Diversification quotients: Quantifying diversification via risk measures

Ruodu Wang

<http://sas.uwaterloo.ca/~wang>

Department of Statistics and Actuarial Science

University of Waterloo

Department of Operations Research and Financial Engineering Princeton University, April 2024

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Content

Based on joint work with

Xia Han (Nankai)

Liyuan Lin (Waterloo)

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로]로 19 Q @

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

- 4 [Portfolio optimization](#page-36-0)
- 5 [Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

The South Tel

How to quantify diversification if you must

4 □

→ ∢ 重 → ∢ 重 →

Diversification

Portfolio diversification

- \triangleright Markowitz (mean-variance analysis)
- \triangleright CAPM (removing idiosyncratic risk)

- ▶ Heuristic: number of different investments
- \blacktriangleright Quantitative: formal reasoning
	- via risk reduction or utility improvement

Quantitative setup

- \blacktriangleright X: a convex cone of random variables, e.g., L^1
- \triangleright One-period portfolio loss/payoff vector: $\mathbf{X} \in \mathcal{X}^n$
- ▶ Diversification index: $D: \mathcal{X}^n \to \overline{\mathbb{R}}:=[-\infty,\infty]$
	- Convention: smaller D represents better diversification
	- Always write $\mathbf{X} = (X_1, \ldots, X_n)$

Examples: diversification ratios (DR) with $0/0 = 0$

$$
DR^{SD}(\mathbf{X}) = \frac{SD(\sum_{i=1}^{n} X_i)}{\sum_{i=1}^{n} SD(X_i)}
$$
 and $DR^{var}(\mathbf{X}) = \frac{var(\sum_{i=1}^{n} X_i)}{\sum_{i=1}^{n} var(X_i)}$

 DR^{SD} and DR^{var} satisfy three natural properties

[+] Non-negativity: $D(X) > 0$ for all $X \in \mathcal{X}^n$

• with $D = 0$ being the most diversified

[LI] Location invariance: $D(\mathbf{X} + \mathbf{c}) = D(\mathbf{X})$ for all $\mathbf{c} \in \mathbb{R}^n$ and $X \in \mathcal{X}^n$

- injecting risk-free payoff to each component does not affect D
- changing initial price of each component does not affect D

[SI] Scale invariance: $D(\lambda \mathbf{X}) = D(\mathbf{X})$ for all $\lambda > 0$ and $\mathbf{X} \in \mathcal{X}^n$

- rescaling of a portfolio does not affect D
- the counting unit or currency (non-random) does not affect D

Generally not convex

イロメ (押) マミメマミメ 耳目 の女の

- \triangleright SD and var are simple but coarse measures of risk
- \triangleright By internal needs or regulation, risk should be assessed by risk measures $\phi : \mathcal{X} \to \mathbb{R}$
	- regulatory capital calculation, capital allocation, performance analysis, optimization, ...
	- VaR and ES (CVaR) are popular in banking and insurance regulatory frameworks, such as Basel III/IV and Solvency II
	- monetary/convex/coherent risk measures

Artzner/Delbaen/Eber/Heath'99; Follmer/Schied'16

What is a suitable diversification index based on risk measures?

伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶ 『ヨ ヨ んぱぴ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ [君] # 19 9 0 0

Diversification indices based on risk measures

Natural candidate Tasche'07; McNeil/Frey/Embrechts'15

(ロ) (何) (ヨ) (ヨ)

$$
DR^{\phi}(\mathbf{X}) = \frac{\phi\left(\sum_{i=1}^{n} X_i\right)}{\sum_{i=1}^{n} \phi(X_i)}
$$

D [+] [LI] [SI]

$$
DR^{\phi}
$$
 No No ϕ pos. hom.

- \triangleright DR is impossible to interpret if "negative over negative"
- \triangleright similar problem if we use "difference" instead of "ratio"
- \blacktriangleright awkward for optimization
- \triangleright wrong incentives in some simple models (\Rightarrow next slide)
- \Rightarrow a new index is needed if risk meas[ure](#page-8-0)s [a](#page-10-0)[re](#page-8-0) [u](#page-9-0)[s](#page-10-0)[e](#page-2-0)[d](#page-3-0)

Diversification indices based on risk measures

Consider three models (same mean and covariance)

- 1. iid standard normal: $\mathbf{Z} = (Z_1, \ldots, Z_n)$
- 2. iid shock: $\mathbf{Y} = (\xi_1 Z_1, \ldots, \xi_n Z_n)$ where ξ_1, \ldots, ξ_n are iid heavy-tailed shocks independent of Z
- 3. common shock: $\mathbf{Y}' = (\xi Z_1, \ldots, \xi Z_n)$ where $\xi \stackrel{\mathrm{d}}{=} \xi_1$ is a heavy-tailed shock independent of Z

イロメ (押) マミメマミメ 耳目 の女の

Diversification indices based on risk measures

Consider three models (same mean and covariance)

- 1. iid standard normal: $\mathbf{Z} = (Z_1, \ldots, Z_n)$
- 2. iid shock: $\mathbf{Y} = (\xi_1 Z_1, \ldots, \xi_n Z_n)$ where ξ_1, \ldots, ξ_n are iid heavy-tailed shocks independent of Z
- 3. common shock: $\mathbf{Y}' = (\xi Z_1, \ldots, \xi Z_n)$ where $\xi \stackrel{\mathrm{d}}{=} \xi_1$ is a heavy-tailed shock independent of Z

Intuitive relation on diversification (smaller \Rightarrow better):

Model $1 <$ Model $2 <$ Model 3

► If $\xi^2 \sim \text{ig}(\nu/2, \nu/2)$, then $\mathbf{Y} \sim \text{it}_n(\nu)$ and $\mathbf{Y}' \sim \text{t}(\nu, \mathbf{0}, I_n)$

K □ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ 『ヨ ヨ イ 이 Q (^

Diversification indices based on risk measures

Table: DR, where $\alpha = 0.05$ and $n = 10$ D DR^{VaR_α DR^{ES_α DR^{SD} DR^{var}}}

$$
DR^{SD}(\mathbf{Z}) = DR^{SD}(\mathbf{Y}') = DR^{SD}(\mathbf{Y}) = 1/\sqrt{n}
$$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Diversification indices based on risk measures

Question: Can we find a diversification index that is

- \triangleright based on a specified risk measure (e.g., VaR or ES)
- \triangleright satisfying the three natural properties $[+]$, $[S]$ and $[LI]$
- \triangleright consistent with common portfolio dependence structures
- \blacktriangleright natural to interpret
- \triangleright able to capture heavy tails and common shocks
- \triangleright convenient to compute and optimize for portfolio selection?

