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Figure 11.7. ‘CONFOUNDING’: Useage in Statistics

1. Variety of Useage: Four facets of ‘confounding’

. . . . X-¥ Relationship? (existence, association, causation)
As background to understanding confounding when answering Question(s) iy

r

about an X-¥ relationship between a focal variate X and a response variate ¥, K
Z,Z,,...., Z,in the schema at the right are called lurking variates, a phrase
®

that means lurking explanatory variates in that each Z accounts, at least in part, IX}
for changes from unit to unit in the value of the response variate. The impor- @\ e
tance of lurking variates is that, if the distributions of their values differ between @——/véﬁaté
groups of units [like (sub)populations or samples] with different values of the
focal variate, an Answer about the X-¥ relationship may differ from the true state
of affairs unless the differences in the values of the relevant Zs are taken into account. Our definition of ‘confounding’ is:

* Confounding: differing distributions of values of one or more non-focal explanatory variate(s) among two (or more) groups

of units [like (sub)populations or samples] with different values of the focal variate.

Explanatory variates

Dictionary meanings of ‘confounding’ in ordinary English include confused, bewildered and mixed up — the last of these
three is closest to our statistical meaning given above, because the effects on ¥ of differences in X and in one or more of the Zs
are ‘mixed up’ (or ‘cannot be separated’ as it is also expressed) — see also the discussion of the confounding effect on
page 11.21 of this Figure 117. The difficulty with the statistical usage is that different statisticians in different places may, without
distinction, use ‘confounding’ to refer to any one of four of its facets:

© the definition: inability (or failure) to separate the effects of X and Z; [or X; and X;] (which are associated) on’¥,

© the idea: non-focal explanatory (or lurking) variate(s) Z; differ in value for different X values,

® the limitation: an Answer to a Question about an X-¥ relationship that may be meaningfully different from the ‘truth)

@ the consequence: an Answer may be alfered in a meaningful (i.e., practically important) way if the values of (one or more)

Z, are taken into account.

This variety of usage, reflecting lack of agreement among statisticians about how broadly ‘confounding’ is to be interpreted, can
obscure its underlying idea, which is the facet emphasized in, for example, our introductory discussion in Section 10 on pages
5.29 and 5.30 in Figure 57; it can also be a source of confusion. [There is, of course, common ground among the four facets
(most obviously among the last three) because they all refer to the same phenomenon.]

2. Some Distinctions: Four types of confounding

As summarized in Table 1171 below, one way to make these matters more transparent is to distinguish four contexts for
‘confounding’ in statistics; to do so in these Course Materials, we qualify ‘confounding’ with one of four adjectives:

e perfect, @ partial, e general, @ selecting.
However, these adjectives and distinctions are particular to these Course Materials and are unlikely to be encountered or under-
stood elsewhere — this is like our use in Figure 5.7 of ‘EPS from an unstratified population’ instead of the usual ‘SRS’ (see Note
98 on page 5.86 in Appendix 18) and of ‘EPA instead of the usual ‘randomization’ (see the bottom of page 5.48 in Note 53 in

Section 21). The latter Table 11.7.1: SUMMARY OF USAGE OF ‘CONFOUNDING’ IN STATISTICS

three facets of con- (Simpson’s Paradox referred to below is discussed in the previous Figure 11.6 pages 11.11 to 11.18)

founding are encom- Description Tpe ........ Impact....... Facet Ilustration

passed by our defi- Perfect confounding 1  Positive: Exploited in DOE  Definition Fractional factorial treatment structure
nition of Comparison Partial confounding 2 Negative: [Imposes Idea, limitation ‘Confounding’ in comparative Plans
error (from page Gener.al COl’]fOlll’ldl'I.lg 3 {]jmitation on Limitation, consequence ‘Confounding’ an4 Simpson’s Paradox
570 of Figure 5 7). Selecting confounding 4 an Answer Consequence, limitation ~ Judgement selecting

k Comparison error: for an Answer about an X-¥ relationship that is based on comparing attributes of groups of units with dif-
ferent values of the focal variate(s), comparison error is the difference from the infended (or true) state of affairs arising from:
— differing distributions of lurking variate values between (or among) the groups of units OR - confounding.

