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Background

Suppose that we are testing the global null hypothesis using K > 2

tests and obtain p-values p1, . . . , pK . How can we combine them

into a single p-value?

A question of a long history

I Tippett’31, Pearson’33, Fisher’48: assume independence

I We are primarily interested in the case of dependence, in

particular, unknown dependence

I The Bonferroni correction: minimum × correction (K )

I More important is testing multiple hypotheses or selective

inference, but for now let us focus on the global null
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The value of no assumption

Dependence

I A set of p-values is essentially one vector: difficult to

test/verify any dependence model among them

I In modern applications, multiple p-values may come from

resampling, data splitting, overlapping experiments, different

algorithms, ...

I Efron’10, Large-scale Inference, p50-p51:

“independence among the p-values ... usually an unrealistic

assumption. ... even PRD [positive regression dependence] is

unlikely to hold in practice.”
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Optimal transport

The Monge (1781) problem: find a transport map T : X → Y that

attains

inf

{∫
X
c(x ,T (x))dµ(x)

∣∣∣∣ T#µ = ν

}
where

I X and Y are two Polish spaces (e.g., Rd)

I Cost function c : X × Y → [0,∞] or (−∞,∞]

I Probabilities µ on X and ν pm Y are given

I T#µ = µ ◦ T−1 is the push forward of µ by T

I Such T is an optimal transport map

µ ν

T

X Y
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Kantorovich’s formulation

I Monge’s formulation may be ill-posed (e.g., point masses)

I Kantorovich’s problem: find a probability measure

π ∈ P(X × Y) that attains

inf

{∫
X×Y

c(x , y)π(dx ,dy) | π ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of probability measures on X × Y
with marginals µ and ν

I Wasserstein distance is defined this way

I Linear programming
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Monge and Kantorovich’s formulations
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Transport duality

If c is non-negative and lower semi-continuous, then duality holds

min
π∈Π(µ,ν)

∫
X×Y

c dπ = sup

(∫
X
φ dµ+

∫
Y
ψ dν

)
,

where the supremum runs over all pairs of bounded and continuous

functions φ : X → R and ψ : Y → R such that

φ(x) + ψ(y) 6 c(x , y) for all x , y
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Economic interpretation

I x ∈ X : the vector of characteristics of a worker

I y ∈ Y: the vector of characteristics of a firm

I g(x , y) the economic output (production) generated by

worker x matched with firm y

I Social economic-output maximization

sup

{∫
X×Y

g dπ | π ∈ Π (µ, ν)

}
I Dual problem g(x , y) 6 φ(x) + ψ(y): social equilibrium

• φ: the equilibrium wage function

• ψ: the equilibrium profit function
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Probabilistic formulation

Let L and R represent random variables on R
I Classic optimal transport

inf
L∼µ,R∼ν

E[c(L,R)]

I Martingale optimal transport require: µ �cx ν

inf
L∼µ,R∼ν

E[c(L,R)] : L = E[R|L]

I Submartingale optimal transport require: µ �icx ν

inf
L∼µ,R∼ν

E[c(L,R)] : L 6 E[R|L]

I Directional optimal transport require: µ �st ν

inf
L∼µ,R∼ν

E[c(L,R)] : L 6 R

Martingale: Beiglböck/Henry-Labordère/Penkner’13; Beiglböck/Juillet’16

Submartingale: Nutz/Stebegg’18; Directional: Nutz/W.’22
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The multi-marginal formulation

Focus on R in what follows

I µ1, . . . , µn: n probability measures on R
I Π(µ1, . . . , µn): the set of probability measures on Rn with

marginals µ1, . . . , µn

I X1, . . . ,Xn: random variables ⇐ now probabilistic notation ...

Kantorovich’s formulation:

inf

{∫
Rn

c(x1, . . . , xn)π(dx1, . . . ,dxn) | π ∈ Π(µ1, . . . , µn)

}
Probabilistic formulation:

inf {E[c(X1, . . . ,Xn)] | Xi ∼ µi , i ∈ [n]}

Rüschendorf’13; Pass’15
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Dependence uncertainty problems

A random vector X = (X1, . . . ,Xn)

Assumptions

marginals may be known; dependence is unknown/arbitrary

I Motivation: data scarcity; uncertainty; absent information;

lack of models; conservative decisions

Questions:

I properties of Ψ(X) for some Ψ : Rn → Rd

I range of P(X ∈ A) for some A ⊆ Rn

I “optimal” dependence structures of X

I statistical decisions based on X
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Risk management and dependence uncertainty

Basic setup.

