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Risk measures

A risk measure is a functional p: X — [—o0, x0].

@ X is a convex cone of random variables, X D L°°.
o p(L*)CR
e X € X represents loss/profit

A law-determined risk measure can be treated as a functional
p:D — [—o00, ).

@ D is the set of distributions of random variables in X'.
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Risk measures

There are several properties of risk measures discussed in the
literature, for instance:
@ Monetary risk measure
e Monotonicity: p(X) < p(Y) for X <Y, X, Y e X
o Cash-additivity: p(X +¢) = p(X)+cfor X € X and c € R
@ Coherent risk measure: Monetary + two of the three:
o Positive homogeneity: p(AX) = Ap(X) for X € X and A € Ry
o Subadditivity: p(X + Y) < p(X) + p(Y) for X, Y € X
o Convexity: p(AX + (1= A)Y) < Xp(X) + (1 = A)p(Y) for
X,Y € X and X €0,1]
e Comonotonic additivity: p(X + Y) = p(X) + p(Y) for
XY, X, YeX
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Distortion risk measures

Distortion risk measures

A distortion risk measure is defined as

p(X) = /Rxdh(FX(x)), X € X, X~ Fy,

where h is an increasing function on [0, 1] with h(0) = 0 and

h(1) = 1. his called a distortion function.

e Yaari (1987):
distortion risk measure < law-determined and comonotonic

additive monetary risk measure.
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Distortion risk measures

Distortion risk measures

If one of h and F;l is continuous, then via a change of variable,

1
p(X) = /0 VaRe(X)dh(t), X € X.

@ ES and VaR are special cases of distortion risk measures.
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Left-tail-ES

Two distortion risk measures, Left-tail-ES (LES) and
right-quantiles (VaR*)!:

Left-tail-ES (LES)

LES, : L% — [—00,00),

1 P
LES,(X) = /0 VaRg(X)dg = —ES1_,(—X), p € (0,1).

Right-quantile (VaR*)

VaR : L% — (—o00, 00),

VaRy(X) = inf{x e R: P(X < x) > p}, p<(0,1).

v

1\We introduce them only for mathematical reasons. LES is not to be implemented
in financial regulation and VaRj is indistinguishable from VaR,, in practice.
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© VaR and ES Bounds: basic ideas
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VaR and ES Bounds

As in Part |: For given Fy,...,F, € M;j and p € (0,1), the four

quantities

VaR,(Sn), VaRp(Sn), ES,(Sn), ESp(Sh)

are our primary targets.
° ES,y(Sh) = 11 ESp(Xi)
o LES,(S,) = Y1, LES,(X))
@ The others are generally open
e LES, and LES,, are symmetric to ES

We assume the marginal distributions Fi, ..., F, have finite means.
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Basic ideas

Observation: ES,, preserves convex order.

Finding ES,(Sn)

Search for a smallest element in S,, with respect to convex order, if

it exists.

o If (Fi,...,Fp) is JM, then such an element is a constant.
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Basic ideas

VaR does not respect convex order: more tricky.
Fori=1,...,nand U~ U[0,1], let Fl-[p’ll be the distribution of
F Y (p + (1 — p)U), and FI?! be the distribution of F;(pU).
Lemma 1 (VaR bounds*)

Forpe (0,1) and Fq,...,F, € My,

m;(sn) = sup{ess-infS: S € Sn(,:l[p,ll’ o F,[,p’ll)}’

and

VaR,,(S,) = inf{ess-supS : S € Sp(FIA, ..., FI>Phy).
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Basic ideas

Corollary 2 (VaR bounds*)

Suppose that T is the smallest element in S,,(Fl[p’ll, ..., Flp1])
with respect to convex order. Then VaR:(S,,) = VaR,(T).

Finding VaR,(Sh)

Search for a smallest element in S,,(Fl[p’ll, ..., FIP1) with respect

to convex order.

