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Risk measures

A risk measure is a functional ρ : X → [−∞,∞].

X is a convex cone of random variables, X ⊃ L∞.

ρ(L∞) ⊂ R

X ∈ X represents loss/profit

A law-determined risk measure can be treated as a functional

ρ : D → [−∞,∞].

D is the set of distributions of random variables in X .
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Risk measures

There are several properties of risk measures discussed in the

literature, for instance:

Monetary risk measure

Monotonicity: ρ(X ) ≤ ρ(Y ) for X ≤ Y , X ,Y ∈ X
Cash-additivity: ρ(X + c) = ρ(X ) + c for X ∈ X and c ∈ R

Coherent risk measure: Monetary + two of the three:

Positive homogeneity: ρ(λX ) = λρ(X ) for X ∈ X and λ ∈ R+

Subadditivity: ρ(X + Y ) ≤ ρ(X ) + ρ(Y ) for X ,Y ∈ X
Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) for

X ,Y ∈ X and λ ∈ [0, 1]

Comonotonic additivity: ρ(X + Y ) = ρ(X ) + ρ(Y ) for

X //Y , X ,Y ∈ X
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Distortion risk measures

Distortion risk measures

A distortion risk measure is defined as

ρ(X ) =

∫
R
xdh(FX (x)), X ∈ X , X ∼ FX ,

where h is an increasing function on [0, 1] with h(0) = 0 and

h(1) = 1. h is called a distortion function.

Yaari (1987):

distortion risk measure ⇔ law-determined and comonotonic

additive monetary risk measure.
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Distortion risk measures

Distortion risk measures

If one of h and F−1
X is continuous, then via a change of variable,

ρ(X ) =

∫ 1

0
VaRt(X )dh(t), X ∈ X .

ES and VaR are special cases of distortion risk measures.

Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part IV 6/49
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Left-tail-ES

Two distortion risk measures, Left-tail-ES (LES) and

right-quantiles (VaR∗)1:

Left-tail-ES (LES)

LESp : L0 → [−∞,∞),

LESp(X ) =
1

p

∫ p

0
VaRq(X )dq = −ES1−p(−X ), p ∈ (0, 1).

Right-quantile (VaR∗)

VaR∗p : L0 → (−∞,∞),

VaR∗p(X ) = inf{x ∈ R : P(X ≤ x) > p}, p ∈ (0, 1).

1We introduce them only for mathematical reasons. LES is not to be implemented

in financial regulation and VaR∗
p is indistinguishable from VaRp in practice.
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wang@uwaterloo.ca


1 Risk measures

2 VaR and ES Bounds: basic ideas

3 Smallest element wrt convex order

4 Analytical results for homogeneous models

5 Asymptotic equivalence

6 Dependence-uncertainty spread

7 Challenges

8 References

Ruodu Wang (wang@uwaterloo.ca) Risk Aggregation and Fréchet Problems Part IV 8/49
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VaR and ES Bounds

As in Part I: For given F1, . . . ,Fn ∈M1 and p ∈ (0, 1), the four

quantities

VaRp(Sn), VaRp(Sn), ESp(Sn), ESp(Sn)

are our primary targets.

ESp(Sn) =
∑n

i=1 ESp(Xi )

LESp(Sn) =
∑n

i=1 LESp(Xi )

The others are generally open

LESp and LESp are symmetric to ES

We assume the marginal distributions F1, . . . ,Fn have finite means.
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Basic ideas

Observation: ESp preserves convex order.

Finding ESp(Sn)

Search for a smallest element in Sn with respect to convex order, if

it exists.

If (F1, . . . ,Fn) is JM, then such an element is a constant.
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Basic ideas

VaR does not respect convex order: more tricky.

For i = 1, . . . , n and U ∼ U[0, 1], let F
[p,1]
i be the distribution of

F−1
i (p + (1− p)U), and F

[0,p]
i be the distribution of F−1

i (pU).

Lemma 1 (VaR bounds*)

For p ∈ (0, 1) and F1, . . . ,Fn ∈M1,

VaR
∗
p(Sn) = sup{ess-infS : S ∈ Sn(F

[p,1]
1 , . . . ,F

[p,1]
n )},

and

VaRp(Sn) = inf{ess-supS : S ∈ Sn(F
[0,p]
1 , . . . ,F

[0,p]
n )}.
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Basic ideas

Corollary 2 (VaR bounds*)

Suppose that T is the smallest element in Sn(F
[p,1]
1 , . . . ,F [p,1])

with respect to convex order. Then VaR
∗
p(Sn) = ess-infT .

