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Preliminaries

In the following we briefly give some preliminaries
@ copulas
@ Fréchet-Hoeffding inequalities
@ comonotonicity and counter-monotonicity
@ convex order

In this course we will try to avoid copulas as much as possible
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For any X ~ F. There exists a U[0, 1] random variable Ux such
that X = F~1(Ux) a.s.

o Recall that F~1(t) = VaR(X) = inf{x € R: F(x) > t},
te(0,1).

@ When F is continuous, one can take Ux = F(X) which is a.s.
unique.

@ When F is not continuous, one can take a distributional

transform as in Proposition 1.3 of Riischendorf (2013).

o Liu<ra} = LiF-1(ux)<x} 3-5-
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Copulas

Let C, = M,(U[0,1],..., U0, 1]).

Definition 2

An n-variate copula is an element in C,.

—

Theorem 3 (Sklar's Theorem, Sklar 1959)

For F1,...,Fn € M1, F € My(F,...,F,) if and only if there
exists C € C,, such that

F(x1,...,xp) = C(Fi(x1), ..., Fa(xn)), (x1,...,x2) €R™. (1)

C in (1) is called a copula of any random vector X ~ F.

@ General reference on copulas: Joe (2014)
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Fréchet-Hoeffding inequalities

Theorem 4 (Fréchet-Hoeffding inequalities*)
For any C € Cp, it holds that

<Zx,——(n—1)) < C(x1,...yxp) <min{xq,....,x,} (2)
' +

for all (x1,...,x) € R

*the asterisk always indicates that details are (planned)-to besgiven in the-lecture
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Classic Fréchet problem

@ My :(x1,...,%n) — min{x1,...,x,} is a copula for n € N

o Wy (x1,.. yxa) = (2071 xi — (n— 1)), is a copula only for
n=1,2

@ (2) is point-wise sharp for all n € N

v

M, is called the Fréchet upper copula and W5 is called the Fréchet

lower copula.
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Classic Fréchet problem

Solution to the classic Fréchet problem*
Given F1, Fp € M; and G € My, there exist F € M»(Fy, F2) such
that F < G if and only if

G(Xl,Xg) > F1(X1) + F2(X2) = 1, for all (Xl,Xz) € Rz.
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Comonotonicity

Definition 5

A pair of random variables (X, Y) € (L°)? is said to be

comonotonic if there exists a random variable Z and two increasing

functions f, g such that almost surely X = f(Z) and Y = g(2).

e X and Y move in the same direction. This is a strongest (and

simplest) notion of positive dependence.

@ Two risks are not a hedge to each other if they are

comonotonic

o We use X /Y to represent that (X, Y) € (L°%)? is

comonotonic.
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Comonotonicity

Some examples of comonotonic random vectors:
@ a constant and any random variable
e X and X
e X and I;x>0y

@ In the Black-Scholes framework, the time-t price of a stock S

and a call option on §

Note: in the definition of comonotonicity, the choice of P is

irrelevant for equivalent probability measures.

@ We also say “X and Y are comonotonic” when there is no

confusion

@ comonotonicity can be generalized to n-vectors
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Comonotonicity

Theorem 6

For X ~ F, Y ~ G, the following are equivalent:
() XJ Y
For some strictly increasing functions f, g, f(X)//g(Y),
P(X < x,Y <y)=min{F(x), G(y)} for all (x,y) € R?;
(X(w) = X(W"N)(Y(w)— Y(w)) >0 foras. (w,w') € QxQ.

There exists U ~ U[0, 1] such that X = F~1(U) and
Y = G~Y(U) almost surely.

)
i)
(iii)
iv)
)

(v

(vi) A copula of (X, Y) is the Fréchet upper copula.
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Comonotonicity

In the following, the four random variables X, Y, X', Y’ € 12
satisfy X Ax and Y Ly,

Proposition 7
Suppose X J/'Y. The following hold:

(i) PX<x,Y<y)>P(X' <x,Y' <y) forall (x,y) € R%;
(i) E[XY] > E[X"Y];
(iii) Corr(X,Y) > Corr(X’,Y").
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Comonotonicity

Let F @ G be the distribution of F~1(U) 4+ G~1(U) for some
U € UJ0,1].

Suppose X /Y, X ~ F and Y ~ G. Let H be the distribution of
X+ Y. Then
(i) H=F & G;
(i) H1=F 14+ G
(i) VaRp(X +Y) = VaRp(X) + VaR,(Y), p € (0,1);
(iv) ESp(X + Y) = ES,(X) +ESp(Y), p € (0,1).

e VaR, and ES, are comonotonic additive.
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Counter-monotonicity

Definition 9

A pair of random variables (X, Y) € (L°)? is said to be

counter-monotonic if (X, —Y’) is comonotonic.

o We use X = Y to represent that (X, Y) € (L°)? is

counter-monotonic.

@ Counter-monotonicity is not easy to generalize to n-vectors for
n> 3.
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Counter-monotonicity

Theorem 10

For X ~ F, Y ~ G, the following are equivalent:

(i) X =

(i)

(i) P(X < x,Y <y)=(F(x)+ G(y) — 1); forall (x,y) € R?
) (X(w) = X(W))(Y(w)—Y(W)) <0 foras. (w,w') e QxQ.
) There exists U ~ UJ0,1] such that X = F~1(U) and

Y = G7Y(1 — U) almost surely.