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

[Motivation](#page-3-0)

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

- 4 [Portfolio optimization](#page-36-0)
- 5 [Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

 $4.17.16$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- A risk measure $\phi : \mathcal{X} \to \mathbb{R}$ Artzner/Delbaen/Eber/Heath'99 [M] Monotonicity: $\phi(X) \leq \phi(Y)$ for all $X, Y \in \mathcal{X}$ with $X \leq Y$ [CA] Constant additivity: $\phi(X + c) = \phi(X) + c$ for all $c \in \mathbb{R}$ and $X \in \mathcal{X}$
- [PH] Positive homogeneity: $\phi(\lambda X) = \lambda \phi(X)$ for all $\lambda \in (0, \infty)$ and $X \in \mathcal{X}$
- [SA] Subadditivity: $\phi(X + Y) \leq \phi(X) + \phi(Y)$ for all $X, Y \in \mathcal{X}$
	- \triangleright Coherent risk measures (incl. ES): [M], [CA], [PH] & [SA]
	- \triangleright VaR_a: [M], [CA] & [PH] \Leftarrow call this an MCP risk measure

イロメ (押) マミメマミメ 耳目 の女の

Setting

$$
\blacktriangleright \mathcal{X} = L^{\infty} \text{ and } \phi : \mathcal{X} \to \mathbb{R} \text{ is a risk measure}
$$

$$
\blacktriangleright \mathbf{X} = (X_1, \ldots, X_n); \mathbf{Y} = (Y_1, \ldots, Y_n)
$$

$$
\triangleright \mathbf{X} \succeq^{\mathrm{m}} \mathbf{Y}: \phi(X_i) \leq \phi(Y_i) \text{ for each } i
$$

$$
\blacktriangleright \mathbf{X} \stackrel{m}{\succ} \mathbf{Y}: \phi(X_i) < \phi(Y_i) \text{ for each } i
$$

$$
\blacktriangleright \mathbf{X} \stackrel{\text{m}}{\sim} \mathbf{Y}: \phi(X_i) = \phi(Y_i) \text{ for each } i \text{ (marginal equivalence)}
$$

Axiom R

 $[\mathrm{R}]_{\phi}$ Rationality under ϕ -marginal equivalence: $D(\mathbf{X}) \leq D(\mathbf{Y})$ for $\mathsf{X}, \mathsf{Y} \in \mathcal{X}^n$ satisfying $\mathsf{X} \stackrel{m}{\sim} \mathsf{Y}$ and $\sum_{i=1}^n X_i \leq \sum_{i=1}^n Y_i$.

In Given marginal equivalence, preference [for](#page-15-0) [le](#page-17-0)[ss](#page-15-0) [l](#page-16-0)[os](#page-17-0)[s](#page-13-0)

- ▶ 0 is the *n*-vector of zeros \implies assign $D(0) = 0$
- A duplicate portfolio: $X^{du} = (X, ..., X) \implies D(X^{du}) = 1?$
- ▶ 0 is also duplicate \implies assign $D(X^{\text{du}}) \le 1$
- A worse-than-duplicate portfolio $\mathbf{X}^{\text{wd}} = (X_1, \ldots, X_n)$: $\mathbf{X}^{\mathrm{wd}}\stackrel{\mathrm{m}}{\succ}\mathbf{X}^{\mathrm{du}}$ and $\sum_{i=1}^{n}X_{i}\geq nX$ for some $\mathbf{X}^{\mathrm{du}}=(X,\ldots,X)$

$$
\blacktriangleright \text{ Assign } D(\mathbf{X}^{\text{wd}}) \geq 1
$$

• Diversification disasters e.g., Ibragimov/Jaffee/Walden'11

イロメ (押) マミメマミメ 耳目 の女の

Axiom N

 $[N]_p$ Normalization: $D(0) = 0$, $D(\mathbf{X}) \leq 1$ if **X** is duplicate, and $D(X) > 1$ if X is worse than duplicate.

Axiomatic theory

Axiom C

- $[\mathrm{C}]_\phi$ Continuity: For $\{{\mathsf Y}^k\}_{k\in\mathbb N}\subseteq \mathcal X^n$ and ${\mathsf X}\in \mathcal X^n$ satisfying $\mathsf{Y}^k\stackrel{\mathrm{m}}{\sim}\mathsf{X}$ for each k , if $(\sum_{i=1}^nX_i-\sum_{i=1}^nY_i^k)_+\stackrel{L^\infty}{\longrightarrow}0$ as $k\rightarrow\infty$, then $(D(\mathsf{X})-D(\mathsf{Y}^k))_+\rightarrow 0$
	- \triangleright Marginally equivalent portfolios **X** and **Y**
	- \triangleright Total risk of **X** is not much worse than **Y** in L^{∞} \Rightarrow D(X) is not much worse than D(Y)
	- \triangleright Robustness with respect to statistical errors

Portfolio convexity

- \triangleright Simplex: $\Delta_n = {\mathbf{x} \in [0,1]^n : x_1 + \cdots + x_n = 1}$
- **Portfolio loss vector:** $\mathbf{w} \odot \mathbf{X} = (w_1 X_1, \dots, w_n X_n)$

Axiom PC

[PC] Portfolio convexity: The set $\{w \in \Delta_n : D(w \odot X) \leq d\}$ is convex for each $\mathbf{X} \in \mathcal{X}^n$ and $d \in \overline{\mathbb{R}}$.