I A vector of risk factors: X = (X1, . . . ,Xn)

I A financial position Ψ(X)

I A risk measure ρ

Key task: Calculate ρ(Ψ(X))

Most practical choices:

I Ψ(X) =
∑n

i=1 Xi

I ρ = VaRp (quantile) or ρ = ESp (tail mean)

Challenge: We need a joint model for the random vector X

I Range of ρ(Ψ(X)) under dependence uncertainty
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Risk management and dependence uncertainty

Misspecified dependence for credit risks =⇒ 07–09 financial crisis

I In the current Basel FRTB internal model approach, for

market risk

Capital Charge = λESp

(
internal
model

)
+ (1− λ)ESp

(
worst-case

dependence

)
I Similar considerations in other regulatory frameworks, such as

Solvency II
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General formulation

Minimize or maximize

ρ(c(X1, . . . ,Xn)) subject to Xi ∼ µi , i ∈ [n]

Differences from the classic OT theory:

I ρ may be non-linear, such as VaR, ES and other risk measures

I The optimal value often matters more than the optimizer

I Even the linear case c(x1, . . . , xn) =
∑n

i=1 ci (xi ) is interesting

I Optimizers usually depend on µ1, . . . , µn in a complicated way

I No duality formulas

[many collaborations with P. Embrechts and coauthors]
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Merging functions

Let H be a collection of probability measures ...

Definition (p-variables and merging functions)

(i) A p-variable is a random variable P that satisfies

sup
P∈H

P(P 6 ε) 6 ε, ε ∈ (0, 1).

(ii) A p-merging function is an increasing Borel function

F : [0,∞)K → [0,∞) such that F (P1, . . . ,PK ) is a p-variable

for all p-variables P1, . . . ,PK .

I Controlled type I error under arbitrary dependence
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Merging functions

I U : the set of all uniform [0, 1] random variables under P

For an increasing Borel F : [0,∞)K → [0,∞), equivalent are:

I F is a p-merging function w.r.t. some atomless collection H

I F is a p-merging function w.r.t. all collections H

I fixing atomless P, F (P) is a p-variable for all P ∈ UK

I fixing atomless P, for all ε ∈ (0, 1), P(F 6 ε) 6 ε, where

P(F 6 ε) = sup
{
P(F (P) 6 ε) : P ∈ UK

}
I It suffices to consider H = {P} for an atomless P and UK
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Precise merging functions

I Multi-marginal OT problem:

sup{E[1{F (P)6ε}] : P ∈ UK}

I The cost function is not submodular/supermodular

I Dependence assumption is available =⇒ constrained OT

Definition (precise merging functions)

A p-merging function F is precise if, for all ε ∈ (0, 1),

P(F 6 ε) = ε.
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Existing methods

I p(1), . . . , p(K) are the ascending order statistics

I The Bonferroni method

FB(p1, . . . , pK ) = Kp(1)

I Order-family (O-family) Rüger’78

Gk,K = (p1, . . . , pK ) =
K

k
p(k)

I Hommel–Simes Hommel’83

HK (p1, . . . , pK ) = `K

K∧
k=1

K

k
p(k); `K =

K∑
k=1

1

k

(also appearing in the BH procedure)
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Merging p-values via averaging

I Generalized mean Kolmogorov’30

Mφ,K (p1, . . . , pK ) = φ−1

(
φ(p1) + · · ·+ φ(pK )

K

)
,

where φ : [0, 1]→ [−∞,∞] is continuous & strictly monotone

I M-family: for r ∈ R \ {0},

Mr ,K (p1, . . . , pK ) =

(
pr1 + · · ·+ prK

K

)1/r

Limiting cases: geometric, minimum, maximum

I φ(x) = tan((x − 1
2 )π): Cauchy combination Liu/Xie’20
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Merging p-values via averaging

The arithmetic average M1,K (p1, . . . , pK ) = 1
K

∑K
k=1 pk is not a

p-merging function Rüschendorf’82, Meng’93

P(M1,K 6 ε) = min(2ε, 1).

I ⇒ 2M1,K is a precise p-merging function

Task. Find br ,K > 0 such that (the M-family)

Fr ,K = br ,KMr ,K is precise

I Mr ,K increases in r =⇒ br ,K should decrease in r .
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Translation to a risk aggregation problem

For α ∈ (0, 1] define

qα(X ) = inf{x ∈ R : P(X 6 x) > α};

qα(F ) = inf
{
qα(F (P)) : P ∈ UK

}
Lemma 1

For a > 0, r ∈ [−∞,∞], and F = aMr ,K , equivalent are:

(i) F is a p-merging function, i.e., P(F 6 ε) 6 ε for all ε ∈ (0, 1);

(ii) qε(F ) > ε for all ε ∈ (0, 1);

(iii) P(F 6 ε) 6 ε for some ε ∈ (0, 1);

(iv) qε(F ) > ε for some ε ∈ (0, 1).

