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http://sas.uwaterloo.ca/~wang
wang@uwaterloo.ca


1 Preliminaries

2 Aggregation sets

3 ES bounds

4 VaR bounds

5 References

Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems - Part II 2/32
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Preliminaries

In the following we briefly give some preliminaries

copulas

Fréchet-Hoeffding inequalities

comonotonicity and counter-monotonicity

convex order

In this course we will try to avoid copulas as much as possible
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Copulas

Lemma 1

For any X ∼ F . There exists a U[0, 1] random variable UX such

that X = F−1(UX ) a.s.

Recall that F−1(t) = VaRt(X ) = inf{x ∈ R : F (x) ≥ t},
t ∈ (0, 1).

When F is continuous, one can take UX = F (X ) which is a.s.

unique.

When F is not continuous, one can take a distributional

transform as in Proposition 1.3 of Rüschendorf (2013).

I{UX≤F (x)} = I{F−1(UX )≤x} a.s.
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Copulas

Let Cn =Mn(U[0, 1], . . . ,U[0, 1]).

Definition 2

An n-variate copula is an element in Cn.

Theorem 3 (Sklar’s Theorem, Sklar 1959)

For F1, . . . ,Fn ∈M1, F ∈Mn(F1, . . . ,Fn) if and only if there

exists C ∈ Cn such that

F (x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)), (x1, . . . , xn) ∈ Rn. (1)

C in (1) is called a copula of any random vector X ∼ F .

General reference on copulas: Joe (2014)
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wang@uwaterloo.ca


Fréchet-Hoeffding inequalities

Theorem 4 (Fréchet-Hoeffding inequalities*)

For any C ∈ Cn, it holds that(
n∑

i=1

xi − (n − 1)

)
+

≤ C (x1, . . . , xn) ≤ min{x1, . . . , xn} (2)

for all (x1, . . . , xn) ∈ Rn.

*the asterisk always indicates that details are (planned) to be given in the lecture
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Classic Fréchet problem

Sharpness*

Mn : (x1, . . . , xn) 7→ min{x1, . . . , xn} is a copula for n ∈ N

Wn : (x1, . . . , xn) 7→ (
∑n

i=1 xi − (n − 1))+ is a copula only for

n = 1, 2

(2) is point-wise sharp for all n ∈ N

Mn is called the Fréchet upper copula and W2 is called the Fréchet

lower copula.
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Classic Fréchet problem

Solution to the classic Fréchet problem*

Given F1,F2 ∈M1 and G ∈M2, there exist F ∈M2(F1,F2) such

that F ≤ G if and only if

G (x1, x2) ≥ F1(x1) + F2(x2)− 1, for all (x1, x2) ∈ R2.
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Comonotonicity

Definition 5

A pair of random variables (X ,Y ) ∈ (L0)2 is said to be

comonotonic if there exists a random variable Z and two increasing

functions f , g such that almost surely X = f (Z ) and Y = g(Z ).

X and Y move in the same direction. This is a strongest (and

simplest) notion of positive dependence.

Two risks are not a hedge to each other if they are

comonotonic

We use X //Y to represent that (X ,Y ) ∈ (L0)2 is

comonotonic.
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Comonotonicity

Some examples of comonotonic random vectors:

a constant and any random variable

X and X

X and I{X≥0}

In the Black-Scholes framework, the time-t price of a stock S

and a call option on S

Note: in the definition of comonotonicity, the choice of P is

irrelevant for equivalent probability measures.

We also say “X and Y are comonotonic” when there is no

confusion

comonotonicity can be generalized to n-vectors
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Comonotonicity

Theorem 6

For X ∼ F , Y ∼ G, the following are equivalent:

(i) X //Y ;

(ii) For some strictly increasing functions f , g, f (X )//g(Y );

(iii) P(X ≤ x ,Y ≤ y) = min{F (x),G (y)} for all (x , y) ∈ R2;

(iv) (X (ω)−X (ω′))(Y (ω)−Y (ω′)) ≥ 0 for a.s. (ω, ω′) ∈ Ω×Ω.

(v) There exists U ∼ U[0, 1] such that X = F−1(U) and

Y = G−1(U) almost surely.