 \triangleright Pooling two well diversified portfolios does not lead to a poorly diversified one

"Convexity can also be viewed as the formal expression of a basic inclination of economic agents for diversification."

Mas-Colell/Whinston/Green'95, Microeconomic Theory, p.44

DER KER EN ARA

Remark. For any diversification index D,

- \blacktriangleright [PC] is quasi-convexity of $w \mapsto D(w \odot X)$
- \triangleright Convexity or quasi-convexity of $X \mapsto D(X)$ is not desirable
	- For well-diversified (X, Y) and $Z = (X + Y)/2$, we want $D(Z, Z) > max\{D(X, Y), D(Y, X)\}$
- ► Convexity of $w \mapsto D(w \odot X)$ is not desirable
	- $D((w/2 + v/2) \odot X) \approx D(w \odot X)$ if v has very small scale

- ← 伊 ▶ - ← 手 ▶ + 手 ▶ - 手 님 = → つ Q (^

Diversification quotients

Our axioms will characterize the following class

Definition 1 (Diversification quotients)

For $X \in \mathcal{X}^n$, the diversification quotient based on the decreasing class ρ at level $\alpha \in I$ is defined by $\text{DQ}_\alpha^\rho(\mathsf{X}) = \alpha^*/\alpha$, where

$$
\alpha^* = \inf \left\{ \beta \in I : \rho_{\beta} \left(\sum_{i=1}^n X_i \right) \leq \sum_{i=1}^n \rho_{\alpha}(X_i) \right\}
$$

► Convention: $\inf(\emptyset) = \overline{\alpha}$

- ► Examples of $(\rho_\alpha)_{\alpha\in I}$: $(\textnormal{VaR}_\alpha)_{\alpha\in (0,1)},$ $(\textnormal{ES}_\alpha)_{\alpha\in (0,1)}$
- \blacktriangleright DQ can be defined for any decreasing family ρ
- \triangleright We assume MCP ρ throughout

.

Diversification quotients

 \leftarrow

(何 → (ヨ) (ヨ) (

Comparing DQ and DR on VaR

$$
\blacktriangleright S = \sum_{i=1}^n X_i
$$

$$
\blacktriangleright s_{\alpha} = \sum_{i=1}^{n} \text{VaR}_{\alpha}(X_{i})
$$

Comparing

$$
\mathrm{DQ}^{\mathrm{VaR}}_\alpha(\mathbf{X}) = \frac{\mathbb{P}\left(S > s_\alpha\right)}{\alpha} \quad \text{and} \quad \mathrm{DR}^{\mathrm{VaR}_\alpha}(\mathbf{X}) = \frac{\mathrm{VaR}_\alpha\left(S\right)}{s_\alpha}
$$

Duality:

- \triangleright DQ measures the "probability improvement"
- \triangleright DR measures the "quantile improvement"

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Characterization

Theorem 1

Suppose that ϕ is an MCP risk measure. A diversification index $D:\mathcal{X}^n\to\overline{\mathbb{R}}$ satisfies $[+]$, $[\text{LI}]$, $[\text{SI}]$, $[\text{RI}]_\phi$, $[\text{N}]_\phi$ and $[\text{C}]_\phi$ if and only if D is $\text{DQ}^{\rho}_{\alpha}$ for some α and decreasing class ρ of MCP risk measures with $\rho_{\alpha} = \phi$.

 \blacktriangleright First axiomatic characterization of diversification indices

∢何♪ ∢∃♪ ∢∃♪ ∃|≒ のQで

Characterization

Theorem 2

Suppose $n > 4$ and ϕ is a non-linear coherent risk measure. A diversification index $D:\mathcal{X}^n\to\overline{\mathbb{R}}$ satisfies $[+]$, $[\mathrm{LI}],\,[\mathrm{SI}],\,[\mathrm{R}]_\phi$, $\left[\mathrm{N}\right]_{\phi}$, $\left[\mathrm{C}\right]_{\phi}$ and $\left[\mathrm{PC}\right]$ if and only if D is $\mathrm{DQ}^{\rho}_{\alpha}$ for some α and decreasing class ρ of coherent risk measures with $\rho_{\alpha} = \phi$.

 \triangleright DQ based on ES satisfies all axioms

Table: Axioms satisfied by DR^ϕ , DB^ϕ and DQ_α^ρ (with $\phi=\rho_\alpha$), where \mathcal{X}_+ is the set of non-negative elements in \mathcal{X} and $\alpha \in (0,1)$

Progress

[Motivation](#page-3-0)

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

4 [Portfolio optimization](#page-36-0)

[Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

 4.17

E.

 \triangleright A risk measure is sub-linear if it is convex and PH

Proposition 1

Let $\rho=\left(\rho_\beta\right)_{\beta\in I}$ be a decreasing class of sub-linear risk measures and $\alpha \in I$. Then DQ^ρ_α satisfies [PC]. If $n \geq 3$, ρ_α is non-linear and there exists $X \in \mathcal{X}$ such that $\beta \mapsto \rho_{\beta}(X)$ is strictly decreasing, then $\{DQ_{\alpha}^{\rho}(\mathsf{X}): \mathsf{X} \in \mathcal{X}^n\} = [0,1].$

- \blacktriangleright $\mathrm{DQ}^\mathrm{ES}_\alpha$ has the range $[0,1]$
- \blacktriangleright For $n\geq 2$ and $\alpha\in(0,1/n)$, $\mathrm{DQ}_\alpha^\mathrm{VaR}$ has the range $[0,n]$

∢ 同 ▶ ◀ 로 ▶ ◀ 로 ▶ _ 로 님 _ 이 Q (이

As a mapping $D: \bigcup_{n\in\mathbb{N}}\mathcal{X}^n\to\mathbb{R}$, DQ^ρ_α with MCP ρ satisfies [RI] Riskless invariance: $D(\mathbf{X}, c) = D(\mathbf{X})$ for all X and constant c