The same conclusion holds if all 6 and > are replaced by =.
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Translation to a risk aggregation problem

It boils down to calculate qε(Mr ,K ), or equivalently:

(i) for r > 0, aggregation of Beta risks

(qε(Mr ,K ))r = inf
U1,...,UK∈U

{
qε

(
1

K
(U r

1 + · · ·+ U r
K )

)}
(ii) for r = 0, aggregation of exponential risks

log(qε(Mr ,K )) = inf
U1,...,UK∈U

{
qε

(
1

K
(logU1 + · · ·+ logUK )

)}
(iii) for r < 0, aggregation of Pareto risks

(qε(Mr ,K ))r = sup
U1,...,UK∈U

{
q1−ε

(
1

K
(U r

1 + · · ·+ U r
K )

)}
I A general tool: convolution bound Blanchet/Lam/Liu/W.’24
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Summary

Constant multiplier in front of Mr ,K

r
r+1

K1+1/r (1 + r)1/r

e

(1 + r)1/r K1/r

K 1logK 2

r = −1

harmonic

r = 0

geometric

r = 1

arithmetic

r = −∞
minimum

r =∞
maximum

r = 1
K−1 r = K − 1

blue: precise; green: approximate
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Admissible p-merging functions

For p-merging functions F and G :

I F dominates G if F 6 G

I F is admissible if it is not dominated by any other one

I F is symmetric if F (p) is invariant under permutation of p

I F is homogeneous if F (λp) = λF (p) for all λ ∈ (0, 1] and p

with F (p) 6 1

Properties

I Admissible =⇒ precise, lower semicontinuous, grounded

I Any p-merging function is dominated by an admissible one
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Rejection regions of admissible p-merging functions

I The rejection region of F at level ε ∈ (0, 1):

Rε(F ) :=
{
p ∈ [0,∞)K : F (p) 6 ε

}
I An accending chain {Rε ⊆ [0,∞)K : ε ∈ (0, 1)} of Borel lower

sets induces a function F : [0,∞)K → [0, 1] via

F (p) = inf{ε ∈ (0, 1) : p ∈ Rε} with inf ∅ = 1

I F is p-merging ⇐⇒ P(P ∈ Rε) 6 ε for all ε ∈ (0, 1), P ∈ UK

I F is homogeneous =⇒ Rε(F ) = εA for some A ⊆ [0,∞)K .
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Rejection regions of admissible p-merging functions

Admissibility ⇐⇒ rejection region cannot be enlarged

I Precision of p-merging ⇐⇒ classic OT

Compute sup
P∈UK

E[1A(P)]

I Admissibility (or optimality) ⇐⇒ “reverse OT”

Given sup
P∈UK

E[1A(P)] 6 ε, find a maximal A ⊆ [0, 1]K

I Such A needs to be nested

I Techniques in OT can be very helpful
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One slide on e-values

Using p-to-e calibrators Vovk/W.’21

I A calibrator is a decreasing function f : [0,∞)→ [0,∞]

satisfying f = 0 on (1,∞) and
∫ 1

0 f (x)dx 6 1

I A calibrator f is admissible if it is upper semicontinuous,

f (0) =∞, and
∫ 1

0 f (x)dx = 1

E-variables

An e-variable E for H is a [0,∞]-valued random variable satisfying

EP[E ] 6 1 for P ∈ H.

I f (P/ε)/ε is an e-variable for P ∈ U and ε ∈ (0, 1)

I P(E > 1/ε) 6 ε for an e-variable E (Markov’s inequality)
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Representation theorems

Let ∆K be the standard K -simplex and write p = (p1, . . . , pK ).

Theorem 1

For any admissible homogeneous p-merging function F , there exist

(λ1, . . . , λK ) ∈ ∆K and admissible calibrators f1, . . . , fK such that

Rε(F ) =

{
p ∈ [0,∞)K :

K∑
k=1

λk
1

ε
fk

(pk
ε

)
>

1

ε

}
, ε ∈ (0, 1). (H)

Conversely, for any (λ1, . . . , λK ) ∈ ∆K and calibrators f1, . . . , fK ,

(H) induces a homogeneous p-merging function.
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Connection to e-tests

(H) is equivalent to

F (p) = inf

{
ε ∈ (0, 1) :

K∑
k=1

λk fk

(pk
ε

)
> 1

}

I Admissible (homogeneous) ways of merging p-values must be

through merging e-values and testing with Markov’s inequality

I Proof is based on optimal transport duality

min

{
K∑

k=1

∫ 1

0
gk(x)dx :

K⊕
k=1

gk > 1Rε(F )

}
= max

P∈U
P(P ∈ Rε(F )) = ε
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Representation theorems

Theorem 2

For any F that is admissible within the family of homogeneous

symmetric p-merging functions, there exists an admissible

calibrator f such that

Rε(F ) =

{
p ∈ [0,∞)K :

1

K

K∑
k=1

f
(pk
ε

)
> 1

}
, ε ∈ (0, 1). (SH)

Conversely, for any calibrator f , (SH) induces a homogeneous

symmetric p-merging function.

