

Motivation

As a mapping $D:\bigcup_{n\in\mathbb{N}}\mathcal{X}^n\to\mathbb{R}$, DQ^ρ_α with MCP ρ satisfies

- [RI] Riskless invariance: $D(\mathbf{X}, c) = D(\mathbf{X})$ for all **X** and constant c
 - adding a risk-free asset to the portfolio does not affect D
- [RC] Replication consistency: D(X, X) = D(X) for all X
 - replicating the same portfolio composition does not affect D

Remarks on DQ

Motivation

DQ is connected to

acceptability indices

Cherny/Madan'09: Rosazza Gianin/Sgarra'13

PELVE

Li/W.'23

bPOE

Mafusalov/Urvasev'18

Some properties

- ho_{α} satisfies [SA] $\Longrightarrow \mathrm{DQ}^{\rho}_{\alpha}$ takes values in [0, 1]
- ▶ Under weak condition: $DQ^{\rho}_{\alpha}(\lambda_1 X, \dots, \lambda_n X) = 1$ for $\lambda_1, \ldots, \lambda_n > 0$ and X with no atom

DQ based on VaR and ES

Theorem 3

Motivation

For $\alpha \in (0,1)$ and $\mathbf{X} \in \mathcal{X}^n$, write $\mathbf{s}_{\alpha} = \sum_{i=1}^n \mathrm{VaR}_{\alpha}(X_i)$,

 $t_{\alpha} = \sum_{i=1}^{n} \mathrm{ES}_{\alpha}(X_{i})$ and $S = \sum_{i=1}^{n} X_{i}$. We have

$$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}(\mathbf{X}) = rac{1}{lpha}\mathbb{P}\left(S>s_{lpha}
ight).$$

If $\mathbb{P}(S > t_{\alpha}) > 0$, then

$$\mathrm{DQ}_{lpha}^{\mathrm{ES}}(\mathbf{X}) = rac{1}{lpha} \min_{r \in (0,\infty)} \mathbb{E}\left[\left(r\left(S - t_{lpha}
ight) + 1
ight)_{+}
ight],$$

and otherwise $\mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X})=0.$

Inverting the ES curve

bPOE, Mafusalov/Uryasev'18

31/60

DQ based on VaR and ES

Proof of the last statement.

$$\begin{aligned} \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X}) &= \frac{1}{\alpha}\inf\left\{\beta \in (0,1) : \mathrm{ES}_{\beta}\left(S\right) - t_{\alpha} \leq 0\right\} \\ &= \frac{1}{\alpha}\inf\left\{\beta \in (0,1) : \mathrm{ES}_{\beta}\left(S - t_{\alpha}\right) \leq 0\right\} \\ (*) &= \frac{1}{\alpha}\inf\left\{\beta \in (0,1) : \min_{t \in \mathbb{R}}\left\{t + \frac{1}{\beta}\mathbb{E}\left[\left(S - t_{\alpha} - t\right)_{+}\right]\right\} \leq 0\right\} \\ &= \frac{1}{\alpha}\inf\left\{\beta \in (0,1) : \exists t \in \mathbb{R} \text{ s.t. } \frac{1}{\beta}\mathbb{E}\left[\left(S - t_{\alpha} - t\right)_{+}\right] \leq -t\right\} \\ &= \frac{1}{\alpha}\inf\left\{\beta \in (0,1) : \exists r > 0 \text{ s.t. } \mathbb{E}\left[\left(r\left(S - t_{\alpha}\right) + 1\right)_{+}\right] \leq \beta\right\} \\ &= \frac{1}{\alpha}\inf_{r > 0}\mathbb{E}\left[\left(r\left(S - t_{\alpha}\right) + 1\right)_{+}\right] \end{aligned}$$

(*): Rockafellar/Uryasev'02

Proposition 2

Motivation

Suppose that X_1, \ldots, X_n are iid random variables. If $X_1 \in RV_{\gamma}$ has positive density over its support, then $DQ_{\alpha}^{VaR}(\mathbf{X}) \to n^{1-\gamma}$ as $\alpha \downarrow 0$.