Finding VaRp(Sn)

Search for a smallest element in Sn(F
[p,1]
1 , . . . ,F [p,1]) with respect

to convex order.

VaR
∗
p(Sn) = VaRp(Sn) if F−1

1 , . . . ,F−1
n are continuous at p.
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Smallest element wrt convex order

Question

For general F1, . . . ,Fn ∈M1, does there always exist a smallest

element wrt ≺cx in Sn (or Dn)?

If (F1, . . . ,Fn) is JM, then there exists one

The largest element wrt ≺cx is always the comonotonic sum

for any marginal distributions
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Smallest element wrt convex order

Example*

Let F1 = D{0, 3, 8} F2 = D{0, 6, 16} and F3 = D{0, 7, 13}.
Dependence (a) X1(ω1) X2(ω1) X3(ω1)

X1(ω2) X2(ω2) X3(ω2)

X1(ω3) X2(ω3) X3(ω3)

 =

 3 16 0

0 6 13

8 0 7


Dependence (b) X1(ω1) X2(ω1) X3(ω1)

X1(ω2) X2(ω2) X3(ω2)

X1(ω3) X2(ω3) X3(ω3)

 =

 0 16 0

3 0 13

8 6 7


Example 3.1 of Bernard-Jiang-W. (2014); this example was provided by Bin Wang
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Smallest element wrt convex order

Some conclusions:

Sn does not always admit a smallest element wrt ≺cx

To search for a smallest element wrt ≺cx might not be a

viable solution
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Homogeneous model with a decreasing density

Suppose that F1 = · · · = Fn := F ∈M1
1 which has a decreasing

density on its support. Define three quantities:

H(x) = (n − 1)F−1((n − 1)x) + F−1(1− x), x ∈
[

0,
1

n

]
,

a = min

{
c ∈

[
0,

1

n

]
:

∫ 1
n

c
H(t)dt ≥

(
1− nc

n

)
H(c)

}
,

and

D =
n

1− na

∫ 1
n

a
H(x)dx = n

∫ 1−a
(n−1)a F

−1(y)dy

1− na
.

Note that if a > 0 then D = H(a). Finally, let

T (u) = H(u/n)I{u≤na} + DI{u>na}, u ∈ [0, 1].
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Homogeneous model with a decreasing density

Theorem 3 (Homogeneous model with a decreasing density*)

Suppose that F1 = · · · = Fn := F ∈M1
1 which has a decreasing

density on its support. Then

(i) T (U) ∈ Sn for some U ∼ U[0, 1];

(ii) T (U) ≺cx S for all S ∈ Sn.

This is a weaker version of Theorem 3.1 of Bernard-Jiang-W. (2014) which was

essentially shown in Wang-W. (2011)
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Homogeneous model with a decreasing density

body

right
tail

left
tail

The corresponding dependence structure:

On {U ≤ na}: almost mutual exclusivity

On {U > na}: a joint mix
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Homogeneous model with a decreasing density

General model with decreasing densities

Suppose that each of F1, . . . ,Fn has a decreasing density. Then

there exists an element T in Sn such that T ≺cx S for all S ∈ Sn.

The distribution of T consists of a point-mass part and a

continuous part, both of which can be calculated via a set of

functional equations.

The structure is very similar to the homogeneous model: an

almost mutually exclusive part and a part of joint mix.

obtained in Jakobsons-Han-W. (2015+)
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Summary of existing results

Homogeneous model (F1 = · · · = Fn)

ESp(Sn) solved analytically for decreasing densities, e.g.

Pareto, Exponential

VaRp(Sn) solved analytically for tail-decreasing densities, e.g.