More details about the four facets of confounding and our distinctions are as follows:

o Confounding (‘perfect or type 1 confounding’) is a term in the statistical area of Design of Experiments (DOE), where it
indicates inability to (fully) separate the effects of two (or more) focal variates on a response variate; it can be exploited to
achieve statistical benefits in Plans with a fractional factorial treatment structure — recall Note 47 on page 5.45 in Figure 57.
— The adjective perfect for type 1 confounding indicates that levels of (some) focal variates and/or their interactions are as-

sociated with correlation of magnitude 1— this is why (some of) the effects on a response variate cannot be separated
(except by using a Plan with a full factorial treatment structure).
+ A Plan with a fractional factorial treatment structure accepts the limitation on Answers imposed by (‘perfect or type
I’) confounding to obtain the advantage of using fewer resources resulting from a smaller number of runs — in this
sense, confounding of focal variates [introduced by the investigator(s)] in DOE has a positive impact.
= This is likely the original usage of ‘confounding’ in statistics — the emphasis in this usage is on the (original) definition.
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+ When ‘confounding’ (in the sense of its definition) is introduced among two or more focal variates and/or their inter-
actions in a fractional factorial treatment structure, this facet is nor encompassed by our definition of comparison error.
However, ‘partial or type 2 confounding’ among non-focal lurking variates is a potential source of our comparison error.

O Confounding (‘partial or type 2 confounding’) in the context of comparative Plans imposes a limitation on an Answer to a
Question with a causative aspect, due to one (or more) [non-focall confounders changing (or differing) as the focal variate
changes (or differs) in value. The impact of type 2 confounding is negative and the emphasis is on the
idea of confounding and the resulting limitation imposed on Answers by comparison error.

We distineui . . . . . ® Ty

— We distinguish two cases of type 2 confounding — either may give rise to comparison error that dis- 77
torts reality (creates illusion) and so leads to a ‘wrong’ Answer about an X-¥ relationship:

+ when Z and X both cause ¥ (type 2a) — this situation is that of our introduction to confounding
on page 5.30 in Section 10, and the relevant causal structure from the upper half of page 5.34 is
case (8) [equivalent to case (1) with the confounder shown explicitly] shown again at the right;

+ when Z is a common cause of X and ¥ (type 2b) — the relevant causal structure is case (9) at the right [so-called com-
mon response] and see also Figure 107 on pages 10.13 to 10.16 and Appendix 2 on the facing page 11.21 and page 11.22.

= The adjective partial for type 2 confounding indicates that the association of [the (unwanted) change in] the confounder

Z. and (the change in) the focal variate X has a correlation that is (usually) less than 1 in magnitude;

+ The special case of zero correlation is discussed briefly in relation to diagram (5) near the bottom of page 5.31 in Figure 57.

= In the 2004 STAT 231 Course Notes, ‘confounding’ means our ‘partial confounding.

X
©) Z<Y

O Confounding (‘general or type 3 confounding’) is a broader meaning used by some statisticians to encompass both the ‘par-
tial’ confounding of comparative Plans and the effects of lurking variates in phenomena like Simpson’s Paradox. The impact

of type 3 confounding is (again) negative and the emphasis is on the limitation on Answers and its consequence.

= The adjective general is to remind us an Answer [usually to a Question about a (causal) X-¥ relationship] may be altered
in a meaningful (i.e., a practically important) way if the values of Z are taken into account.

—= When phenomena like Simpson’s Paradox are considered to be an instance of (‘general or type 3’) confounding, discus-
sion of its management (in an observational Plan) in Section 7 on pages 11.14 and 11.15 in the previous Figure 11.6 supple-
ments earlier discussion of managing confounding (e.g., as summarized in Table 57.10 on page 5.38 in Figure 57).

- Simpson’s Paradox and related phenomena (discussed in the previous Figure 11.6 on pages 1111 to 11.18) would not usually be
considered to involve causation in the sense of the discussion of Figure 10.6 of these Course Materials. As a consequence,
inclusion of Simpson’s Paradox in ‘general or type 3 confounding’ affects the wording (or implications) of two definitions:

* Causative aspect: the Answer from the investigation of a causative Question addresses some characteristic(s) of a
relationship between a response variate and one (or more) explanatory variates; if the relationship is causal, the in-
tent is usually that changing the value(s) of the explanatory variate(s) would (or will) change the response variate value.