- $ightharpoonup \mathrm{DQ^{VaR}(X)} \approx n$ for ultra heavy-tailed iid model $(\gamma \downarrow 0)$
- $ightharpoonup \mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X}) = n$ for some complicated model with both positive and negative dependence

Laws of large numbers for DQ

Theorem 4

Motivation

Let X_1, X_2, \ldots be a sequence of uncorrelated random variables in L^2 . Assume $\sup_{i\in\mathbb{N}} \operatorname{var}(X_i) < \infty$ and $\inf_{i\in\mathbb{N}} \{\rho_{\alpha}(X_i) - \mathbb{E}[X_i]\} > 0$. For $\alpha \in (0,1)$, and ρ being \overline{VaR} or \overline{ES} ,

$$\lim_{n\to\infty}\mathrm{DQ}^{\rho}_{\alpha}(X_1,\ldots,X_n)=0.$$

▶ If X_1, X_2, \ldots are iid, then $\lim_{n\to\infty} \mathrm{DQ}^{\rho}_{\alpha}(X_1, \ldots, X_n) = 0$ for ρ being VaR or ES with $\rho_{\alpha}(X_1) > \mathbb{E}[X_1]$

Ruodu Wang

Laws of large numbers for DQ

Proposition 3

Motivation

Let X_1, X_2, \ldots be a sequence of exchangeable random variables in L^2 . Denote by $\mu = \mathbb{E}[X_1]$, $\sigma^2 = \text{var}(X_1)$ and $r = \text{corr}(X_1, X_2)$. For $\alpha \in (0,1)$ and ρ being VaR or ES, if $\rho_{\alpha}(X_1) > \mu$, then

$$\lim_{n\to\infty} \mathrm{DQ}^{\rho}_{\alpha}(X_1,\ldots,X_n) \leq \frac{1}{\alpha} \frac{r\sigma^2}{r\sigma^2 + (\rho_{\alpha}(X_1) - \mu)^2}.$$

- ▶ The limit of DQ exists under exchangeability
- Proof: bounds on VaR/ES

e.g., Li-Shao-W.-Yang'18

$$\operatorname{VaR}_{\beta}(X) \leq \operatorname{ES}_{\beta}(X) \leq \mathbb{E}[X] + \operatorname{SD}(X)\sqrt{(1-\beta)/\beta}$$

- $ightharpoonup r o 0 \Longrightarrow \lim_{n \to \infty} \mathrm{DQ}^{\rho}_{\alpha}(X_1, \dots, X_n) \to 0$
- $ightharpoonup r = 1 \Longrightarrow \mathrm{DQ}^{\rho}_{\alpha}(X_1,\ldots,X_n) = 1$ under mild conditions (sharp)

Progress

Motivation

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- 4 Portfolio optimization
- 5 Elliptical models
- 6 Empirical results for financial data

Optimal portfolio diversification

Motivation

Optimal one-period diversification problem

$$\min_{\mathbf{w} \in \Delta_{n}} \mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{w} \odot \mathbf{X}) \quad \text{and} \quad \min_{\mathbf{w} \in \Delta_{n}} \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{w} \odot \mathbf{X}) \tag{OD}$$

Optimal portfolio diversification

• Write $\mathbf{x}_{\alpha}^{\rho} = (\rho_{\alpha}(X_1), \dots, \rho_{\alpha}(X_n))$

Proposition 4

Motivation

For $\rho = VaR$, if each component of **X** is non-constant, then (OD) is solved by

$$\min_{\boldsymbol{w} \in \Delta_n} \mathbb{P}\left(\boldsymbol{w}^\top \left(\boldsymbol{X} - \boldsymbol{x}_{\alpha}^{\mathrm{VaR}}\right) > 0\right).$$

For $\rho = \mathrm{ES}$, if $\mathbb{P}(\mathbf{w}^{\top}(\mathbf{X} - \mathbf{x}_{\alpha}^{\mathrm{ES}}) = 0) = 0$ for all $\mathbf{w} \in \Delta_n$, then (OD) is solved by

$$\min_{\boldsymbol{\mathsf{v}} \in \mathbb{R}_+^n} \mathbb{E}\left[\left(\boldsymbol{\mathsf{v}}^\top \left(\boldsymbol{\mathsf{X}} - \boldsymbol{\mathsf{x}}_\alpha^{\mathrm{ES}} \right) + 1 \right)_+ \right],$$

and the optimal **w** is given by $\mathbf{v}/\|\mathbf{v}\|_1$.