• adding a risk-free asset to the portfolio does not affect D

[RC] Replication consistency: $D(X, X) = D(X)$ for all X

• replicating the same portfolio composition does not affect D

K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ や 9 Q Q

DQ is connected to

- ▶ acceptability indices Cherny/Madan'09; Rosazza Gianin/Sgarra'13
- \blacktriangleright PELVE Li/W.'23
-

■ bPOE Mafusalov/Uryasev'18

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

Some properties

- \blacktriangleright ρ_α satisfies $[\mathsf{SA}] \Longrightarrow \mathrm{DQ}_\alpha^\rho$ takes values in $[0,1]$
- \blacktriangleright Under weak condition: $\mathrm{DQ}^{\rho}_{\alpha}(\lambda_1 X, \ldots, \lambda_n X) = 1$ for $\lambda_1, \ldots, \lambda_n > 0$ and X with no atom

DQ based on VaR and ES

Theorem 3

For
$$
\alpha \in (0, 1)
$$
 and $\mathbf{X} \in \mathcal{X}^n$, write $s_{\alpha} = \sum_{i=1}^n \text{VaR}_{\alpha}(X_i)$,
 $t_{\alpha} = \sum_{i=1}^n \text{ES}_{\alpha}(X_i)$ and $S = \sum_{i=1}^n X_i$. We have

$$
DQ_{\alpha}^{VaR}(\mathbf{X}) = \frac{1}{\alpha} \mathbb{P} \left(S > s_{\alpha} \right).
$$

If $\mathbb{P}(S > t_\alpha) > 0$, then

$$
\mathrm{DQ}^{\mathrm{ES}}_\alpha(\mathsf{X}) = \frac{1}{\alpha}\min_{r \in (0,\infty)} \mathbb{E}\left[\left(r\left(\mathsf{S} - t_\alpha\right) + 1\right)_+\right],
$$

and otherwise $\mathrm{DQ}_\alpha^\mathrm{ES}(\mathsf{X})=0.$

Inverting the ES curve bPOE, Mafusalov/Uryasev'18

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로]로 19 Q @

DQ based on VaR and ES

Proof of the last statement.

$$
DQ_{\alpha}^{ES}(\mathbf{X}) = \frac{1}{\alpha} \inf \{ \beta \in (0, 1) : ES_{\beta}(S) - t_{\alpha} \le 0 \}
$$

\n
$$
= \frac{1}{\alpha} \inf \{ \beta \in (0, 1) : ES_{\beta}(S - t_{\alpha}) \le 0 \}
$$

\n
$$
(*) = \frac{1}{\alpha} \inf \{ \beta \in (0, 1) : \min_{t \in \mathbb{R}} \left\{ t + \frac{1}{\beta} \mathbb{E} \left[(S - t_{\alpha} - t)_{+} \right] \right\} \le 0 \}
$$

\n
$$
= \frac{1}{\alpha} \inf \{ \beta \in (0, 1) : \exists t \in \mathbb{R} \text{ s.t. } \frac{1}{\beta} \mathbb{E} \left[(S - t_{\alpha} - t)_{+} \right] \le -t \}
$$

\n
$$
= \frac{1}{\alpha} \inf \{ \beta \in (0, 1) : \exists r > 0 \text{ s.t. } \mathbb{E} \left[(r(S - t_{\alpha}) + 1)_{+} \right] \le \beta \}
$$

\n
$$
= \frac{1}{\alpha} \inf_{r>0} \mathbb{E} \left[(r(S - t_{\alpha}) + 1)_{+} \right]
$$

(*): Rockafellar/Uryasev'02

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로] = 19 Q @

Asymptotic behaviour of DQ as $\alpha \downarrow 0$

Proposition 2

Suppose that X_1, \ldots, X_n are iid random variables. If $X_1 \in \mathrm{RV}_\infty$ has positive density over its support, then $\mathrm{DQ}^\mathrm{VaR}_\alpha(\mathsf{X}) \to n^{1-\gamma}$ as $\alpha \downarrow 0.$

- \blacktriangleright $\mathrm{DQ}^\mathrm{VaR}_\alpha(\mathsf{X})\approx n$ for ultra heavy-tailed iid model $(\gamma\downarrow 0)$
- \blacktriangleright $\mathrm{DQ}^\mathrm{VaR}_\alpha(\mathsf{X}) = n$ for some complicated model with both positive and negative dependence

イロメ (押) マミメマミメ 耳目 の女の

Laws of large numbers for DQ

Theorem 4

Let X_1, X_2, \ldots be a sequence of uncorrelated random variables in L². Assume sup_{i∈N} $var(X_i) < \infty$ and $inf_{i \in \mathbb{N}} \{\rho_\alpha(X_i) - \mathbb{E}[X_i]\} > 0$. For $\alpha \in (0,1)$, and ρ being VaR or ES,

$$
\lim_{n\to\infty} \mathrm{DQ}^{\rho}_{\alpha}(X_1,\ldots,X_n)=0.
$$

► If $X_1, X_2, ...$ are iid, then $\lim_{n\to\infty} DQ_{\alpha}^{\rho}(X_1, ..., X_n) = 0$ for ρ being VaR or ES with $\rho_{\alpha}(X_1) > \mathbb{E}[X_1]$

イロメ (押) マミメマミメ 耳目 の女の

Laws of large numbers for DQ

Proposition 3

Let X_1, X_2, \ldots be a sequence of exchangeable random variables in L². Denote by $\mu = \mathbb{E}[X_1]$, $\sigma^2 = \text{var}(X_1)$ and $r = \text{corr}(X_1, X_2)$. For $\alpha \in (0,1)$ and ρ being VaR or ES, if $\rho_{\alpha}(X_1) > \mu$, then

$$
\lim_{n\to\infty} {\rm DQ}^{\rho}_{\alpha}(X_1,\ldots,X_n)\leq \frac{1}{\alpha}\frac{r\sigma^2}{r\sigma^2+(\rho_{\alpha}(X_1)-\mu)^2}.
$$

- \triangleright The limit of DQ exists under exchangeability
- ▶ Proof: bounds on VaR/ES e.g., Li-Shao-W.-Yang'18

 $\text{VaR}_{\beta} (X) \leq \text{ES}_{\beta} (X) \leq \mathbb{E}[X] + \text{SD}(X) \sqrt{(1-\beta)/\beta}$

 \blacktriangleright $r \to 0 \Longrightarrow \lim_{n \to \infty} \text{DQ}_{\alpha}^{\rho}(X_1, \ldots, X_n) \to 0$

 $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ $r = 1 \Longrightarrow \mathrm{DQ}_\alpha^{\rho}(X_1, \ldots, X_n) = 1$ under mil[d c](#page-34-0)on[di](#page-34-0)[tio](#page-35-0)n[s](#page-35-0) [\(](#page-27-0)s[h](#page-36-0)[a](#page-26-0)[rp](#page-27-0)) $E=E$ 000

[Motivation](#page-3-0)

Progress

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

4 [Portfolio optimization](#page-36-0)

5 [Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

 4.17

桐 ▶ イヨ ▶ イヨ ▶

E.