* Focal variate: an explanatory variate whose relationship to the response variate is involved in the Answer to the Question.

If Simpson’s Paradox and related phenomena are not regarded as instances of ‘confounding] a causative aspect and the

focal variate would both be defined (or considered) as involving a causal relationship (e.g., see pages 1.12 and 1.14 in Fig-

ure 1.5 of these Course Materials) and our distinction involving ‘general or type 3 confounding’ would not be needed.

0 Confounding (‘selecting or type 4 confounding’) involves the possible creation of an unwanted relationship (e.g., by judge-
ment selecting) between unit sample inclusion probabilities and response variate values — see Figure 10.8 on pages 10.17 to
10.20. The relationship here is between X" [which indicates whether a unit is selected for the sample (X"=1) or is in the
group of units not selected (X*= 0)] and ¥, distinct from the Question which may have a descriptive or a causative aspect.

- Type 4 confounding is unique to these Course Materials and is included in this Figure 11.7 primarly to provide statistical
insight from recognizing common themes of probability assigning
and probability selecting;

+ probability assigning (e.g, EPA) manages type 2 confounding,
+ probability selecting (e.g., EPS) manages type 4 confounding; Comparison o Sample et
‘manages’ here means ‘provides a basis for statistical theory that

quantifies the likely magnitude of (comparison or sample) error’ — this theory shows that both processes are more likely
to achieve their goal of acceptable limitation on an Answer with increasing group or sample size(s).

Type 2 confounding (both cases) distorts a (wanted) relationship; type 4 confounding creates an unwanted relationship.

COMPARING SAMPLING
Assigning Selecting

— The impact of type 4 confounding is (again) negative and the emphasis is on the consequence (and limitation).

NOTES: 1. A further difficulty with ‘confounding’ is that its root may be used in any of three forms; we can say, for example:
o there is confounding of the effects of variates X and Z on variate Y, OR:
@ the effects of variates X and Z on variate ¥ are confounded, ALSO:
@ if Xis the focal variate, then Z (which is associated with X) is a possible confounder

2. The association (e.g., non-zero correlation) of confounded variates is really only an incidental feature of the phe-
nomenon — association in the usual state of affairs for variates that change together.

(continued)
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Figure 11.7. ‘CONFOUNDING”: Useage in Statistics (continued 1)

NOTES: 2. @ Zero correlation of confounded variates is usually introduced by the investigator(s) — for instance, in a factorial
(cont,) treatment structure [see the brief discussion of diagram (5) just before Note 23 on page 5.31 of Figure 57].

3. Key ideas to take from the (lengthy) discussion of confounding in this Figure 117 are:
o the use and meaning of ‘confounding’ in DOE,

o the idea and the management of ‘confounding’ (or of ‘lurking variates’) in comparative Plans, taking into account the

fwo ways a change in a lurking variate can affect attribute value(s) [recall Section 3 on page 1113 in Figure 11.6]:
= by causing units’ response variate (and, hence, their attribute) values to change, AND:

#11.21

- by distorting attribute calculation when subdividing is used to manage comparison error in an observational Plan.

For an introductory statistics course, whether Simpson’s Paradox and related phenomena are instances of ‘con-

founding’ is of no consequence and the concept of ‘selecting or type 4 confounding’ is solely for enrichment.

Surprisingly, ‘confounding’ may not be mentioned elsewhere in discussion of statistical methods — for instance, it

does not appear in the index (p. 500) of the widely-cited text by G.W. Snedecor and W.G. Cochran, Statistical

Methods, The lowa State University Press, Ames, lowa, Seventh Edition, 1980.

® No mention of ‘confounding’ may indicate its interpretation in this text as solely our ‘perfect or type 1 confound-
ing’ (the ‘original’ definition), coupled with no formal discussion of the topic of DOE by Snedecor and Cochran.

