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[43] Rüschendorf, L. (2013). Mathematical risk analysis. Dependence, risk bounds,

optimal allocations and portfolios. Springer, Heidelberg.

[44] Rüschendorf, L. and Uckelmann, L. (2002). Variance minimization and ran-

dom variables with constant sum. In Distributions with given marginals and

statistical modelling, pp. 211–222. Kluwer, Netherlands.

[45] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic orders. Springer Series

in Statistics.

[46] Strassen, V. (1965). The existence of probability measures with given

marginals. Annals of Mathematical Statistics, 36(2), 423–439.

[47] Tchen, A. H. (1980). Inequalities for distributions with given marginals.

Annals of Probability, 8(4), 814–827.

5



[48] Wang, B. and Wang, R. (2011). The complete mixability and convex mini-

mization problems with monotone marginal densities. Journal of Multivariate

Analysis, 102(10), 1344–1360.

[50] Wang, B. and Wang, R. (2015). Joint mixability. Mathematics of Operations

Research, forthcoming.

[50] Wang, B. and Wang, R. (2015). Extreme negative dependence and risk ag-

gregation. Journal of Multivariate Analysis. 136, 12–25.

[51] Wang, R. (2014). Asymptotic bounds for the distribution of the sum of de-

pendent random variables. Journal of Applied Probability, 51(3), 780–798.

[52] Wang, R. (2015). Current open questions in complete mixability. Probability

Surveys, 12, 13–32.

[53] Wang, R., Bignozzi, V. and Tsakanas, A. (2015). How superadditive can a

risk measure be? SIAM Jounral on Financial Mathematics, 6, 776–803.

[54] Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent

risks and worst value-at-risk with monotone marginal densities. Finance and

Stochastics, 17(2), 395–417.

6