I We say f induces F if (SH) holds

I Converse: not true; calibrator: not unique
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Connection to joint mixability

A necessary and sufficient condition for a calibrator f to induce a

precise p-merging function via (SH) is

P

(
1

K

K∑
k=1

f (Pk) = 1

)
= 1 for some P1, . . . ,PK ∈ U . (JM)

I =⇒ Joint mixability Wang/W.’11’16

I Difficult to check for a given f in general

I For a convex f , (JM) holds if and only if f 6 K on (0, 1]

I Weaker than admissibility
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Sufficient conditions for admissibility

Theorem 3

Suppose that an admissible calibrator f is strictly convex or strictly

concave on (0, 1], f (0+) ∈ (K/(K − 1),K ], and f (1) = 0. The

p-merging function induced by f is admissible.

I Proof based on joint mixability (JM)

I Open question: can strict convexity be reduced to convexity?

I Conditions of this type are not necessary
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Hommel’s function

Define the Hommel* calibrator f by

f : x 7→
K1{`K x61}

dK`Kxe
.

Theorem 4

The p-merging function HK ∧ 1 is dominated (strictly if K > 4) by

the p-merging function H∗K induced by f via (SH). Moreover, H∗K
is always admissible among symmetric p-merging functions, and it

is admissible if K is not a prime number.

I Primality appears in the proof due to factoring the set [K ]

I H∗K is not admissible for K = 2, 3 (we guess also 5)
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Hommel’s function and the O-family

I The Bonferroni method is admissible

I Members Gk,K of the O-family are admissible after truncation

at 1 except for k = K

I Members Fr ,K of the M-family are not admissible except for

r = −∞

I Fr ,K can be strictly improved to F ∗r ,K

I F ∗−1,K is similar to H∗K
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Combining exchangeable p-values

Definition 1 (Exchangeability)

The random vector (P1, . . . ,PK ) is exchangeable if

(P1, . . . ,PK )
d
= (Pσ(1), . . . ,Pσ(K))

for all K -permutations σ.

Examples

I Split conformal prediction

I Median-of-means methods

I Overlapping sample
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Exchangeable/uniformly-randomized Markov inequalities

Proposition 1 (Ramdas/Manole’24 STS)

Let X1,X2, . . . form an exchangeable sequence of non-negative

random variables. Then, for any a > 0,

P

(
∃k > 1 :

1

k

k∑
i=1

Xi >
1

a

)
6 aE[X1].

Proof.

I Let Sk =
∑k

i=1 Xi

I E[Sk |Sk+1] = kSk+1/(k + 1) =⇒ (Sk/k)k∈[K ] is a backward

martingale

I Ville’s inequality gives the desired statement
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Combining exchangeable p-values

Theorem 5

Let f be a calibrator, and P = (P1, . . . ,PK ) ∈ UK be

exchangeable. For each α ∈ (0, 1), we have

P

(
∃k 6 K :

1

k

k∑
i=1

f

(
Pi

α

)
> 1

)
6 α.
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Combining exchangeable p-values

I For a calibrator f and α ∈ (0, 1), let

Rα =

{
p ∈ [0, 1]K :

1

k

k∑
i=1

f
(pi
α

)
> 1 holds for some k 6 K

}

and

F (p) = inf{α ∈ (0, 1) : p ∈ Rα}

= inf

{
α ∈ (0, 1) :

K∨
k=1

(
1

k

k∑
i=1

f
(pi
α

))
> 1

}
,

(Ex)

with the convention inf ∅ = 1

I (Ex) is always smaller or equal than the deterministic version
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Combining exchangeable p-values

Definition 2

An ex-p-merging function is an increasing Borel function

F : [0, 1]K → [0, 1] such that P(F (P) 6 α) 6 α for all α ∈ (0, 1)

and P ∈ UK that is exchangeable.

Theorem 6

If f is a calibrator and P ∈ UK is exchangeable, then F in (Ex) is a

homogeneous ex-p-merging function, and dominating (H).
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Combining exchangeable p-values

Proposition 2

A symmetric ex-p-merging function is necessarily a p-merging

function.

I Hence, for an ex-p-merging function to strictly dominate an

admissible p-merging function, it cannot be symmetric

Proposition 3

Suppose that f is a convex admissible calibrator with f (0+) 6 K

and f (1) = 0, and F is in (Ex). For α ∈ (0, 1), there exists an

exchangeable P ∈ UK such that P(F (P) 6 α) = α.