3. Appendix 1- The Confounding Effect

In an observational Plan, for a focal variate with q values, we think of the respondent popu-
lation as being made up of q subpopulations; each subpopulation is those units which have a par-
ticular value of the focal variate. Diagram (2) at the right shows an instance of q=2 with the two
subpopulations being of the same size (4 units); two short horizontal lines show the two subpopu-
lation average responses ¥, and ¥, [recall also diagram (1) at the lower right of page 5.45 in Figure
57]. The difference between ¥, and ¥, for the two subpopulations has two components:

%k the treatment effect arising from their different X values;
% an effect due to differences between the two subpopulations in the distributions of values (e.g.,
in the averages) of one or more lurking variates — we call this the confounding effect and we write equation (11.7.1) below;

¥ @)

¥ -¥, = effect of change in X + effect of change in Z,, ....., Z, = treatment effect + confounding effect. =~ ----- (1AY)

Explanatory variates are usually numerous and so, for each unit, as these variates take their ‘natural’ values uninfluenced by the
investigator(s), there is ample opportunity for different distributions of one or more Z; among the q subpopulations of the re-
spondent population. It is usually feasible to manage at most a few Zs by matching and/or subdividing.
Assessing Answers from observational Plans must take account of the confounding effect because:

- it is a source of comparison error and the resulting limitation imposed on the Answer(s),

- the treatment effect and the confounding effect cannot be quantified separately — we can only know their sum;
thus, our efforts to manage an inherent limitation on Answers from observational Plans meet, at best, with only partial success.
There is further discussion and illustration of the confounding effect in Figure 57 on pages 5.50 and 5.51 in Section 23.

4. Appendix 2: Connections Among Three Variates

To provide statistical perspective on confounding, we recognize that for three variates [two expanatory (X and Z) and one
response (¥)| involving fwo causal relationships, there are five causal structures, as shown in the first two columns of Table 117.2
at the right below; the first structure has rwo contexts, making six lines in the Table. The structures are five of the twelve cases
given in Figure 57 on the upper half of page 5.34 in Section 13 [cases (4), (6), (8), (9) and (10)] plus case (1), from the upper right
of page 5.36 [see also the second bullet (8) of Note 82 on page 576]. [A reminder of the definition of ‘interaction’ is:

* Interaction of two factors X, and X, is said to occur when the effect of one factor on a response variate ¥ depends on the

level of the other factor. Interaction means Table 1172 . .
. : Variate able 11.7 Association Causation
the combined effect of two factors is causal connections Name XY X7 7.¥ | X¥ X7 Z.¥

not the sum of their individual effects.] 7z X
® NOE My Confounding (l{pe 29 | Yes Yes Yes | Yes No Yes

Several matters are noteworthy. X—Y¥ z— [Common response ¥
O What tends to distinguish the cases is ), Xi\;f = §1>Y Interaction Yes --- Yes | Yes No Yes
the pattern of the causal relationships 7 : x
in the last column of Table 117.2 — as ©) ){ \§‘ = Z<Y Confounding ype2ry | Yes Yes Yes | No Yes Yes
shown in the third column, each variate 7 7 (A common causc'Z]
is associated with each of the other two, (10) ){AY = X<Y A common cause X | Yes Yes Yes | Yes Yes No

except in the case of interaction, when

Z
7N =g ez, ;
the X-Z relationship is not relevant. ®) % y=X"Z—-Y | Causal chain XZ¥ Yes Yes Yes | Yes Yes Yes

Z
@ ){aYEZ+X+Y Causal chain ZX¥ Yes Yes Yes | Yes Yes Yes
2006-06-20
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O Confounding and interaction have similarities (+) and differences (=).
+ both involve two explanatory variates which cause a response variate;
+ both have the same pattern of causal relationships and (except as noted overleaf on page 11.21) associations in Table 11.7.2;
- their focus is different:
© confounding is concerned with the impact on investigating the X-¥ relationship of (unwanted) changes in (confoun-
der) Z as (focal variate) X changes;
@ interaction is concerned with the impact on the X-¥ relationship and the X,-¥ relationship of the value of (focal vari-
ates) X, and X, respectively (see also Note 88 on page 579 of Appendix 13 — recall also Note 48 on page 5.45).
The same components but different focus of confounding and interaction are somewhat reminiscent of the conditioning-
ignoring distinction discussed in Note 3 in Figure 107 on page 10.13 because, in each case, statistical mishandling pro-
vides opportunity for comparison error to impose unnecessary (and so, possibly unacceptable) limitation on Answers.
The manifestation of confounding as comparison error may be (adversely) affected if there is interaction of Z and X — for ex-
ample, (puzzling) ‘inconsistencies’ may be exhibited in the X-¥ relationship — recall Table 1071 and the discussion on the
respective bottom and top halves of pages 10.15 and 10.16 in Figure 107.