Portfolio optimization of DQ for a data sample

$$\begin{array}{l} \min_{\mathbf{w} \in \Delta_n} \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{w} \odot \mathbf{X}) \text{ for data sample } \mathbf{X}^{(1)}, \dots, \mathbf{X}^{(N)} \\ \Longrightarrow \text{convex programming} \end{array}$$

$$\text{minimize} \quad \sum_{i=1}^{N} \left(\mathbf{v}^{\top} \left(\mathbf{X}^{(j)} - \widehat{\mathbf{x}}_{\alpha}^{\mathrm{ES}} \right) + 1 \right)_{+} \quad \text{over } \mathbf{v} \in \mathbb{R}_{+},$$

where $\hat{\mathbf{x}}_{\alpha}^{\mathrm{ES}}$ is the empirical version of $\mathbf{x}_{\alpha}^{\mathrm{ES}}$ based on the sample

- ▶ Practically use $\|\mathbf{v}\|_1 \leq M$ for a large M, e.g., M = 100
- Apply a tie-breaking rule if needed

Portfolio optimization of DQ for a data sample

$$\min_{\mathbf{w} \in \Delta_n} \mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{w} \odot \mathbf{X}) \ \text{ for data sample } \mathbf{X}^{(1)}, \dots, \mathbf{X}^{(N)}$$

⇒ linear integer programming

where

Motivation

$$\mathbf{y}^{(j)} = \mathbf{X}^{(j)} - \widehat{\mathbf{x}}_{\alpha}^{\mathrm{VaR}}$$

 \triangleright $\widehat{\mathbf{x}}_{\alpha}^{\mathrm{VaR}}$ is the empirical version of $\mathbf{x}_{\alpha}^{\mathrm{VaR}}$ based on the sample

lackbreak M>0: $z_j=1\Longrightarrow \mathbf{w}^{ op}\mathbf{y}^{(j)}-Mz_j\leq 0$ (the Big M method)

Ruodu Wang (wang@uwaterloo.ca) Diversification quotients 40/60

Portfolio optimization of DQ for a data sample

Tie-breaking

Motivation

- the objective function of (LIP) takes integer values
- let m^* be the optimal value of (LIP)
- ightharpoonup pick the closest one (in L^1 -norm $\|\cdot\|_1$ on \mathbb{R}^n) to a given benchmark \mathbf{w}_0 among tied optimizers

minimize
$$\|\mathbf{w}-\mathbf{w}_0\|_1$$
 subject to $\sum_{j=1}^N \mathbb{1}_{\{\mathbf{w}^{\top}\mathbf{y}^{(j)}>0\}} \leq m^*$ $\mathbf{w} \in \Delta_n$

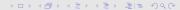
Outline

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- 4 Portfolio optimization
- 6 Elliptical models
- 6 Empirical results for financial data

Elliptical models

Motivation

- ▶ Elliptical distributions are popular in QRM
- ► Two examples: normal and t distributions
- Fundamental theorem of QRM: for elliptical models, any PH risk measures are "equivalent" (Embrechts'19 keynote at IME)
- lacktriangle Explicit formulas for $\mathrm{DQ}_{lpha}^{\mathrm{VaR}}$ and $\mathrm{DQ}_{lpha}^{\mathrm{ES}}$ are available
- ▶ Asymptotic results for $n \to \infty$ and $\alpha \downarrow 0$ are available



Consider two dispersion matrices, parametrized by $r \in [0,1]$ and $n \in \mathbb{N}$,

Equicorrelation

Motivation

$$\Sigma_1 = (\sigma_{ij})_{n \times n}$$
, where $\sigma_{ii} = 1$ and $\sigma_{ij} = r$ for $i \neq j$,

Autoregressive AR(1)

$$\Sigma_2 = (\sigma_{ij})_{n \times n}$$
, where $\sigma_{ii} = 1$ and $\sigma_{ij} = r^{|j-i|}$ for $i \neq j$.