Pareto, Gamma, Log-normal

Inhomogeneous model

Semi-analytical results are available for decreasing densities

Numerical method: Rearrangement Algorithm (RA)2

Real data analysis: DNB3

2Embrechts-Puccetti-Rüschendorf (2013)
3Aas-Puccetti (2014)
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VaR bounds - homogeneous model

Theorem 4 (Sharp VaR bounds for homogeneous model*)

Suppose that F1 = · · · = Fn := F ∈M1
1 which has a decreasing

density on [b,∞) for some b ∈ R. Then, for p ∈ [F (b), 1) and

X ∼ F ,

VaRp(Sn) = nE[X |X ∈ [F−1(p + (n − 1)c),F−1(1− c)]],

where c is the smallest number in [0, 1
n (1− p)] such that

∫ 1−c
p+(n−1)c F

−1(t)dt ≥ 1−p−nc
n ((n − 1)F−1(p + (n − 1)c) + F−1(1− c)).

c = 0: VaRp(Sn) = ESp(Sn).

obtained in W.-Peng-Yang (2013)
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VaR bounds - homogeneous model

Theorem 5 (Sharp VaR bounds for homogeneous model II*)

Suppose that F1 = · · · = Fn := F ∈M1
1 which has a decreasing

density on its support. Then for p ∈ (0, 1) and X ∼ F ,

VaRp(Sn) = max{(n − 1)F−1(0) + F−1(p), nE[X |X ≤ F−1(p)]}.

obtained in Bernard-Jiang-W. (2014)
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ES bounds - homogeneous model

Theorem 6 (Sharp ES bounds for homogeneous model*)

Suppose that F1 = · · · = Fn := F ∈M1
1 which has a decreasing

density on its support. Then for p ∈ (1− na, 1), q = (1− p)/n

and X ∼ F ,

ESp(Sd) =
1

q

∫ q

0

(
(n − 1)F−1((n − 1)t) + F−1(1− t)

)
dt,

= (n − 1)2LES(n−1)q(X ) + ES1−q(X ).

One large outcome is coupled with d − 1 small outcomes.
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Numerical calculation

Rearrangement Algorithm (RA)4

A fast numerical procedure

Discretization of relevant quantile regions

The idea is to approximate a ≺cx-smallest element assuming

one exists

n possibly large

Applicable to VaRp, VaRp and ESp

4Puccetti-Rüschendorf (2012) and Embrecths-Puccetti-Rüschendorf (2013)
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Numerical calculation

Example of RA borrowed from Marius Hofert:
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Numerical calculation

Example of RA not working:
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Asymptotic equivalence

Consider the case n→∞. What would happen to VaRp(Sn)?

Clearly always VaRp(Sn) ≤ ESp(Sn).

Recall that VaRp(Sn) has an ES-type part.

Under some weak conditions,

lim
n→∞

ESp(Sn)

VaRp(Sn)
= 1.

When arbitrary dependence is allowed, the worst-case VaRp of

a portfolio behaves like the worst-case ESp

This was shown first for homogeneous models and then extended to general

inhomogeneous models. The first result is in Puccetti-Rüschendorf (2014).
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Asymptotic equivalence - homogeneous model

Theorem 7 ((VaRp,ESp)-equivalence for homogeneous model*)

In the homogeneous model, F1 = F2 = · · · = F , for p ∈ (0, 1) and

X ∼ F ,

lim
n→∞

1

n
VaRp(Sn) = ESp(X ).

Corollary 3.7 in Wang-W. (2015)
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Asymptotic equivalence - worst-cases

Theorem 8 ((VaRp,ESp)-equivalence)

Suppose the continuous distributions Fi , i ∈ N satisfy that for

Xi ∼ Fi and some p ∈ (0, 1),

(i) E[|Xi − E[Xi ]|k ] is uniformly bounded for some k > 1;

(ii) lim inf
n→∞

1

n

n∑
i=1

ESp(Xi ) > 0.

Then as n→∞,

ESp(Sn)

VaRp(Sn)
= 1 + O(n1/k−1).

k = 1 is not ok

Theorem 3.3 of Embrechts-Wang-W. (2015)
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Asymptotic equivalence - best-cases

Similar results holds for VaRp and ESp: assume (i) and

(iii) lim inf
n→∞

1

n

n∑
i=1

LESp(Xi ) > 0,

then

lim
n→∞

VaRp(Sn)

LESp(Sn)
= 1,

lim
n→∞

ESp(Sn)∑n
i=1 E[Xi ]

= 1,

and
VaRp(Sn)

ESp(Sn)
≈
∑n

i=1 LESp(Xi )∑n
i=1 E[Xi ]