O The possibility of Z as a common cause of X and ¥ [case (9)] is relevant when establishing the reason for an X-¥ associ-
ation, as discussed on pages 10.15 and 10.16 in Figure 1077.
= Common cause Z responsible for misidentifying X as a cause of ¥ is our type 2b confounding — recall the discussion
near the top of page 11.20 and at the bottom of page 10.15 and the top half of page 10.16 in Figure 107.
+ From this perspective, Z as a common cause of X and ¥ could be regarded as an extreme case of our type 2a con-
founding where Z is solely responsible for the change in ¥ as X changes.

o X as a common cause of Z and ¥ [case (10)] is really the causal structure at the right below, because Z is an explanatory
variate; thus, elsewhere we consider case (10) to involve three causal relationships, not two as 7
in this Appendix 2. We have seen in Figure 57 that case (10) with three causal relationships: 10 7" xy
- is not a viable basis for a comparative Plan, as discussed in Note 41 on pages 5.42 and 5.43;
= can result in biased estimating of a treatment effect, as illustrated on page 5.46 in the discussion of Table 57.16.

O As discussed in Figure 57 on page 5.32 in Note 24 (and also in the middle of the first side of Figure 10.6 of the Couse
Materials), we think of causation of ¥ by X as proceeding via a (long) causal chain of explanatory variates leading to the
response of interest. The Question context identifies (arbitrarily) one (focal) variate (X) in this chain as being of interest,
but we recognize that this variate is preceded by and followed by other “focal’ variates; the context also (arbitrarily) defines
the end of the chain in terms of a particular response variate (¥). However, this response can become part of an explan-
atory variate chain if a different Question context identifes a different (later) response variate. From this perspective:

- The causal chain of case (6) is merely the upper branch of the (real) causal structure of case (10) shown above at the right;
® case (6) reminds us to distinguish X causing ¥ via Z from X and Z as separate causes of ¥ [case (8)].

— The causal chain of case (4) is really case (1) [= case (8)] — Z in case (4) is merely an explanatory variate preceding the
focal variate X in the causal chain and so is (generally) of no statistical interest in the Question context.

The (surprising) number of statistical issues arising with relationships among only three variates is further complicated if the
X-Z-¥ relationship is modelled mathematically; such a model (for use in the Analysis stage of the PPDAC cycle) needs to consider:

o the form in the model (e.g., first power, second power, square root, logarithm, product) of X and Z;

o the distribution of Z (e.g., its mean and standard deviation) [and perhaps of XI;

o the relationship of X and Z (e.g., their correlation).

Association of (focal variate) X and (confounder) Z in case (8) is one feature of confounding, a source of comparison error and
limitation on Answers from comparative Plans. Similarly, association among variates in the structural component (on the right-
hand side) of a response model [like equation (57.3) on page 5.28 in Figure 57] is also a source of such limitation, manifested
as uncertainty in the estimates of model parameters [e.g., 8, — the treatment effect for X — in equation (57.3)].

O This uncertainty becomes apparent from stepwise model fitting, a process to assess [e.g., based on the coefficient of mul-
tiple determination, a measure of the proportion of the variation in ¥ accounted for by the fitted modell which explanatory
variates to include in the model. For instance, in the case of two (focal) variates X, and X,, three models are fitted — one
with both variates, one with X, only and one with X, only. The stronger the association (in the data) of X, and X,, the
greater the likely difference in the estimates of their coefficients 3, and 3, among the three models.

- In the extreme situation where two variates X; and X; have correlation of magnitude 1 (i.e., X; and X; are the same vari-
ate statistically), the model-fitting process with these two variates cannot be achieved computationally — the design
matrix is not of full rank and so cannot be inverted.

In introductory statistics courses, emphasis on comparative Plans with one focal variate, together with similarities of con-
founding and interaction when there are three variates, should not be allowed to obscure the continuing importance of possible
confounding in comparative Plans with rwo or more focal variates. With three variates and possible confounders Z;, Z; and Z,,
statistical issues like those in the foregoing discussion may arise for connections among:

o0 X,Z and ¥ o0X,Zjand¥ AND © X,X,,Z,and¥ [Z, may be a common cause of X,, X, and ¥I.
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