Let
$$\mathbf{X}_i \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_i)$$
 and $\mathbf{Y}_i \sim \mathrm{t}(\nu, \boldsymbol{\mu}, \boldsymbol{\Sigma}_i), i = 1, 2$

DQ for varying α

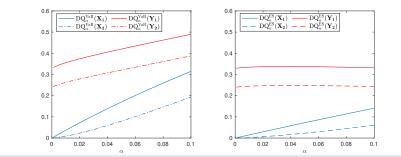


Figure: DQ based on VaR and ES for $\alpha \in (0, 0.1)$ with fixed $\nu = 3$, r = 0.3 and n = 4

Ruodu Wang (wang@uwaterloo.ca) Diversification quotients 45/60

DQ for varying correlation coefficient

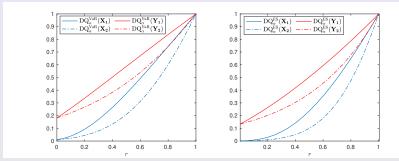
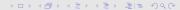


Figure: DQ based on VaR and ES for $r \in [0, 1]$ with fixed $\alpha = 0.05$, $\nu = 3$, and n = 4



Ruodu Wang

(wang@uwaterloo.ca)

DQ for t-models with varying tail parameter

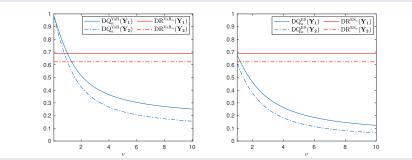
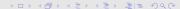


Figure: DQ based on VaR for $\nu \in (0, 10]$ and ES for $\nu \in (1, 10]$ with fixed $\alpha = 0.05, r = 0.3 \text{ and } n = 4$



DQ for elliptical models as the dimension n varies

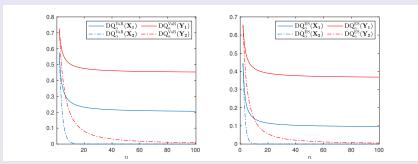
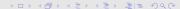


Figure: DQ based on VaR and ES for $n \in [2, 100]$ with fixed $\alpha = 0.05$, r=0.5 and $\nu=3$



The joint t-model has a common shock

Motivation

Table: DQ/DR based on VaR, ES and SD, where $\alpha = 0.05$ and n = 10

D	$\mathrm{DQ}^{\mathrm{VaR}}_{\alpha}$	$\mathrm{DQ}^{\mathrm{ES}}_{lpha}$	$\mathrm{DR}^{\mathrm{VaR}_{\alpha}}$	$\mathrm{DR}^{\mathrm{ES}_{lpha}}$	$\mathrm{DR}^{\mathrm{SD}}$
$\mathbf{Z} \sim \mathrm{N}(0, I_n)$	$\sim 10^{-6}$	$\sim 10^{-9}$	0.3162	0.3162	0.3162
$\mathbf{Y} \sim \mathrm{it}_n(3)$	0.0231	0.0144	0.3568	0.3058	0.3162
$\mathbf{Y}' \sim \mathrm{t}(3, 0, I_n)$	0.0502	0.0340	0.3162	0.3162	0.3162
$D(\mathbf{Z}) < D(\mathbf{Y})$	Yes	Yes	Yes	No	No
$D(\mathbf{Y}) < D(\mathbf{Y}')$	Yes	Yes	No	Yes	No

- ▶ DQ: iid normal < iid t < joint t
- ▶ DR: iid normal = joint t $\stackrel{?}{\sim}$ iid t
- ▶ DQ captures tail heaviness/common shock which DR ignores

DQ for t-models with varying tail parameter

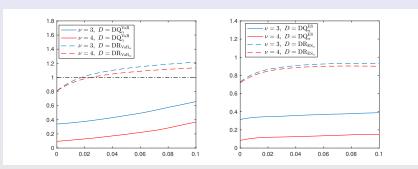


Figure: $D(\mathbf{Y}')/D(\mathbf{Y})$ based on VaR and ES for $\alpha \in (0, 0.1]$ with fixed n = 10

Optimization for the elliptical models

▶ Optimal diversification for DQ (σ is the diagonal of Σ)

$$\mathop{\arg\min}_{\mathbf{w}\in\Delta_n}\mathrm{DQ}^{\mathrm{VaR}}_{\alpha}(\mathbf{w}\odot\mathbf{X})=\mathop{\arg\min}_{\mathbf{w}\in\Delta_n}\frac{\sqrt{\mathbf{w}^{\top}\Sigma\mathbf{w}}}{\mathbf{w}^{\top}\sigma}$$