I Again relying on (JM)
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Combining exchangeable p-values

Theorem 7

Let P1,P2, ... ∈ U∞ be an infinite exchangeable sequence and let

F be the function defined in (Ex). Then,

P(∃k > 1 : F (Pk) 6 α) 6 α,

where Pk = (P1, . . . ,Pk).
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1 Combining p-values, optimal transport, and risk management

2 P-merging functions

3 Admissibility

4 Combining exchangeable p-values

5 External randomization

6 Simulation and summary
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External randomization

Proposition 4

Let X be a non-negative random variable independent of U ∈ U .

Then, for any a > 0,

P(X > U/a) 6 aE[X ].
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External randomization

UK ⊗ U = {(P,U) : P ∈ UK and U ∈ U are independent}

Theorem 8

Let f1, . . . , fK be calibrators and (P1, . . . ,PK ,U) ∈ UK ⊗ U . For

each α ∈ (0, 1) and (λ1, . . . , λK ) ∈ ∆K , we have

P

(
K∑

k=1

λk fk

(
Pk

α

)
> U

)
6 α.

If f1, . . . , fK are admissible and P(
∑K

k=1 λk fk(Pk/α) 6 1) = 1, then

P

(
K∑

k=1

λk fk

(
Pk

β

)
> U

)
= β for all β ∈ (0, α].
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External randomization

I Let f1, . . . , fK be calibrators and (λ1, . . . , λK ) ∈ ∆K

I For α ∈ (0, 1), let

Rα =

{
(p, u) ∈ [0, 1]K+1 :

K∑
k=1

λk fk

(pk
α

)
> u

}

where we set fk(pk/u) = 0 if u = 0, and

F (p, u) = inf{α ∈ (0, 1) : (p, u) ∈ Rα}

= inf

{
α ∈ (0, 1) :

K∑
k=1

λk fk

(pk
α

)
> u

}
, (U)

with the convention inf ∅ = 1 and 0×∞ =∞
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External randomization

Definition 3

A randomized p-merging function is an increasing Borel function

F : [0, 1]K+1 → [0, 1] such that P(F (P,U) 6 α) 6 α for all

α ∈ (0, 1) and (P,U) ∈ UK ⊗ U .

Theorem 9

If f1, . . . , fK are calibrators and (λ1, . . . , λK ) ∈ ∆K , then F in (U)

is a homogenous randomized p-merging function. Moreover, F is

lower semicontinuous.
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External randomization

Remarks:

I If P1 is independent of (P2, . . . ,PK ), then we can use U = P1

and merge (P2, . . . ,PK )

I Merging asymptotic p-values: if (Pn)n∈N
law→ P , then

lim sup
n→∞

P(Pn ∈ Rα) 6 P(P ∈ Rα) 6 α

because the rejection sets in (H), (Ex), and (U) are closed
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1 Combining p-values, optimal transport, and risk management

2 P-merging functions

3 Admissibility

4 Combining exchangeable p-values

5 External randomization

6 Simulation and summary
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Summary

Rule
Arbitrary

dependence
Exchangeable Randomized

Rüger’s K
k p(k)

K
k

∧K
m=1 p

m
(λm)

K
k p(duke)

Arithmetic 2A(p) 2
∧K

m=1 A(pm) 2
2−uA(p)

Geometric eG (p) e
∧K

m=1 G (pm) euG (p)

Harmonic (TK + 1)H(p) (TK + 1)
∧K

m=1 H(pm) (TKu + 1)H(p)

I p = (p1, . . . , pK )

I pm: the vector containing the first m values of p

I p(k) is the k-th smallest value of p

I pm
(λm)

is the λm = dm k
K
e ordered value of pm

I A,G and H: the arithmetic, the geometric, and the harmonic mean

I TK = log K + log log K + 1, K > 2.
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Simulation results

I One-side z-test of µ = 0 against the alternative µ > 0

I Z ,Z1, . . . ,ZK
iid∼ N (0, 1)

I P-values are given by

Xk = ρZ +
√

1− ρ2Zk − µ, Pk = Φ(Xk),

where Φ is standard normal cdf

I µ > 0 and ρ ∈ [0, 1] are constants

I P1, . . . ,PK are exchangeable

I α = 0.05

I B = 10, 000 replications
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Simulation results
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Figure: Empirical power of different combination rules, ρ = 0.9
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Simulation results
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Figure: Empirical power of different combination rules, ρ = 0.1
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Simulation results
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Figure: Combination of p-values using different exchangeable p-merging

functions. The performance of the different exchangeable p-merging

functions is almost reversed in the two situations.
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Simulation results

I Xij
iid∼ N (µ, 1) for i = 0, 1, . . . ,K and j = 1, . . . , ni

I X0j , j = 1, . . . , n0: common sample

I Sample average

X̄i =
1
√
ni

ni∑
j=1

Xij ∼ N (
√
niµ, 1), i = 0, 1, . . . ,K

I Test statistics and p-values, exchangeable under the null

Ti =
X̄i + X̄0√

2
and Pi = 2 min {Φ(Ti ),Φ(−Ti )} , i = 1, . . . ,K

I Order P1, . . . ,PK by n1, . . . , nK

Ruodu Wang (wang@uwaterloo.ca) Combining p-values under dependence 59/62

wang@uwaterloo.ca


Background P-merging functions Admissibility Exchangeable p-values Randomization Simulation