(vi) A copula of (X ,Y ) is the Fréchet upper copula.
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Comonotonicity

In the following, the four random variables X ,Y ,X ′,Y ′ ∈ L2

satisfy X
d
= X ′ and Y

d
= Y ′.

Proposition 7

Suppose X //Y . The following hold:

(i) P(X ≤ x ,Y ≤ y) ≥ P(X ′ ≤ x ,Y ′ ≤ y) for all (x , y) ∈ R2;

(ii) E[XY ] ≥ E[X ′Y ′];

(iii) Corr(X ,Y ) ≥ Corr(X ′,Y ′).
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Comonotonicity

Let F ⊕ G be the distribution of F−1(U) + G−1(U) for some

U ∈ U[0, 1].

Proposition 8

Suppose X //Y , X ∼ F and Y ∼ G. Let H be the distribution of

X + Y . Then

(i) H = F ⊕ G;

(ii) H−1 = F−1 + G−1;

(iii) VaRp(X + Y ) = VaRp(X ) + VaRp(Y ), p ∈ (0, 1);

(iv) ESp(X + Y ) = ESp(X ) + ESp(Y ), p ∈ (0, 1).

VaRp and ESp are comonotonic additive.
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Counter-monotonicity

Definition 9

A pair of random variables (X ,Y ) ∈ (L0)2 is said to be

counter-monotonic if (X ,−Y ) is comonotonic.

We use X 
 Y to represent that (X ,Y ) ∈ (L0)2 is

counter-monotonic.

Counter-monotonicity is not easy to generalize to n-vectors for

n ≥ 3.
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Counter-monotonicity

Theorem 10

For X ∼ F , Y ∼ G, the following are equivalent:

(i) X 
 Y ;

(ii) For some strictly increasing functions f , g, f (X ) 
 g(Y );

(iii) P(X ≤ x ,Y ≤ y) = (F (x) + G (y)− 1)+ for all (x , y) ∈ R2;

(iv) (X (ω)−X (ω′))(Y (ω)−Y (ω′)) ≤ 0 for a.s. (ω, ω′) ∈ Ω×Ω.

(v) There exists U ∼ U[0, 1] such that X = F−1(U) and

Y = G−1(1− U) almost surely.

(vi) A copula of (X ,Y ) is the Fréchet lower copula.
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Convex order

Definition 11 (Convex order)

For X ,Y ∈ L1, X is smaller than Y in (resp. increasing) convex

order, denoted as X ≺cx Y (resp. X ≺icx Y ), if

E[f (X )] ≤ E[f (Y )] for all (resp. increasing) convex functions f

such that the expectations exist.

For (increasing) convex order, the choice of P is relevant.

If X ≺cx Y then E[X ] = E[Y ].

Increasing convex order is also called second-order stochastic

dominance or stop-loss order

We abuse the notation here: for F ,G ∈M1
1 and X ∈ L1, we

sometimes write X ≺cx F and G ≺cx F
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Convex order

Increasing convex order describes a preference among risks for

risk-averse investors

a risk-averse investor prefers a risk with less variability

(uncertainty) against one with larger variability, and she

prefers a risk with a certainly smaller loss against a risk with a

larger loss

convex order and increasing convex order are based on the law

of random variables
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Convex order

Some examples and properties (all random variables are in L1):

X ≺cx Y implies X ≺icx Y .

X ≤ Y a.s. implies X ≺icx Y .

If E[X ] = E[Y ] = 0, and X = aY , a > 1, then Y ≺cx X .

If X ≺icx Y , Y ≺icx Z , then X ≺icx Z .

If X ≺icx Y , then f (X ) ≺icx f (Y ) for any increasing function

f .

X ≺cx Y if and only if X ≺icx Y and E[X ] = E[Y ].

Reference: Shaked-Shanthikumar (2007)
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Convex order

Theorem 12 (Martingale Theorem for convex order)

For X ,Y ∈ L1, X ≺cx Y if and only if there exists Z
d
= X such

that Z = E[Y |Z ] almost surely.

E[Y |G] ≺cx Y for any σ-field G. In particular, E[Y ] ≺cx Y .