≤ 1, n→∞.
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Example: Pareto(2) risks

Bounds on VaR and ES for the sum of n Pareto(2) distributed rvs for

p = 0.999; VaR+
p corresponds to the comonotonic case.

n = 8 n = 56

VaRp 31 53

ESp 178 472

VaR+
p 245 1715

VaRp 465 3454

ESp 498 3486

VaRp/VaR
+
p 1.898 2.014

ESp/VaRp 1.071 1.009
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Example: Pareto(θ) risks

Bounds on the VaR and ES for the sum of n = 8

Pareto(θ)-distributed rvs for p = 0.999.

θ = 1.5 θ = 2 θ = 3 θ = 5 θ = 10

VaRp 1897 465 110 31.65 9.72

ESp 2392 498 112 31.81 9.73

ESp/VaRp 1.261 1.071 1.018 1.005 1.001
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General risk measures

Let Dn(F ) = Dn(F , . . . ,F ) (homogeneous model).

For a law-determined risk measure ρ, define

Γρ(X ) = lim
n→∞

1

n
sup {ρ(S) : FS ∈ Dn(FX )} .

Γρ is also a law-determined risk measure.

Γρ ≥ ρ.

If ρ is subadditive then Γρ = ρ.
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Aggregation of risk measures

Take X = L∞.

Theorem 9 ((ρh, ρh∗)-equivalence for homogeneous model)

We have

Γρh(X ) = ρh∗(X ), X ∈ X ,

where h∗ is the largest convex distortion function dominated by h.

Theorem 3.2 of W.-Bignozzi-Tsanakas (2015)
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Aggregation of risk measures

For distortion risk measures

ΓVaRp = ESp

ρh is coherent if and only if h∗ = h

For law-determined convex risk measures.

Γρ is the smallest coherent risk measure dominating ρ

If ρ is a convex shortfall risk measure, then Γρ is a coherent

expectile
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Dependence-uncertainty spread

Theorem 10 (Uncertainty spread)

Take 1 > q ≥ p > 0. Under weak regularity conditions, for

inhomogeneous models,

lim inf
n→∞

VaRq(Sn)−VaRq(Sn)

ESp(Sn)− ESp(Sn)
≥ 1.

The uncertainty-spread of VaR is generally bigger than that of

ES.

In recent Consultative Documents of the Basel Committee,

VaR0.99 is compared with ES0.975: p = 0.975 and q = 0.99.

Theorem 4.1 of Embrechts-Wang-W. (2015)
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Dependence-uncertainty spread

ES and VaR of Sn = X1 + · · ·+ Xn, where

Xi ∼ Pareto(2 + 0.1i), i = 1, . . . , 5;

Xi ∼ Exp(i − 5), i = 6, . . . , 10;

Xi ∼ Log–Normal(0, (0.1(i − 10))2), i = 11, . . . , 20.

n = 5 n = 20

best worst spread best worst spread

ES0.975 22.48 44.88 22.40 29.15 102.35 73.20

VaR0.975 9.79 41.46 31.67 21.44 100.65 79.21

VaR0.99 12.96 62.01 49.05 22.29 136.30 114.01
ES0.975

VaR0.975
1.08 1.02
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Dependence-uncertainty spread

From the International Association of Insurance Supervisors

Consultation Document (December 2014).
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Open questions

Concerete mathematical questions:

Full characterization of Dn and mixability

Existence and determination of smallest ≺cx-element in Dn

General analytical formulas for VaRp (VaRp) and ESp

Aggregation of random vectors

Practical questions:

Capital calculation under uncertainty

Robust decision making under uncertainty

Regulation with uncertainty
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Other directions

Some on-going directions on RADU

Partial information on dependence5

Connection with Extreme Value Theory

Connection with martingale optimal transportation

Both marginal and dependence uncertainty

Computational solutions

Other aggregation functionals

5Bignozzi-Puccetti-Rüschendorf (2015), Bernard-Rüschendorf-Vanduffel (2015+),

Bernard-Vanduffel (2015), many more
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Bignozzi, V., Puccetti, G. and Rüschendorf, L. (2015). Reducing model risk via

positive and negative dependence assumptions. Insurance: Mathematics and

Economics, 61, 17–26.
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