° VaR:(S,,) = VaR,(S,) if F;%,...,F; ! are continuous at p.
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© Smallest element wrt convex order
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Smallest element wrt convex order

For general Fq, ..., F, € Mj, does there always exist a smallest

element wrt < in S, (or D,)?

o If (F1,...,Fn)is JM, then there exists one

@ The largest element wrt <y is always the comonotonic sum

for any marginal distributions
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Smallest element wrt convex order

Let £, = D{0,3,8} F» = D{0,6,16} and F3 = D{0,7,13}.
Dependence (a)

Xl(wl) Xz(wl) X3(UJ1) 3 16 0

X1 (wz) X2 (C(JQ) X3 ((U2) = 0 6 13

X1 ((JJ3) X2 (LU3) X3 (W3) 8 0 7
Dependence (b)

Xl(wl) Xg(wl) X3(UJ1) 0 16 0

X1 (wg) X2 (C(JQ) X3 ((U2) = 3 0 13

X1 ((JJ3) X2 (LU3) X3 (W3) 8 6 7

Example 3.1 of Bernard-Jiang-W. (2014); this example was provided by Bin Wang
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Smallest element wrt convex order

Some conclusions:

@ S, does not always admit a smallest element wrt <.«

@ To search for a smallest element wrt <., might not be a

viable solution
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Homogeneous model with a decreasing density

Suppose that F; = --- = F, := F € M} which has a decreasing

density on its support. Define three quantities:

H(x) = (n— l)Ffl((n —1)x) + Ffl(l —X), XE€ [O, 1] ,

n
1 5 1-
a:min{ce |:0,n:| ;/n H(t)dtz ( n”C) H(C)},
and ) .
1 —a —
o S, P )y
D_l—na/a H(x)dx =n 1 na .

Note that if a > 0 then D = H(a). Finally, let
T(u) = H(u/n)I{USna} + DI{U>,,3}, uec [0, 1].
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Homogeneous model with a decreasing density

Theorem 3 (Homogeneous model with a decreasing density*)

Suppose that F; = -+ = F, := F € M2} which has a decreasing
density on its support. Then

(i) T(U) € S, for some U ~ U0, 1],
(i) T(U) <ex S forall S € Sp.

This is a weaker version of Theorem 3.1 of Bernard-Jiang-W. (2014) which was
essentially shown in Wang-W. (2011)
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Homogeneous model with a decreasing density

left

tail

body

The corresponding dependence structure:
@ On {U < na}: almost mutual exclusivity
@ On {U > na}: a joint mix
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Homogeneous model with a decreasing density

General model with decreasing densities

Suppose that each of Fq,..., F, has a decreasing density. Then
there exists an element T in S, such that T <. S for all S € S,,.

@ The distribution of T consists of a point-mass part and a
continuous part, both of which can be calculated via a set of

functional equations.

@ The structure is very similar to the homogeneous model: an

almost mutually exclusive part and a part of joint mix.

obtained in Jakobsons-Han-W. (2015+)
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@ Analytical results for homogeneous models
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Summary of existing results

e Homogeneous model (F; =--- = F))
o ES,(S,) solved analytically for decreasing densities, e.g.
Pareto, Exponential
o VaR,(S,) solved analytically for tail-decreasing densities, e.g.
Pareto, Gamma, Log-normal

Inhomogeneous model

e Semi-analytical results are available for decreasing densities

Numerical method: Rearrangement Algorithm (RA)?
Real data analysis: DNB3

2Embrechts-Puccetti-Riischendorf (2013)
3Aas-Puccetti (2014)
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VaR bounds - homogeneous model

Theorem 4 (Sharp VaR bounds for homogeneous model*)

Suppose that F; = -+ = F, := F € M2} which has a decreasing
density on [b, c0) for some b € R. Then, for p € [F(b),1) and
X ~F,

VaR,(S,) = nE[X|X € [FY(p + (n—1)c), F1(1 - o)]],
where c is the smallest number in [0, 2(1 — p)] such that

Jptoonye FH()dt = E=E=2E((n = 1)F~Y(p + (n = 1)c) + F (1 = c)).