Optimal portfolio diversification

Optimal one-period diversification problem

$$
\min_{\mathbf{w}\in\Delta_n} \mathrm{DQ}^{\mathrm{VaR}}_\alpha(\mathbf{w}\odot\mathbf{X}) \quad \text{and} \quad \min_{\mathbf{w}\in\Delta_n} \mathrm{DQ}^{\mathrm{ES}}_\alpha(\mathbf{w}\odot\mathbf{X}) \tag{OD}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Optimal portfolio diversification

$$
\blacktriangleright \text{ Write } \mathbf{x}_{\alpha}^{\rho} = (\rho_{\alpha}(X_1), \ldots, \rho_{\alpha}(X_n))
$$

Proposition 4

For $\rho = \text{VaR}$, if each component of **X** is non-constant, then [\(OD\)](#page-37-0) is solved by

$$
\min_{\mathbf{w}\in\Delta_n}\mathbb{P}\left(\mathbf{w}^\top\left(\mathbf{X}-\mathbf{x}_\alpha^{\text{VaR}}\right)>0\right).
$$

For $\rho = \mathrm{ES}$, if $\mathbb{P}(\mathbf{w}^\top(\mathbf{X} - \mathbf{x}_\alpha^{\mathrm{ES}}) = 0) = 0$ for all $\mathbf{w} \in \Delta_n$, then [\(OD\)](#page-37-0) is solved by

$$
\min_{\mathbf{v}\in\mathbb{R}_+^n} \mathbb{E}\left[\left(\mathbf{v}^\top\left(\mathbf{X}-\mathbf{x}_\alpha^{\text{ES}}\right)+1\right)_+\right],
$$

and the optimal **w** is given by **v**/ $\|\mathbf{v}\|_1$.

Portfolio optimization of DQ for a data sample

$$
\min_{\mathbf{w}\in\Delta_n} \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{w}\odot\mathbf{X}) \text{ for data sample } \mathbf{X}^{(1)},\ldots,\mathbf{X}^{(N)} \implies \text{convex programming}
$$

$$
\text{minimize} \quad \sum_{j=1}^N \left(\mathbf{v}^\top \left(\mathbf{X}^{(j)} - \mathbf{\widehat{x}}_\alpha^{\mathrm{ES}} \right) + 1 \right)_+ \quad \text{over } \mathbf{v} \in \mathbb{R}_+,
$$

where $\widehat{\mathbf{x}}_{\alpha}^{\text{ES}}$ is the empirical version of $\mathbf{x}_{\alpha}^{\text{ES}}$ based on the sample

- ► Practically use $||\mathbf{v}||_1 < M$ for a large M, e.g., $M = 100$
- \blacktriangleright Apply a tie-breaking rule if needed

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Portfolio optimization of DQ for a data sample

 $\min\limits_{\mathbf{w}\in\Delta_{n}}\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{w}\odot\mathbf{X})\;$ for data sample $\mathbf{X}^{(1)},\ldots,\mathbf{X}^{(N)}$ \implies linear integer programming

minimize
$$
\sum_{j=1}^{N} z_j \quad \left(= \sum_{j=1}^{N} \mathbb{1}_{\{\mathbf{w}^\top \mathbf{y}^{(j)} > 0\}} \right) \quad \text{(LIP)}
$$

subject to
$$
\mathbf{w}^\top \mathbf{y}^{(j)} - Mz_j \le 0, \quad \sum_{j=1}^{n} w_j = 1
$$

$$
z_j \in \{0, 1\}, \quad w_j \ge 0 \quad \text{for all } j \in \{1, ..., N\},
$$

where

$$
\blacktriangleright \mathbf{y}^{(j)} = \mathbf{X}^{(j)} - \widehat{\mathbf{x}}_{\alpha}^{\text{VaR}}
$$

 $\blacktriangleright \ \widehat{\mathbf{x}}_{\alpha}^{\text{VaR}}$ is the empirical version of $\mathbf{x}_{\alpha}^{\text{VaR}}$ based on the sample ► $M>0$ $M>0$: $z_j=1 \Longrightarrow {\bf w}^\top {\bf y}^{(j)}-Mz_j \leq 0$ ([th](#page-39-0)e [B](#page-41-0)i[g](#page-40-0) M [m](#page-41-0)e[t](#page-35-0)[h](#page-36-0)[o](#page-41-0)[d](#page-42-0)[\)](#page-0-0)

Portfolio optimization of DQ for a data sample

Tie-breaking

- \triangleright the objective function of [\(LIP\)](#page-40-1) takes integer values
- In let m^* be the optimal value of [\(LIP\)](#page-40-1)
- ▶ pick the closest one (in L^1 -norm $\|\cdot\|_1$ on \mathbb{R}^n) to a given benchmark w_0 among tied optimizers

minimize
$$
\|\mathbf{w} - \mathbf{w}_0\|_1
$$

\nsubject to
$$
\sum_{j=1}^N 1_{\{\mathbf{w}^\top \mathbf{y}^{(j)} > 0\}} \leq m^*
$$

$$
\mathbf{w} \in \Delta_n
$$

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

[Motivation](#page-3-0)

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

4 [Portfolio optimization](#page-36-0)

5 [Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

 4.17

桐 ▶ イヨ ▶ イヨ ▶

E.