Optimal diversification for DR

$$\underset{\mathbf{w} \in \Delta_n}{\arg\min} \operatorname{DR}^{\operatorname{VaR}_\alpha}(\mathbf{w} \odot \mathbf{X}) = \underset{\mathbf{w} \in \Delta_n}{\arg\min} \frac{\mathbf{w}^\top \boldsymbol{\mu} + y_\alpha \sqrt{\mathbf{w}^\top \boldsymbol{\Sigma} \mathbf{w}}}{\mathbf{w}^\top \boldsymbol{\mu} + y_\alpha \mathbf{w}^\top \boldsymbol{\sigma}}$$

where
$$y_{\alpha} = \operatorname{VaR}_{\alpha}(Y)$$
 and $Y \sim \operatorname{E}_{1}(0, 1, \phi)$

- ▶ The two have the same optimizers if $\mu = 0$ and $y_{\alpha} \neq 0$
- ▶ In case $\Sigma = I_n$: $\mathbf{w}^* = (\frac{1}{n}, \dots, \frac{1}{n})$

Outline

Motivation

- Motivation
- 2 Axiomatic theory of diversification indices
- 3 Properties of DQ
- 4 Portfolio optimization
- 6 Elliptical models
- 6 Empirical results for financial data

DQ for different portfolios

Motivation

Data: daily losses from S&P 500 constituents

- Period: January 3, 2012 to December 31, 2021
- 2518 daily losses; moving window of 500 days

Portfolios with stock compositions:

- (A) 2 largest stocks from each of 10 different sectors of S&P 500
- (B) 1 largest stock from each of 5 different sectors of S&P 500
 - XOM (ENR), AAPL (IT), BRK/B (FINL), WMT (CONS), GE (INDU)
- (C) 5 largest stocks from the Information Technology (IT) sector
- (D) 5 largest stocks from the Financials (FINL) sector

DQ for different portfolios

Motivation

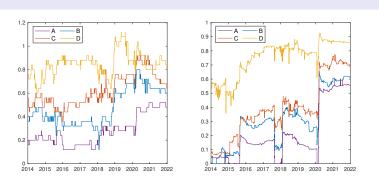


Figure: DQ based on VaR (left) and ES (right) with $\alpha = 0.05$

- Observation: A (20) < B (5) < C (5 IT) < D (5 FINL)
- Large jump for DQ based on ES at the COVID outbreak
- DQ based on VaR can be larger than 1

Optimal diversified portfolios

Motivation

Portfolios (monthly rebalancing) with 4 largest stocks from each of the 10 sectors of S&P 500 in 2012 (40 in total)

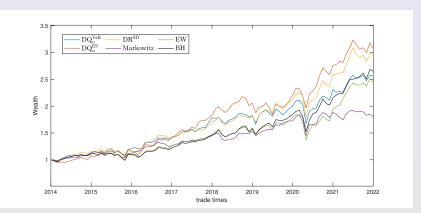


Figure: Wealth processes

Optimal diversified portfolios

Motivation

	• • • •	• a		Markowitz		
AR	12.562	14.695	14.364	7.929	11.906	12.883
AV	14.643	15.818	14.994	12.976	15.918	14.343
SR	66.397	74.942	76.854	39.222	56.955	70.023

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2014 to Dec 2021

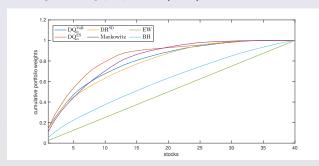
- ▶ Risk-free rate: 2.84% (= 10-y US treasury yield, Jan 2014)
- $\alpha = 0.1$
- ▶ EW = equally weighted; BH = buy and hold
- ▶ The target AR for the Markowitz portfolio is set to 10%

Optimal diversified portfolios

Motivation

%	$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}$	$\mathrm{DQ}^{\mathrm{ES}}_{lpha}$	$\mathrm{DR}^{\mathrm{SD}}$	Markowitz	EW	ВН
ATP	19.29	14.75	15.61	18.79	4.43	0

Table: Average trading proportion (ATP) from Jan 2014 to Dec 2021



Average cumulative portfolio weights

◆ロト ◆母ト ◆喜ト ◆喜ト 喜信 からぐ

Optimal diversified portfolios

Motivation

Portfolios (monthly rebalancing) with 4 largest stocks from each of the 10 sectors of S&P 500 in 2002 (40 in total)