Theorem 13 (Separation Theorem)

For X ,Y ∈ L1, X ≺icx Y if and only if there exists Z ∈ L0 such

that

X ≤ Z ≺cx Y almost surely.
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Convex order

Proposition 14

For X ,Y ∈ L1, the following are equivalent:

(i) X ≺icx Y ;

(ii) ESp(X ) ≤ ESp(Y ) for all p ∈ (0, 1);

(iii) E[(X − t)+] ≤ E[(Y − t)+] for all t ∈ R.
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wang@uwaterloo.ca


Convex order and comonotonicity

Theorem 15

Suppose that X
d
= X ′ ∈ L1, Y

d
= Y ′ ∈ L1.

(i) If X //Y , then X ′ + Y ′ ≺cx X + Y .

(ii) If X � Y , then X + Y ≺cx X ′ + Y ′.

The case of n ≥ 3 is still true for (i) but for (ii) it becomes

unclear

A general version of the above theorem dates back to Lorentz

(1951)

More information: Puccetti-W. (2015)
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Aggregation sets

For F ∈M1
1, let M∗(F ) = {G ∈M1 : G ≺cx F} and

X ∗(F ) = {X ∈ L0 : X ≺cx F}.

Proposition 16 (Basic properties*)

For F1, . . . ,Fn ∈M1
1, the following hold:

(i) Sn ⊂ X ∗ (⊕n
i=1Fi );

(ii) Dn ⊂M∗ (⊕n
i=1Fi );

(iii) Both the sets Dn and M∗ (⊕n
i=1Fi ) are convex and closed

with respect to convergence in distribution.
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Aggregation sets

Uniform example*

For F1 = F2 = U[−1, 1], D2 (M∗ (U[−2, 2]).

see Example X.

Bernoulli example*

For F1 = F2 = Bern(p), p ∈ [0, 1], we have

D2 =M∗ (Bern(p)⊕ Bern(p)) ∩ R where R is the set of

distributions supported in {0, 1, 2}.
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Aggregation sets

Question

Does the equality Dn =M∗ (⊕n
i=1Fi ) hold for some

non-degenerate distributions?
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Expected Shortfall bounds

Proposition 17 (Expected Shortfall naive bounds*)

For F1, . . . ,Fn ∈M1, Xi ∼ Fi , i = 1, . . . , n and p ∈ (0, 1), the

following hold:

(i) ESp(Sn) =
∑n

i=1 ESp(Xi );

(ii) ESp(Sn) ≥
∑n

i=1 E[Xi ].

ESp is comonotonic additive and preserves convex order
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Value-at-Risk bounds

Proposition 18 (Value-at-Risk naive bounds*)

For F1, . . . ,Fn ∈M1, Xi ∼ Fi , i = 1, . . . , n and p ∈ (0, 1), the

following hold:

(i)
∑n

i=1 VaRp(Xi ) ≤ VaRp(Sn) ≤
∑n

i=1 ESp(Xi );

(ii)
∑n

i=1 VaRp(Xi ) ≥ VaRp(Sn) ≥ −
∑n

i=1 ES1−p(−Xi ).

VaRp is comonotonic additive but it does not preserve convex

order
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The problem of VaRp for n = 2

Theorem 19 (VaRp(S2) and VaRp(S2)*)

For any p ∈ (0, 1) and F1,F2 ∈M1 with F−1
1 , F−1

2 being

continuous,

VaRp(S2) = inf
x∈[0,1−p]

{F−1
1 (p + x) + F−1

2 (1− x)},

and

VaRp(S2) = sup
x∈[0,p]

{F−1
1 (x) + F−1

2 (p − x)}.

The dependence structure: a combination of comonotonicity

and counter-monotonicity

The result dates back to Makarov (1981) and Rüschendorf (1982); both studied

Ps(S2), the former based on construction and the latter based on duality.
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The problem of VaRp for n = 2

Example:

For F1 = F2 = U[0, 1],

VaRp(S2) = ESp(S2) = 1 + p.

For a concave distribution function F1 = F2 (decreasing

density),

VaRp(S2) = 2VaR 1+p
2

(X1).
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