For some strictly increasing functions f, g, f(X) = g(Y),
(X

(iv
(v

(vi) A copula of (X, Y) is the Fréchet lower copula.

Ruodu Wang  (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems - Part Il 15/32


wang@uwaterloo.ca

Convex order

Definition 11 (Convex order)

For X, Y € L', X is smaller than Y in (resp. increasing) convex
order, denoted as X <cx Y (resp. X <icx Y), if
E[f(X)] < E[f(Y)] for all (resp. increasing) convex functions f

such that the expectations exist.

e For (increasing) convex order, the choice of PP is relevant.

o If X <cx Y then E[X] = E[Y].

@ Increasing convex order is also called second-order stochastic
dominance or stop-loss order

e We abuse the notation here: for F, G € M} and X € L1, we

sometimes write X <. F and G < F
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Convex order

@ Increasing convex order describes a preference among risks for

risk-averse investors

@ a risk-averse investor prefers a risk with less variability
(uncertainty) against one with larger variability, and she
prefers a risk with a certainly smaller loss against a risk with a

larger loss

@ convex order and increasing convex order are based on the law

of random variables
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Convex order

Some examples and properties (all random variables are in Ll):
0 X < Y implies X <jex Y.
@ X <Y as. implies X <jx Y.
o IfE[X]=E[Y] =0, and X =aY, a> 1, then Y < X.
0 If X <iex Y, Y <icex Z, then X <jex Z.

o If X <icx Y, then f(X) <icx F(Y) for any increasing function
f.

e X <cx Y if and only if X <ijcx Y and E[X] = E[Y].
Reference: Shaked-Shanthikumar (2007)

Ruodu Wang  (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems - Part Il 18/32


wang@uwaterloo.ca

Convex order

Theorem 12 (Martingale Theorem for convex order)

For X,Y € L', X <o Y if and only if there exists Z 4 X such
that Z = E[Y

Z| almost surely.

e E[Y|G] <cx Y for any o-field G. In particular, E[Y] <. Y.

Theorem 13 (Separation Theorem)
For X,Y € L', X <iex Y if and only if there exists Z € L° such
that

X < Z <Y almost surely.
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Convex order

Proposition 14

For X,Y € L1, the following are equivalent:
(i) X <iex Y,

(i) ESp(X) < ES,(Y) for all p € (0,1);

(i) E[(X — t)4+] <E[(Y — t)4] for all t € R.
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Convex order and comonotonicity

Suppose that X £ X' e 11, y Ly’ ¢ (1.
() EX)Y, then X'+ Y' <ex X + Y.
(i) FX =Y, then X + Y <ex X'+ Y.

@ The case of n > 3 is still true for (i) but for (ii) it becomes

unclear

@ A general version of the above theorem dates back to Lorentz
(1951)

@ More information: Puccetti-W. (2015)
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© Aggregation sets
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Aggregation sets

For F € M}, let M*(F)={G € Mj : G < F} and
X*(F)={XeL: X < F}.
Proposition 16 (Basic properties*)
For Fi,...,F, € M}, the following hold:
(i) Sn C X" (71 Fi)
(i) Dy C M* (@11 Fi);

(iii) Both the sets D, and M* (&"_, F;) are convex and closed

with respect to convergence in distribution.
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Aggregation sets

Uniform example*

For F1 = F, = U[-1,1], Do & M*(U[-2,2]).

@ see Example X.

Bernoulli example*

For F1 = F, = Bern(p), p € [0, 1], we have
Dy = M* (Bern(p) & Bern(p)) N R where R is the set of
distributions supported in {0,1,2}.
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Aggregation sets

Does the equality D, = M* (&"_, F;) hold for some

non-degenerate distributions?
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e ES bounds
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Expected Shortfall bounds

Proposition 17 (Expected Shortfall naive bounds*)
For Fi,...,Fhe My, X;~F;, i=1,...,nandp € (0,1), the
following hold:
(i) ETp(Sn) = 27:1 ESp(Xi)i
(i) ES,(Sn) = 211, E[Xi].

. N

e ES, is comonotonic additive and preserves convex order

Ruodu Wang  (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems - Part Il 27/32


wang@uwaterloo.ca

@ VaR bounds
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Value-at-Risk bounds

Proposition 18 (Value-at-Risk naive bounds*)
For Fi,...,Foe My, X~ F;, i=1,...,nand p € (0,1), the
following hold:

(i) 27:1 VaRp(Xi) < Va p(Sn) < 27:1 ESP(Xi)i

e VaR, is comonotonic additive but it does not preserve convex
order
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The problem of VaR, for n =2

Theorem 19 (VaR,(S2) and VaR,(S2)*)
For any p € (0,1) and Fy, Fo € My with F{'t, F;! being

continuous,

VaR,(S2) = inf {FHp+x)+ F (1 —x)},
x€[0,1—p]
and

VaR,(S2) = sup {F1(x) + Fy(p - x)}.
x€[0,p]

@ The dependence structure: a combination of comonotonicity

and counter-monotonicity

The result dates back to Makarov (1981) and Riischendorf (1982); both studied
P.(S82), the former based on construction and the latter based on-duality.
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The problem of VaR, for n =2

Example:

e For Fl = F2 = U[O, ].],
VaRp(Sz) = ?SP(SQ) =1+p.

e For a concave distribution function F; = F, (decreasing
density),
VaRp(Sg) = 2VaR1+p (Xl)

2
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