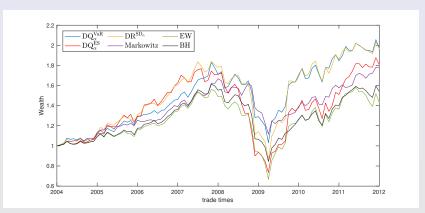


Figure: Wealth processes

Optimal diversified portfolios

Motivation

%	$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}$	$\mathrm{DQ}^{\mathrm{ES}}_{lpha}$	$\mathrm{DR}^{\mathrm{SD}}$	Markowitz	EW	ВН
AR	9.456	8.129	9.103	7.980	5.300	6.235
AV	16.653	21.452	20.915	11.976	20.154	15.530
SR	30.478	17.474	22.582	30.064	4.566	11.944

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2004 to Dec 2011

- ▶ Risk-free rate: 4.38% (= 10-y US treasury yield, Jan 2004)
- $\alpha = 0.1$
- ► EW = equally weighted; BH = buy and hold
- ▶ The target AR for the Markowitz portfolio is set to 5%

Thank you

Motivation

Thank you for your kind attention

- Axiomatic theory paper: https://arxiv.org/abs/2206.13679
- Particular models paper: https://arxiv.org/abs/2301.03517
- ► Working papers series: Risk management with risk measures http://sas.uwaterloo.ca/~wang/pages/WPS5.html

Some literature on measuring diversification

- Markowitz'52 JF: Mean-variance theory
- Diversification ratio
 - Tasche'07; Choueifaty/Coignard'08 JPM; Bürgi/Dacorogna/Iles'08; Embrechts/Wang/W.'15 FS
- Number of unique investments or naive diversification
 - Rudin/Morgan'06 JPM; DeMiguel/Garlappi/Uppal'09 RFS; Pflug/Pichler/Wozabal'12 JBF
- Diversification benefit in multivariate regular variation models
 - Mainik/Rüchendorf'10 FS; Mainik/Embrechts'13 AAS
- ► Koumou/Dionne'22: Axioms for correlation diversification measures

Some recent work on VaR and ES

- Axiomatic characterizations
 - VaR: Kou/Peng' 16 OR; He/Peng' 18 OR; Liu/W.'21 MOR
 - ES: W./Zitikis'21 MS; Embrechts/Mao/Wang/W.'21 MF
- Risk sharing
 - Embrechts/Liu/W.'18 OR; Embrechts/Liu/Mao/W.'20 MP
- Robustness in optimization
 - Emberchts/Schied/W.'22 OR
- Calibrating levels between VaR and ES
 - Li/W.'23 JE
- Forecasting and backtesting
 - Fissler/Ziegel'16 AOS; Nolde/Ziegel'17 AOAS; Du/Escanciano'17 MS

Connecting DQ and DR

Proposition 5

For a given $\phi: \mathcal{X} \to \mathbb{R}_+$, we have $\mathrm{DQ}^{\rho}_{\alpha} = \mathrm{DR}^{\phi}$ where $\rho = (\phi/\alpha)_{\alpha \in (0,\infty)}$. The same holds if $\rho = (b\mathbb{E} + c\phi/\alpha)_{\alpha \in (0,\infty)}$ for some $b \in \mathbb{R}$ and c > 0 and $\mathcal{X} = L^1$.

- $ightharpoonup DR^{
 m Var}$ and $DR^{
 m SD}$ are special cases of DQ
- ▶ If ϕ satisfies [CA]₀, then $\rho_{\alpha} = b\mathbb{E} + c\phi/\alpha$ satisfies [CA]_b
- $b\mathbb{E} + c\phi/\alpha$ includes mean-standard deviation, mean-variance, and mean-Gini (Denneberg'90)

Elliptical models

► A random vector **X** is elliptically distributed if it has a characteristic function

$$\psi(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathrm{i}\mathbf{t}^{\top}\mathbf{X}\right)\right] = \exp\left(\mathrm{i}\mathbf{t}^{\top}\boldsymbol{\mu}\right)\phi\left(\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right),$$

for some $\mu \in \mathbb{R}^n$, positive semi-definite matrix $\Sigma \in \mathbb{R}^{n \times n}$, and $\phi : \mathbb{R}_+ \to \mathbb{R}$ (the characteristic generator)