Simulation results
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Figure: Combination of p-values using different ex-p-merging functions

and different ordering based on the number of observations, where

K = 10 and ni = 10× i . The ex-p-merging rules are more powerful if

p-values are ordered in decreasing order with respect to the number of

observations.
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Summary

Take home these

e
K∧

m=1

G (pm); (logK + log logK + 2)
K∧

m=1

H(pm)

K

k
p(duke); euG (p)

I Merging p-values under unknown dependence =⇒ merging e-values

I Exchangeability allows for processing p-values sequentially

I Randomization improves power

I Dependence problems can be solved with OT theory

I Many open questions!

I Write me if you have a problem whose challenge lies in dependence
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Thank you

Thank you for your kind attention

Vladimir

Vovk

Bin

Wang

Matteo

Gasparin

Aaditya

Ramdas

Paul

Embrechts
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More

Hommel’s function and the O-family

Define the Hommel* calibrator f by

f : x 7→
K1{`K x61}

dK`Kxe
.
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More

Hommel’s function and the O-family

Theorem 10

The p-merging function HK ∧ 1 is dominated (strictly if K > 4) by

the p-merging function H∗K induced by the Hommel* calibrator f ,

Rε(H
∗
K ) = ε

{
p ∈ [0,∞)K :

1

K

K∑
k=1

f (pk) > 1

}
, ε ∈ (0, 1).

Moreover, H∗K is always admissible among symmetric p-merging

functions, and it is admissible if K is not a prime number.
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More

Hommel’s function and the O-family

Proof sketch.
I Recall: HK (p) = `K

∧K
k=1

K
k
p(k) where `K =

∑K
i=1

1
k

.

I Induced by the calibrator f =⇒ H∗K is a p-merging function.

I Verify HK > H∗K : HK (p) 6 ε =⇒ there exists m such that K`Kp(m) 6 ε

=⇒ #{k : K`Kpk/m 6 ε} > m =⇒

K∑
k=1

1{`K pk6ε}

dK`Kpi/εe
>

K∑
k=1

1

m
1{K`K pk/ε6m} =

1

m
#{k : K`Kpk/m 6 ε} > 1

=⇒ Rε(HK ) ⊆ Rε(H∗K ) =⇒ HK > H∗K .

I Check HK = H∗K if and only if K 6 3.
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Hommel’s function and the O-family

Proof sketch (continued).
I Suppose H∗K is not admissible among symmetric p-merging functions.

I There exists a calibrator g satisfying

{
p ∈ [0,∞)K :

1

K

K∑
k=1

f (pk ) > 1

}
(

{
p ∈ [0,∞)K :

1

K

K∑
k=1

g(pk ) > 1

}
.

I Denote by τ := 1/(K`K ). For x ∈ (0,Kτ ], set p1 = · · · = pm = x and

pm+1 = · · · = pK > 1, where m := dτxe.
I f (x) = K/m =⇒

∑K
k=1 f (pk ) = K =⇒ K 6

∑K
k=1 g(pk ) = mg(x) =⇒

g(x) > K/m = f (x).

I
∫ Kτ

0 g(x)dx >
∫ Kτ

0 f (x)dx = 1 =⇒ g = f almost everywhere on [0, 1].

I f is left-continuous =⇒ g 6 f , a contradiction.

I The admissibility statement for non-prime K is much more complicated.
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More

Hommel’s function and the O-family

I SK 6 H∗K 6 HK =⇒ 1/`K 6 H∗K/HK 6 1

I H∗K may not be admissible for a prime K

Example 1

In case K = 2, H∗2 = H2 : (p1, p2) 7→ (3p(1)) ∧ ( 3
2p(2)) is strictly

dominated by F : (p1, p2) 7→ (3p1) ∧ ( 3
2p2), which is a

(non-symmetric) p-merging function because

P(F (P1,P2) 6 α) 6 P
(
P1 6

1

3
α

)
+ P

(
P2 6

2

3
α

)
6 α.
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More

Hommel’s function and the O-family

Theorem 11

The p-merging function p 7→ Gk,K (p) ∧ 1{min(p)>0} is admissible

for k = 1, . . . ,K − 1, and it is admissible among symmetric

p-merging functions for k = K .
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More

The M-family

I Fr ,K = (br ,KMr ,K ) ∧ 1

I For r 6= {−1, 0} and r < 1/(K − 1), denote by cr the unique

number c ∈ (0, 1/K ) solving the equation

(K − 1)(1− (K − 1)c)r + c r

K
=

(1− (K − 1)c)r+1 − c r+1

(r + 1)(1− Kc)

I c−1 and c0 are limits of cr

I Set cr := 0 for r > 1/(K − 1)

I Write dr := 1− (K − 1)cr
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More

The M-family

Proposition 5

For K > 3 and r ∈ (−∞, 1
K−1 ),

br ,K = 1/Mr ,K (cr , dr , . . . , dr ).