e ¢ =0: VaR,(S,) = ES,(S,).

obtained in W.-Peng-Yang (2013)
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VaR bounds - homogeneous model

Theorem 5 (Sharp VaR bounds for homogeneous model [1*)

Suppose that F; =---=F,:=F € Mi which has a decreasing
density on its support. Then for p € (0,1) and X ~ F,

VaR,,(Sn) = max{(n — 1)F~1(0) + F~*(p), nE[X|X < F(p)]}.

obtained in Bernard-Jiang-W. (2014)
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ES bounds - homogeneous model

Theorem 6 (Sharp ES bounds for homogeneous model*)

Suppose that F, = --- = F, .= F € ./\/li which has a decreasing
density on its support. Then for p € (1 — na,1), g=(1—p)/n
and X ~ F,

]_ q
ES,(S4) = q/o ((n—1)F Y (n—1)t) + F (1 - 1)) dt,

= (n — 1)’LES(s_1)(X) + ES1_¢(X).

@ One large outcome is coupled with d — 1 small outcomes.
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Numerical calculation

Rearrangement Algorithm (RA)*
@ A fast numerical procedure
@ Discretization of relevant quantile regions
@ The idea is to find the < -smallest element if it exists
@ n possibly large

e Applicable to VaR,, VaR , and ES,

#Puccetti-Riischendorf (2012) and Embrecths-Puccetti-Riischendorf (2013)
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© Asymptotic equivalence
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Asymptotic equivalence

Consider the case n — co. What would happen to VaR,(S,)?
o Clearly always VaR(S,) < ESp(Sn).
@ Recall that VaR,(S,) has an ES-type part.

Under some weak conditions,

el g
n—o0 VaR,(Sp)

@ When arbitrary dependence is allowed, the worst-case VaR,, of

a portfolio behaves like the worst-case ES,

This was shown first for homogeneous models and then extended to general
inhomogeneous models. The first result is in Puccetti-Riischendorfi (2014).
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Asymptotic equivalence - homogeneous model

Theorem 7 ((VaR,, ESp)-equivalence for homogeneous model*)
In the homogeneous model, F; = Fp = --- = F, for p € (0,1) and
X ~ F,

lim ~VaR,(S,) = ESp(X).

n—oo N

Corollary 3.7 in Wang-W. (2015)
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Asymptotic equivalence - worst-cases

Theorem 8 ((VaR,, ES,)-equivalence)
Suppose the continuous distributions F;, i € N satisfy that for
Xi ~ F; and some p € (0,1),

(i) E[|X; — E[X]|¥] is uniformly bounded for some k > 1;

g 1
(ii) Izrlgfn;ESp(X;) > 0.

Then as n — oo,

ESp(Sh)

_— =1+ O(n'/* ).
VaRr,(s,) Lo

@ k=1 s not ok

Theorem 3.3 of Embrechts-Wang-W. (2015)
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Asymptotic equivalence - best-cases

Similar results holds for VaR,, and ES,: assume (i) and

T
(iii) liminf = ZLESP(X;) >0,
i=1

n—oo n 4

then VaR_(S))
lim —2 0"

n—oo LES,(Sp)
lim =—r7=1,
n—oo 314 E[Xi]

and N
—VaRp(S") ~ Zi:l LESP(Xi)

ES,(Sn) ©— XLEX] ©

1, n— oco.
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Example: Pareto(2) risks

Bounds on VaR and ES for the sum of n Pareto(2) distributed rvs for }

p = 0.999; VaR; corresponds to the comonotonic case.

n=28 | n=>56

VaR, 31 53

ES, 178 | 472
VaRy 245 | 1715
VaR,, 465 | 3454
ES, 498 | 3486
VaR,/VaR; | 1.898 | 2.014
ES,/VaR, | 1.071 | 1.009
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Example: Pareto(6) risks

Bounds on the VaR and ES for the sum of n =8
Pareto(@)-distributed rvs for p = 0.999. J
0=15|0=2|0=3|0=5|0=10
VaR,, 1897 | 465 | 110 | 31.65 | 9.72
ES, 2392 | 498 | 112 | 3181 | 9.73
ES,/VaR, | 1.261 | 1.071 | 1.018 | 1.005 | 1.001
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General risk measures

Let Dp(F) = Du(F,. .., F) (homogeneous model).