- ▶ This distribution is denoted by by $E_n(\mu, \Sigma, \phi)$
- Write $\Sigma = (\sigma_{ij})_{n \times n}$, $\sigma_i^2 = \sigma_{ii}$, $\sigma = (\sigma_1, \dots, \sigma_n)$, and

$$k_{\Sigma} = rac{\sum_{i=1}^{n} \sigma_{i}}{\left(\sum_{i,j}^{n} \sigma_{ij}\right)^{1/2}} \in [1,\infty)$$

DQ for elliptical models

Proposition 6

Suppose that $\mathbf{X} \sim \mathrm{E}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \phi)$. We have

$$\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X}) = \frac{1 - F(k_{\Sigma} \mathrm{VaR}_{\alpha}(Y))}{\alpha}; \ \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X}) = \frac{1 - \widetilde{F}(k_{\Sigma} \mathrm{ES}_{\alpha}(Y))}{\alpha},$$

for $\alpha \in (0,1)$, where $Y \sim E_1(0,1,\phi)$ with distribution function F, and Fis the superquantile transform of F. Moreover,

- (i) $\alpha \mapsto DQ_{\alpha}^{VaR}(\mathbf{X})$ takes value in [0,1] on (0,1/2] and it takes value in [1,2] on (1/2,1):
- (ii) $k_{\Sigma} \mapsto \mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X})$ is decreasing for $\alpha \in (0,1/2]$ and increasing for $\alpha \in (1/2, 1)$;
- (iii) $k_{\Sigma} \mapsto \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X})$ is decreasing for $\alpha \in (0,1)$.

Asymptotic behaviour of DQ

Proposition 7

Suppose that $\mathbf{X} \sim \mathrm{E}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\phi})$.

(i) Let $Y \sim E_1(0,1,\phi)$ and f be the density function of Y. We have

$$\lim_{\alpha \downarrow 0} \mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X}) = \lim_{x \to \infty} k_{\Sigma} \frac{f(k_{\Sigma}x)}{f(x)}$$

if $VaR_0(Y) = \infty$ and the limit exists, and $\lim_{\alpha \downarrow 0} DQ_{\alpha}^{VaR}(\mathbf{X}) = 0$ if $VaR_0(Y) < \infty$.

(ii) Let $AC_{\Sigma} = 1/k_{\Sigma}^2$. If $\lim_{n \to \infty} AC_{\Sigma} = 0$, then

$$\lim_{n\to\infty}\mathrm{DQ}_\alpha^\mathrm{VaR}(\boldsymbol{\mathsf{X}})=\lim_{n\to\infty}\mathrm{DQ}_\beta^\mathrm{ES}(\boldsymbol{\mathsf{X}})=0$$

for $\alpha \in (0, 1/2)$ and $\beta \in (0, 1)$.

Cross-comparison between DQ based on VaR and ES

Associating VaR and ES levels by PELVE (Li/W.'22)

$$\mathrm{ES}_{c\alpha}(X) = \mathrm{VaR}_{\alpha}(X)$$

Table: Values of DQ based on VaR at level $\alpha = 0.01$ and ES at level $c\alpha$, where n = 4 and r = 0.3

	С	$c\alpha$	$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}$	$\mathrm{DQ}^{\mathrm{ES}}_{oldsymbol{c}lpha}$
$\mathbf{X}_1 \sim \mathrm{N}(oldsymbol{\mu}, \Sigma_1)$	2.58	0.0258	0.0369	0.0377
$\mathbf{X}_2 \sim \mathrm{N}(oldsymbol{\mu}, \Sigma_2)$	2.58	0.0258	0.0024	0.0025
$\mathbf{Y}_1 \sim \mathrm{t}(3, \boldsymbol{\mu}, \Sigma_1)$	3.31	0.0331	0.3558	0.3373
$\mathbf{Y}_2 \sim \mathrm{t}(3, \boldsymbol{\mu}, \boldsymbol{\Sigma}_2)$	3.31	0.0331	0.2094	0.1961

67/60

Dependence and portfolio risks

For a random variable X and $\alpha \in (0,1)$

- (i) A tail event of X is an event $A \in \mathcal{F}$ with $0 < \mathbb{P}(A) < 1$ such that $X(\omega) \ge X(\omega')$ holds for a.s. all $\omega \in A$ and $\omega' \in A^c$
- (ii) A random vector $(X_1, ..., X_n)$ is α -concentrated if its component share a common tail event of probability α (W./Zitikis'21)