I If r < s and rs > 0, then

K 1/s−1/rbr ,K 6 bs,K 6 br ,K
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More

The M-family

For r < 0:

I Rejection region

Rε(Fr ,K ) = ε

{
p ∈ [0,∞)K :

∑K
k=1 p

r
k

c rr + (K − 1)d r
r

> 1

}

= ε

{
p ∈ [0,∞)K :

K∑
k=1

prk − d r
r

c rr − d r
r

> 1

}
.

I Define a calibrator

fr : x 7→ K

(
x r − d r

r

c rr − d r
r

∧ 1

)
+

.

I fr is strictly convex on [cr , dr ].
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More

The M-family

Let F ∗r ,K be the p-merging function induced by fr , i.e.,

Rε(F
∗
r ,K ) = ε

{
p ∈ [0,∞)K :

K∑
k=1

(
prk − d r

r

c rr − d r
r

)
+

> 1

}
, ε ∈ (0, 1).

I Rε(Fr ,K ) ⊂ Rε(F
∗
r ,K )

I F ∗r ,K is admissible
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More

The M-family

Theorem 12

For K > 3 and r ∈ (−∞,K − 1), Fr ,K is strictly dominated by the

p-merging function F ∗r ,K defined via, for p ∈ (0,∞)K and

ε ∈ (0, 1),

F ∗r ,K (p) 6 ε ⇐⇒ Fr ,K (p ∧ (εdr1)) 6 ε or min(p) = 0.

Moreover, F ∗r ,K is admissible unless r = 1.
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More

The M-family

Recall

f−1 : x 7→ K

(
x−1 − d−1

−1

c−1
−1 − d−1

−1

∧ 1

)
+

;

the Hommel* calibrator

f : x 7→
K1{`K x61}

dK`Kxe
.

I When taking values in (0,K ):

f−1(x) = a/x − b vs f (y) = a′/db′ye
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The M-family

Proposition 6

For K > 3 and p ∈ [0,∞)K , we have, if r ∈ (−∞, 1/(K − 1)),

F ∗r ,K (p) =

(
K∧

m=1

Mr ,m(p(1), . . . , p(m))

Mr ,m(cr , dr , . . . , dr )

)
∧ 1,

and, if r ∈ [1/(K − 1),K − 1), with the convention ·/0 =∞,

F ∗r ,K (p) =

(
K∧

m=1

Mr ,m(p(1), . . . , p(m))

(1− rK
(r+1)m )+

)
∧ 1{p(1)>0}.
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More

The M-family

Proposition 7

For r < s, K > 2 and a, b > 0, the following statements hold.

(i) aMr ,K 6 bMs,K if and only if a 6 b.

(ii) bMs,K 6 aMr ,K if and only if rs > 0 and aK−1/r > bK−1/s .

Proposition 8

Suppose r 6= s. If K = 2, Fr ,K > Fs,K if and only if 1 6 r < s or

s < r 6 1. If K > 3, Fr ,K > Fs,K if and only if K − 1 6 r < s.
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More

Magnitude of improvement

Proposition 9

For K > 3, we have

inf
p>0

F ∗1,K (p)

F1,K (p)
= inf

p>0

F ∗0,K (p)

F0,K (p)
= 0, inf

p>0

F ∗−1,K (p)

F−1,K (p)
= 1− (K − 1)c−1,

and

min
p>0

H∗K (p)

HK (p)
= min

{
t > 0 :

K∑
k=1

1{t>k/K}

dk/te
> 1

}
=: γK .

Moreover, c−1 ∼ 1/(K logK ) and γK ∼ 1/ logK as K →∞.
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More

Magnitude of improvement

I F ∗−1,K improves F−1,K only by a factor 1− 1/ logK ∼ 1

I H∗K can improve HK by a significant factor of 1/ logK

I H∗K (p)/HK (p) = γK is attained by p = (α, 2α, · · · ,Kα) for

α ∈ (0, 1/K`K ].

I Since HK = `KSK and

γK ∼ 1/ logK ∼ 1/`K ,

H∗K performs similarly to the Simes function SK for some

values of p above
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More

Simes function

Proof sketch.