- \triangleright Elliptical distributions are popular in QRM
- \blacktriangleright Two examples: normal and t distributions
- \triangleright Fundamental theorem of QRM: for elliptical models, any PH risk measures are "equivalent" (Embrechts'19 keynote at IME)
- \blacktriangleright Explicit formulas for $\mathrm{DQ}^\mathrm{VaR}_\alpha$ and $\mathrm{DQ}^\mathrm{ES}_\alpha$ are available
- Asymptotic results for $n \to \infty$ and $\alpha \downarrow 0$ are available

Numerical examples: normal and t-distributions

Consider two dispersion matrices, parametrized by $r \in [0, 1]$ and $n \in \mathbb{N}$,

 \blacktriangleright Equicorrelation

 $\Sigma_1 = (\sigma_{ii})_{n \times n}$, where $\sigma_{ii} = 1$ and $\sigma_{ii} = r$ for $i \neq j$,

Autoregressive $AR(1)$

 $\Sigma_2=(\sigma_{ij})_{n\times n},\;\;\;\;$ where $\sigma_{ii}=1$ and $\sigma_{ij}=r^{|j-i|}$ for $i\neq j.$

Let $\mathbf{X}_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}_i)$ and $\mathbf{Y}_i \sim t(\nu, \boldsymbol{\mu}, \boldsymbol{\Sigma}_i)$, $i = 1, 2$

KOD KAD KED KED EE MAA

Figure: DQ based on VaR and ES for $\alpha \in (0, 0.1)$ with fixed $\nu = 3$, $r = 0.3$ and $n = 4$

4 0 F

 $\mathcal{A} \oplus \mathcal{B}$) and $\mathcal{B} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

DQ for varying correlation coefficient

Figure: DQ based on VaR and ES for $r \in [0, 1]$ with fixed $\alpha = 0.05$, $\nu = 3$, and $n = 4$

∢ロ ▶ (何 ▶ (ヨ ▶ (ヨ ▶)

DQ for t-models with varying tail parameter

Figure: DQ based on VaR for $\nu \in (0, 10]$ and ES for $\nu \in (1, 10]$ with fixed $\alpha = 0.05$, $r = 0.3$ and $n = 4$

드시크.

∢ロ ▶ (何 ▶ (言 ▶ (言 ▶

DQ for elliptical models as the dimension n varies

Figure: DQ based on VaR and ES for $n \in [2, 100]$ with fixed $\alpha = 0.05$, $r = 0.5$ and $\nu = 3$

モレ イラン イランド

The joint t-model has a common shock

Table: DQ/DR based on VaR, ES and SD, where $\alpha = 0.05$ and $n = 10$

- \triangleright DQ: iid normal \lt iid t \lt joint t
- **I** DR: iid normal = joint t $\frac{?}{\sim}$ iid t
- DQ captures tail heaviness/common shock which DR ignores

◀ㅁ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ _로 \= _< ⊙ Q (^

DQ for t-models with varying tail parameter

Figure: $D(Y')/D(Y)$ based on VaR and ES for $\alpha \in (0,0.1]$ with fixed $n = 10$

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣 ▶ [로] 늘 19 Q Q

Optimization for the elliptical models

 \triangleright Optimal diversification for DQ (σ is the diagonal of Σ)

$$
\mathop{\arg\min}\limits_{\mathbf{w}\in\Delta_{n}}\mathrm{DQ}_{\alpha}^{\mathrm{VaR}}(\mathbf{w}\odot\mathbf{X})=\mathop{\arg\min}\limits_{\mathbf{w}\in\Delta_{n}}\frac{\sqrt{\mathbf{w}^{\top}\Sigma\mathbf{w}}}{\mathbf{w}^{\top}\sigma}
$$

 \triangleright Optimal diversification for DR

$$
\argmin_{\mathbf{w} \in \Delta_n} \mathrm{DR}^{\mathrm{VaR}_\alpha}(\mathbf{w} \odot \mathbf{X}) = \argmin_{\mathbf{w} \in \Delta_n} \frac{\mathbf{w}^\top \mu + y_\alpha \sqrt{\mathbf{w}^\top \Sigma \mathbf{w}}}{\mathbf{w}^\top \mu + y_\alpha \mathbf{w}^\top \sigma}
$$

where $y_{\alpha} = \text{VaR}_{\alpha}(Y)$ and $Y \sim E_1(0, 1, \phi)$

 \blacktriangleright The two have the same optimizers if $\mu = 0$ and $y_{\alpha} \neq 0$

$$
\blacktriangleright \text{ In case } \Sigma = I_n: \mathbf{w}^* = (\frac{1}{n}, \dots, \frac{1}{n})
$$

イロメ (押) マミメマミメ 耳目 の女の

[Motivation](#page-3-0)

2 [Axiomatic theory of diversification indices](#page-14-0)

3 [Properties of DQ](#page-27-0)

4 [Portfolio optimization](#page-36-0)

5 [Elliptical models](#page-42-0)

6 [Empirical results for financial data](#page-52-0)

伺→ ∢ミ→ ∢ミ→ ミ!゠ りんぺ

 4.17

Data: daily losses from S&P 500 constituents

- ▶ Period: January 3, 2012 to December 31, 2021
- \triangleright 2518 daily losses; moving window of 500 days

Portfolios with stock compositions:

- (A) 2 largest stocks from each of 10 different sectors of S&P 500
- (B) 1 largest stock from each of 5 different sectors of S&P 500
	- XOM (ENR), AAPL (IT), BRK/B (FINL), WMT (CONS), GE (INDU)
- (C) 5 largest stocks from the Information Technology (IT) sector
- (D) 5 largest stocks from the Financials (FINL) sector

DQ for different portfolios

Figure: DQ based on VaR (left) and ES (right) with $\alpha = 0.05$

- ▶ Observation: A (20) < B (5) < C (5 IT) < D (5 FINL)
- Large jump for DQ based on ES at the COVID outbreak
- DQ based on VaR can be larger than 1

