Mathematics of Financial Markets ACTSC 446/846, Winter 2019

Sections

There are two sections of ACTSC 446/846. The two sections share the same contents, lecture notes, assignments, tests, and grading schemes. However, please make sure that you are in the right section and do not switch, because the actual teaching in the two sections may not always be synchronized.

Instructor:	Ruodu Wang, wang@uwaterloo.ca	ext.31569
Section 001:	10:00-11:20 Tuesdays and Thursdays	AL 208
Section 002:	2:30-3:50 Tuesdays and Thursdays	MC 2054
Office hours:	$4\!:\!00\text{-}5\!:\!00$ Tuesdays and $5\!:\!00\text{-}6\!:\!00$ Thursdays	M3 3122
Tutorials:	5:30-6:20 Tuesdays, only used for midterms	MC 2066

References

1. Main reference book:

[1] Tomas Björk. Arbitrage Theory in Continuous Time. 3rd edition, Oxford, 2009.

We do not exactly follow this book. The primary reference will be the lecture notes given in class. Test materials are based on lecture notes.

- 2. Recommended reading on the understanding of financial markets:
 - [2] Robert L. McDonald. *Derivatives Markets*, 3rd edition, Pearson, 2013.
 - [3] John C. Hull. Options, Futures, and Other Derivatives. 9th edition, Prentice Hall, 2014.
- 3. Recommended reading on advanced mathematical materials:
 - [4] Steven E. Shreve. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model. Springer-Verlag, New York, 2004.
 - [5] Steven E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Model. Springer-Verlag, New York, 2004.

Teaching Assistants

• To be announced

Assignments

Three individual assignments are planned. The assignments will be equally weighted. All assignments will contribute to your coursework grade. Assignments should be handed in to the instructor by the end of the class on the due day. Late assignments are not acceptable.

Midterm

Two midterms are planned. Tentative schedule:

- (1) Tutorial time (5:30-6:20) on Tuesday, February 26th (after 13 lectures)
- (2) Tutorial time on Tuesday, March 19th (after 19 lectures)

Course Evaluation Breakdown

- (1) Assignments 10%
- (2) Midterms 30% (15% each)
- (3) Final Examination 60%

Course Content and Tentative Schedule

	Lectures	Topics	Björk reference	
Part I	1-5	Introduction to derivatives markets	Chapter 1	
		options, futures and other derivatives		
		arbitrage and trading strategies		
		model independent properties of options		
Part II	6-13	Discrete-time models	Chapters 2-3	
		one-period models		
		binomial tree models		
		American and exotic options		
		fundamental theorems of asset pricing		
Midterm #1				
Part III	14-16	Basic stochastic calculus	Chapter 4	
		Brownian motions and martingales		
		Itô integrals and the Itô lemma		
Part IV	17-21	The Black-Scholes framework	Chapters 6-9	
		basics of continuous-time financial markets		
		Black-Scholes equation		
		Black-Scholes formula		
Midterm #2				
		hedging and Greeks		
		risk-neutral valuation		
Part V	22-23	General continuous-time models	Chapters 10, 22-23	
		risk-neutral valuation in general models		
		basics of fixed income products		
		short-rate models		
Lecture 24: Final review				

Policy on Intellectual Property

Students should be aware that this course contains the intellectual property of their instructor, TA, and/or the University of Waterloo. Intellectual property includes items such as:

Lecture content, spoken and written (and any audio/video recording thereof); Lecture handouts, presentations, and other materials prepared for the course (e.g., PowerPoint slides); Questions or solution sets from various types of assessments (e.g., assignments, quizzes, tests, final exams); and Work protected by copyright (e.g., any work authored by the instructor or TA or used by the instructor or TA with permission of the copyright owner). Course materials and the intellectual property contained therein, are used to enhance a students educational experience. However, sharing this intellectual property without the intellectual property owners permission is a violation of intellectual property rights. For this reason, it is necessary to ask the instructor, TA and/or the University of Waterloo for permission before uploading and sharing the intellectual property of others online (e.g., to an online repository).

Permission from an instructor, TA or the University is also necessary before sharing the intellectual property of others from completed courses with students taking the same/similar courses in subsequent terms/years. In many cases, instructors might be happy to allow distribution of certain materials. However, doing so without expressed permission is considered a violation of intellectual property rights.

Please alert the instructor if you become aware of intellectual property belonging to others (past or present) circulating, either through the student body or online. The intellectual property rights owner deserves to know (and may have already given their consent).

Relevant University Policies:

Policy 71 - Student Discipline

Policy 73 - Intellectual Property Rights