I Take any symmetric p-merging function F and p = (p1, . . . , pK )

I Let α := SK (p)/K =⇒ p(k) > kα for each k

I Symmetry and monotonicity of F =⇒

F (p) = F (p(1), . . . , p(K)) > F (α, 2α, . . . ,Kα) =: β

I Let Π be the set of all permutations of (α, 2α, . . . ,Kα), and µ = U(Π)

I Take (P1, . . . ,PK ) ∼ Kαµ+ (1− Kα)δ(1,...,1)

I For each k, Pk ∼
∑K

k=1 αδkα + (1− Kα)δ1 =⇒ Pk is a p-variable

I F is a p-merging function =⇒

β > P(F (P1, . . . ,PK ) 6 β) > P((P1, . . . ,PK ) ∈ Π) = Kα

I F (p) > Kα = SK (p) =⇒ SK dominates all symmetric p-merging functions

I SK =
∧K

k=1 Gk,K
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More

Representation theorems

Proof sketch.

I For decreasing functions g1, . . . , gK on [0,∞), denote by

(
K⊕

k=1

gk

)
(x1, . . . , xK ) :=

K∑
k=1

gk (xk )

I Classic duality (Rε(F ) is closed and F is precise)

min

{
K∑

k=1

∫ 1

0
gk (x)dx :

K⊕
k=1

gk > 1Rε(F )

}
= max

P∈U
P(P ∈ Rε(F )) = ε

I Take (gε1 , . . . , g
ε
K ) such that

⊕K
k=1 g

ε
k > 1Rε(F ) and

∑K
k=1

∫ 1
0 gεk (x)dx = ε

I Choose gεk to be non-negative and left-continuous

I Monotonicity

max
P∈UK

P(P ∈ Rε(F )) = ε =⇒ max
P∈UK

P(εP ∈ Rε(F )) = 1
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More

Representation theorems

Proof sketch (continued).

I Using duality again

min

{
K∑

k=1

1

ε

∫ ε

0
gk (x)dx :

K⊕
k=1

gk > 1Rε(F )

}
= 1

=⇒
∑K

k=1

∫ ε
0 gεk (x)dx > ε =⇒ gεk (x) = 0 for x > ε

I Define the set Aε := {p ∈ [0,∞)K :
∑K

k=1 g
ε
k (pk ) > 1}

I
⊕K

k=1 g
ε
k > 1Rε(F ) =⇒ Rε(F ) ⊆ Aε

I By Markov’s inequality,

sup
P∈UK

P

(
K⊕

k=1

gεk (P) > 1

)
6 sup

P∈U

K∑
k=1

E[gεk (P)] = ε

I Define a function F ′ with rejection region Rδ(F ′) = δε−1Aε for δ ∈ (0, 1)

I F ′ is a valid homogeneous p-merging function and F ′ 6 F
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More

Representation theorems

Proof sketch (continued).

I Admissibility of F =⇒ F = F ′, thus

Rε(F ) = Aε = ε

{
p ∈ [0,∞)K :

K∑
k=1

gεk (εpk ) > 1

}
for each ε ∈ (0, 1)

I ε−1Rε(F ) = ε−1Aε does not depend on ε ∈ (0, 1)

I For a fixed ε ∈ (0, 1) and each k, let λk := ε−1
∫ ε

0 gε(x)dx and fk : (0,∞)→ R,

x 7→ gεk (εx)/λk (if λk = 0, then let fk := 1), and further set fk (0) =∞
I For each k with λk 6= 0,

∫ 1

0
fk (x)dx =

∫ 1
0 εg

ε
k (εx)dx∫ 1

0 gεk (x)dx
=

∫ ε
0 gεk (x)dx∫ 1
0 gεk (x)dx

= 1

=⇒ fk is an admissible calibrator

I Converse statement: Markov’s inequality
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More

Simulation results

I Correlated z-tests

I K = 106 observations from N(µ, 1)

I Pairwise correlation: 0.9

I Last observation: −0.9 correlation with all others

I µ = 0 for null and µ = −5 for alternative

I K1 observations are drawn from the alternative; the rest from

the null

I P-values are Φ(x)

I F−∞,K (Bonferroni); HK (Hommel); F−1,K (harmonic);

F ∗−1,K (harmonic∗’); H∗K (grid harmonic’); SK (Simes),
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More

Simulation results
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More

Simulation results
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K1 = 105 with correlation 0.5 (left panel) and 0 (right panel) in place of 0.9
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More

Simulation results

I GWGS discovery matrix Genovese/Wasserman’04; Goeman/Solari’11

I DMi ,j : a p-value for testing “there are less than j true

discoveries among the i rejected hypotheses”

I N ⊆ [K ]: nulls

I Jointly validity: for each α ∈ (0, 1),

P (∃(i , j) ∈ Dα : #(Ri \ N ) < j) 6 α

where Ri is the set of i hypotheses with smallest p-values and

Dα = {(i , j) : DMi ,j 6 α}
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More

Simulation results
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More

Simulation results
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