Optimal diversified portfolios

Portfolios (monthly rebalancing) with 4 largest stocks from each of the 10 sectors of S&P 500 in 2012 (40 in total)

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2014 to Dec 2021

- Risk-free rate: 2.84% (= 10-y US treasury yield, Jan 2014)
- $\sim \alpha = 0.1$
- \triangleright EW = equally weighted; BH = buy and hold
- \blacktriangleright The target AR for the Markowitz portfolio is set to 10%

Table: Average trading proportion (ATP) from Jan 2014 to Dec 2021

星目 のへぐ

Optimal diversified portfolios

Portfolios (monthly rebalancing) with 4 largest stocks from each of the 10 sectors of S&P 500 in 2002 (40 in total)

Optimal diversified portfolios

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2004 to Dec 2011

- Risk-free rate: 4.38% (= 10-y US treasury yield, Jan 2004)
- $\sim \alpha = 0.1$
- \triangleright EW = equally weighted; BH = buy and hold
- \blacktriangleright The target AR for the Markowitz portfolio is set to 5%

化重复 化重变

Thank you for your kind attention

- Axiomatic theory paper: https://arxiv.org/abs/2206.13679
- Particular models paper: https://arxiv.org/abs/2301.03517
- I Working papers series: Risk management with risk measures <http://sas.uwaterloo.ca/~wang/pages/WPS5.html>

[Backup](#page-61-0) \bullet 000000000000

Some literature on measuring diversification

- \triangleright Markowitz'52 JF: Mean-variance theory
- \blacktriangleright Diversification ratio
	- Tasche'07; Choueifaty/Coignard'08 JPM; Bürgi/Dacorogna/Iles'08; Embrechts/Wang/W.'15 FS
- \triangleright Number of unique investments or naive diversification
	- Rudin/Morgan'06 JPM; DeMiguel/Garlappi/Uppal'09 RFS; Pflug/Pichler/Wozabal'12 JBF
- \triangleright Diversification benefit in multivariate regular variation models
	- Mainik/Rüchendorf'10 FS; Mainik/Embrechts'13 AAS
- \triangleright Koumou/Dionne'22: Axioms for correlation diversification measures

▶ 네트 ▶ 네트 ▶ 트리브 KD Q (연

Some recent work on VaR and ES

- \blacktriangleright Axiomatic characterizations
	- VaR: Kou/Peng' 16 OR; He/Peng' 18 OR; Liu/W.'21 MOR
	- ES: W./Zitikis'21 MS; Embrechts/Mao/Wang/W.'21 MF
- \blacktriangleright Risk sharing
	- Embrechts/Liu/W.'18 OR; Embrechts/Liu/Mao/W.'20 MP
- \blacktriangleright Robustness in optimization
	- Emberchts/Schied/W.'22 OR
- \triangleright Calibrating levels between VaR and ES
	- Li/W.'23 JE
- \blacktriangleright Forecasting and backtesting
	- Fissler/Ziegel'16 AOS; Nolde/Ziegel'17 AOAS; Du/Escanciano'17 MS

 \rightarrow 4 E \rightarrow E E \rightarrow 9.9.0

Connecting DQ and DR

Proposition 5

For a given $\phi:\mathcal{X}\rightarrow \mathbb{R}_+$, we have $\text{DQ}^\rho_\alpha=\text{D}\text{R}^\phi$ where $\rho=(\phi/\alpha)_{\alpha\in(0,\infty)}$. The same holds if $\rho=(b\mathbb{E}+c\phi/\alpha)_{\alpha\in(0,\infty)}$ for some $b \in \mathbb{R}$ and $c > 0$ and $\mathcal{X} = L^1$.

- \blacktriangleright DR^{var} and DR^{SD} are special cases of DQ
- If ϕ satisfies [CA]_0 , then $\rho_\alpha = b\mathbb{E} + c\phi/\alpha$ satisfies [CA]_b
- \triangleright b $\mathbb{E} + c\phi/\alpha$ includes mean-standard deviation, mean-variance, and mean-Gini (Denneberg'90)

イロメ (押) マミメマミメ 耳目 の女の

Elliptical models

A random vector X is elliptically distributed if it has a characteristic function

$$
\psi(\mathbf{t}) = \mathbb{E}\left[\exp\left(\mathbf{i}\mathbf{t}^{\top}\mathbf{X}\right)\right] = \exp\left(\mathbf{i}\mathbf{t}^{\top}\boldsymbol{\mu}\right)\phi\left(\mathbf{t}^{\top}\boldsymbol{\Sigma}\mathbf{t}\right),
$$

for some $\boldsymbol{\mu} \in \mathbb{R}^n$, positive semi-definite matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times n}$, and $\phi : \mathbb{R}_+ \to \mathbb{R}$ (the characteristic generator)

Fig. This distribution is denoted by by $E_n(\mu, \Sigma, \phi)$

$$
\triangleright
$$
 Write $\Sigma = (\sigma_{ij})_{n \times n}$, $\sigma_i^2 = \sigma_{ii}$, $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_n)$, and

$$
k_{\Sigma} = \frac{\sum_{i=1}^{n} \sigma_i}{\left(\sum_{i,j}^{n} \sigma_{ij}\right)^{1/2}} \in [1, \infty)
$$

伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶ 『ヨ!ヨーのQQ

DQ for elliptical models

Proposition 6

Suppose that $\mathbf{X} \sim \mathrm{E}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \phi)$. We have

$$
DQ_{\alpha}^{VaR}(\mathbf{X}) = \frac{1 - F(k_{\Sigma}VaR_{\alpha}(Y))}{\alpha}; \ DQ_{\alpha}^{ES}(\mathbf{X}) = \frac{1 - \widetilde{F}(k_{\Sigma}ES_{\alpha}(Y))}{\alpha},
$$

for $\alpha \in (0,1)$, where $Y \sim E_1(0,1,\phi)$ with distribution function F, and F is the superquantile transform of F. Moreover,

- $(\mathfrak{i}) \ \ \alpha \mapsto \mathrm{DQ}_\alpha^{\mathrm{VaR}}(\mathsf{X})$ takes value in $[0,1]$ on $(0, 1/2]$ and it takes value in $[1, 2]$ on $(1/2, 1)$;
- (ii) $k_{\Sigma} \mapsto \text{DQ}_{\alpha}^{\text{VaR}}(\mathsf{X})$ is decreasing for $\alpha \in (0, 1/2]$ and increasing for $\alpha \in (1/2, 1);$

(iii) $k_{\Sigma} \mapsto \mathrm{DQ}_{\alpha}^{\mathrm{ES}}(\mathbf{X})$ is decreasing for $\alpha \in (0, 1)$.