For $\mathbf{X} \in \mathcal{X}^n$ and $\alpha \in (0, 1/n)$, an α -CE model satisfies

- ▶ $\mathbb{P}(X_i \geq \text{VaR}_{\alpha}(X_i)) \geq n\alpha$
- (X_1, \ldots, X_n) are $(n\alpha)$ -concentrated
- $\{X_i > \operatorname{VaR}_{\alpha}(X_i)\}, i = 1, \dots, n$, are mutually exclusive

Dependence and portfolio risks

Theorem 5

Let $\alpha \in (0,1)$ and $n \geq 2$ satisfy $n \leq 1/\alpha$.

- (i) $\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}$ has a range [0,n] and $\mathrm{DQ}_{\alpha}^{\mathrm{ES}}$ has a range [0,1].
- (ii) If $\sum_{i=1}^{n} X_i$ is a constant, then $\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X}) = \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X}) = 0$.
- (iii) For ρ being VaR or ES, if \mathbf{X} is α -concentrated, then $\mathrm{DQ}_{\alpha}^{\rho}(\mathbf{X}) \leq 1$. If, in addition, ρ is continuous and non-flat from the left at $(\alpha, \sum_{i=1}^n X_i)$, then $\mathrm{DQ}_{\alpha}^{\rho}(\mathbf{X}) = 1$.
- (iv) If **X** has an α -CE model, then $\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{X}) = n$ and $\mathrm{DQ}_{n\alpha}^{\mathrm{ES}}(\mathbf{X}) = 1$.

Numerical example

Assume that $\mathbf{X} \sim \mathrm{t}(\nu, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\nu=3$ and the dispersion matrix is given by

$$\Sigma = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 2 \end{array}\right)$$

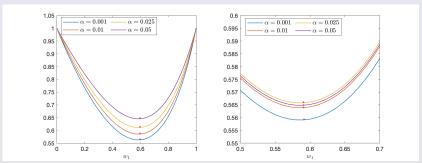


Figure: Values of $\mathrm{DQ}^{\mathrm{VaR}}_{\alpha}(\mathbf{w}\odot\mathbf{X})$ and $\mathrm{DQ}^{\mathrm{ES}}_{\alpha}(\mathbf{w}\odot\mathbf{X})$ for $w_1\in[0,1]$

Comparison of DQ and DR

- ▶ Portfolio: 1 largest stock from each of 5 sectors (2012 market cap)
 - XOM (ENR), AAPL (IT), BRK/B (FINL), WMT (CONS), GE (INDU)
- Period: January 3, 2012 to December 31, 2021
- ▶ 2518 daily losses; moving window of 500 days

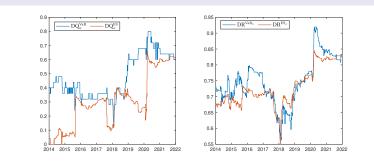


Figure: DQ (left) and DR (right) on VaR/ES with $\alpha = 0.05$

Optimal diversified portfolio

Portfolios (monthly rebalancing) with 2 largest stocks from each of the 10 sectors of S&P 500 in 2012 (20 in total)

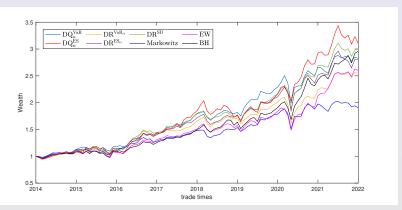


Figure: Wealth processes

Optimal diversified portfolio

%	$\mathrm{DQ}^{\mathrm{VaR}}_{lpha}$	$\mathrm{DQ}^{\mathrm{ES}}_{lpha}$	$\mathrm{DR}^{\mathrm{VaR}_{\alpha}}$	$\mathrm{DR}^{\mathrm{ES}_{lpha}}$
AR	13.5449	14.4763	12.7657	13.8492
AV	13.4340	15.7689	14.4079	14.5265
SR	79.6853	73.7905	68.8908	75.7867
%	$\mathrm{DR}^{\mathrm{SD}}$	Markowitz	EW	ВН
% AR	DR ^{SD} 14.3663	Markowitz 8.5884	EW 12.7359	BH 14.2236

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2014 to Dec 2021