For a law-determined risk measure p, define
1
Mp(X) = lim —sup{p(S): Fs € Dn(Fx)}-

I, is also a law-determined risk measure.
o [,>np.

o If p is subadditive then I, = p.
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Aggregation of risk measures

Take X = [*°.

Theorem 9 ((pn, pp+)-equivalence for homogeneous model)

We have
Con(X) = pre(X), X € &,

where h* is the largest convex distortion function dominated by h.

Theorem 3.2 of W.-Bignozzi-Tsanakas (2015)

Ruodu Wang  (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part Il 35/47


wang@uwaterloo.ca

Aggregation of risk measures

For distortion risk measures
L FVaRp = ESp
@ pp is coherent if and only if h* = h
For law-determined convex risk measures.
@ [, is the smallest coherent risk measure dominating p

@ If pis a convex shortfall risk measure, then I, is a coherent

expectile
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@ Dependence-uncertainty spread
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Dependence-uncertainty spread

Theorem 10 (Uncertainty spread)
Take 1 > q > p > 0. Under weak regularity conditions, for

inhomogeneous models,

.. . VaR4(Sn) — VaR(S5)
liminf — >
n—oo ESp(Sp) — E—Sp(sn)

@ The uncertainty-spread of VaR is generally bigger than that of
ES.

@ In recent Consultative Documents of the Basel Committee,
VaRg. g9 is compared with ESgg75: p = 0.975 and g = 0.99.

Theorem 4.1 of Embrechts-Wang-W. (2015)
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Dependence-uncertainty spread

ES and VaR of S, = X + - - - + X,,, where
@ X; ~ Pareto(2+0.1/), i=1,...,5;
@ X; ~Exp(i—5),i=6,...,10;
® X; ~ Log-Normal(0, (0.1(i — 10))2), i = 11, ..., 20.

n=>5 n=20
best  worst spread | best worst  spread
ESo.975 2248 4483 2240 | 29.15 10235 73.20
VaRpog7s | 9.79 4146 31.67 | 21.44 100.65 79.21
VaRpgo | 1296 62.01 49.05 | 22.29 136.30 114.01

EfSO.WS
R o 1.08 1.02
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Dependence-uncertainty spread

Features/Risk measure VaR Tail-VaR
Frequency captured? Yes Yes
Severity captured? No Yes
Sub-additive? Not always Always
Diversification captured? Issues Yes
Back-testing? Straight-forward Issues

Estimation?

Feasible

Issues with data
limitation

Model uncertainty?

< Sensitive to
aggregatiol

Sensitive to tail

modelling
Robustness | (with respect to “Lévy metric®”)? | Almost, only minor No
issues
Robustness |l (with respect to “Wasserstein Yes Yes

metric™")?

From the International Association of Insurance Supervisors
Consultation Document (December 2014).
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@ Challenges
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Open questions

Concerete mathematical questions:
o Full characterization of D, and mixability
@ Existence and determination of smallest <..-element in D,
o General analytical formulas for VaR,, (VaR,) and ES,
o Aggregation of random vectors
Practical questions:
o Capital calculation under uncertainty
@ Robust decision making under uncertainty

@ Regulation with uncertainty
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Other directions

Some on-going directions on RADU

e Partial information on dependence®

Connection with Extreme Value Theory

Connection with martingale optimal transportation

@ Both marginal and dependence uncertainty

Computational solutions

Other aggregation functionals

5Bignozzi-Puccetti-Riischendorf (2015), Bernard-Riischendorf-Vanduffel (2015+),

Bernard-Vanduffel (2015), many more
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