イロメ (押) マミメマミメ 耳目 の女の

Asymptotic behaviour of DQ

Proposition 7

Suppose that $\mathbf{X} \sim \mathrm{E}_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \phi)$. (i) Let $Y \sim E_1(0, 1, \phi)$ and f be the density function of Y. We have $\displaystyle \lim_{\alpha\downarrow 0} {\rm DQ}^{\rm{VaR}}_\alpha(\mathsf{X}) = \lim_{\mathsf{x}\to\infty} k_\Sigma \frac{f(k_\Sigma\mathsf{x})}{f(\mathsf{x})}$ $f(x)$ if $\text{VaR}_0(Y)=\infty$ and the limit exists, and $\lim_{\alpha\downarrow 0} \text{DQ}^\text{VaR}_\alpha(\mathsf{X})=0$ if $VaR_0(Y) < \infty$. (ii) Let $AC_{\Sigma} = 1/k_{\Sigma}^2$. If $\lim_{n \to \infty} AC_{\Sigma} = 0$, then $\lim_{n\to\infty}\mathrm{DQ}_\alpha^\mathrm{VaR}(\mathsf{X})=\lim_{n\to\infty}\mathrm{DQ}_\beta^\mathrm{ES}(\mathsf{X})=0$ for $\alpha \in (0, 1/2)$ and $\beta \in (0, 1)$.

Cross-comparison between DQ based on VaR and ES

Associating VaR and ES levels by PELVE (Li/W.'22)

 $ES_{c\alpha}(X) = VaR_{\alpha}(X)$

Table: Values of DQ based on VaR at level $\alpha = 0.01$ and ES at level $c\alpha$, where $n = 4$ and $r = 0.3$

イロト (何) (ミト (手

Dependence and portfolio risks

For a random variable X and $\alpha \in (0,1)$

- (i) A tail event of X is an event $A \in \mathcal{F}$ with $0 < \mathbb{P}(A) < 1$ such that $X(\omega) \geq X(\omega')$ holds for a.s. all $\omega \in A$ and $\omega' \in A^d$
- (ii) A random vector $(X_1, ..., X_n)$ is α -concentrated if its component share a common tail event of probability α (W./Zitikis'21)

For $\mathsf{X} \in \mathcal{X}^n$ and $\alpha \in (0, 1/n)$, an α -CE model satisfies

- $\blacktriangleright \mathbb{P}(X_i > \text{VaR}_{\alpha}(X_i)) = \alpha$
- \blacktriangleright P(X_i > VaR_{α}(X_i)) > n α
- \blacktriangleright (X_1, \ldots, X_n) are $(n\alpha)$ -concentrated
- $\blacktriangleright \{X_i > \text{VaR}_{\alpha}(X_i)\}, i = 1, \ldots, n$, are mutually exclusive

K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ や 9 Q Q

Dependence and portfolio risks

Theorem 5

- Let $\alpha \in (0,1)$ and $n \geq 2$ satisfy $n \leq 1/\alpha$.
	- (i) $\text{DQ}_{\alpha}^{\text{VaR}}$ has a range $[0, n]$ and $\text{DQ}_{\alpha}^{\text{ES}}$ has a range $[0, 1]$.
- (ii) If $\sum_{i=1}^{n} X_i$ is a constant, then $\text{DQ}^{\text{VaR}}_{\alpha}(\mathsf{X}) = \text{DQ}^{\text{ES}}_{\alpha}(\mathsf{X}) = 0$.
- (iii) For ρ being VaR or ES, if **X** is α -concentrated, then $\mathrm{DQ}_\alpha^\rho(\mathsf{X})\leq 1.$ If, in addition, ρ is continuous and non-flat from the left at $(\alpha, \sum_{i=1}^{n} X_i)$, then $\text{DQ}_\alpha^{\rho}(\mathsf{X}) = 1$.
- (iv) If **X** has an α -CE model, then $\mathrm{DQ}_\alpha^\mathrm{VaR}(\mathsf{X})=n$ and $\mathrm{DQ}_{n\alpha}^{\mathrm{ES}}(\mathsf{X})=1.$

イロメ (押) マミメマミメ 耳目 の女の

Numerical example

Assume that $\mathbf{X} \sim t(\nu, \mu, \Sigma)$ where $\nu = 3$ and the dispersion matrix is given by

$$
\Sigma = \left(\begin{array}{cc} 1 & 0.5 \\ 0.5 & 2 \end{array}\right)
$$

Comparison of DQ and DR

- \triangleright Portfolio: 1 largest stock from each of 5 sectors (2012 market cap)
	- XOM (ENR), AAPL (IT), BRK/B (FINL), WMT (CONS), GE (INDU)
- ^I Period: January 3, 2012 to December 31, 2021
- 2518 daily losses; moving window of 500 days

Figure: DQ (left) and DR (right) on VaR[/ES](#page-70-0) [w](#page-72-0)[it](#page-70-0)[h](#page-71-0) $\alpha = 0.05$ $\alpha = 0.05$

 200
Optimal diversified portfolio

Portfolios (monthly rebalancing) with 2 largest stocks from each of the 10 sectors of S&P 500 in 2012 (20 in total)

Optimal diversified portfolio

Table: Annualized return (AR), annualized volatility (AV) and Sharpe ratio (SR) for different portfolio strategies from Jan 2014 to Dec 2021

 \overline{a}

A → → ミ → → ミ →