
CO481/CS467/PHYS467 W25 Assignment 1

Due Monday January 27, 2025, 8:30am

Instruction: Please submit your solutions to Crowdmark by the due date and time. Take special care to
place the answer to each question in the right place.

Question 1. Exercise in Dirac notations (I) [8 marks]

We covered several representations of unitary operations in class.
For example, for σx, we have 3 representations:

• Action on a given basis: |0〉 → |1〉, |1〉 → |0〉
• Dirac notation: |0〉〈1|+ |1〉〈0|

• Matrix representation:

[
0 1
1 0

]
For a two-qubit (4-dim) system with basis |00〉, |01〉, |10〉, |11〉, define two unitaries U = cnot12 and V =
swap by their action on the basis:

• U : |00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

• V : |00〉 → |00〉
|01〉 → |10〉
|10〉 → |01〉
|11〉 → |11〉

(a) [2 mark] Write down the matrix representations and the Dirac notations for U and V .

(b) [3 mark] Consider the unitary W = V UV †, called cnot21. Give all three representations for W .

(c) [3 mark] Consider the unitary on C2 call the Hadamard H = 1√
2

[
1 1
1 −1

]
given in the basis {|0〉, |1〉}.

What if H is applied to the first out of the two qubits? Give your answer as a unitary T in the matrix
representation. What is UT (give the matrix representation and the action on the basis).

Question 2. Exercise in Dirac notations (II) – the transpose trick [5 marks]

Let |Φ〉 = 1√
d

(|11〉+ |22〉+ · · ·+ |dd〉). Show that, for any d × d matrix M , (M ⊗ I)|Φ〉 = (I ⊗MT )|Φ〉
where MT denotes the transpose of M in the computational basis {|i〉}di=1.

Aside: |Φ〉 is entangled over the two d-dim systems. The above question says that an operation M applied
to the first system transform |Φ〉 in the same way as a related operation MT applied to the second system.
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Question 3. No signalling in local measurements [10 marks]

Consider the two-qubit pure state |ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉. The first qubit is held by Alice, the
second qubit is held by Bob.

(a) [1 mark] Suppose a complete von Neumann measurement along the computational basis is applied to
|ψ〉. What are the probabilities of the four possible outcomes?

(b) Instead, suppose Alice applies a computational basis measurement on her qubit on |ψ〉 (and Bob has
not done anything yet).

(i) [1 mark] Write down the projectors for this measurement (as operators on the 4-dim Hilbert space).

(ii) [2 marks] What are Alice’s probabilities of getting “0” and getting “1”, and what are the respective
global postmeasurement state?

(ii) [3 marks] For each of the two measurement outcomes, if Bob is then to measure along the computa-
tional basis, what are the conditional probabilities to obtain “0” and “1”? Infer from these answers the
joint probabilities of the outcomes “00”, “01”, “10”, “11”. (Your answers for (a) and (b)(ii) should be
consistent.)

(c) [1 mark] The case for Bob to measure his qubit first, followed by Alice measuring hers, can be analysed
similarly to part (b). But you do not need to repeat the similar analysis. You can already imply the
conclusion from part (b). Can you explain why (in just 1-2 sentences)?

(d) [2 marks] Briefly explain how to extend the answers for parts (a)-(c) to cover the case when the
measurement bases of Alice and Bob are all arbitrary. (Hint: there is a very simple argument.)

Question 4. Quantum correlations without signalling. [10 marks]

(a) [2 marks] Let T be a hermitian operator (of general dimension d) with all eigenvalues being either 1
or −1 (with arbitrary multiplicities). Let M+ = I+T

2 , M− = I−T
2 . Show that M± are projectors onto the

±1 eigenspaces of T . (You don’t need to show that M± are projectors.)

(b) Let S1 and S2 be hermitian operators (of dimensions d1 and d2 respectively) with all eigenvalues being
either 1 or −1.

(i) [1 mark] What are the eigenvalues of S = S1 ⊗ S2?
(ii) [1 mark] If Alice measures the eigenvalue of S1 in the first system, and Bob measures the eigenvalue
of S2 in the second system, write down the projectors that correspond to the four possible joint outcomes
(+1,+1), (+1,−1), (−1,+1), (−1,−1).

(iii) [4 marks] Suppose the measurement is applied to a +1 eigenstate of S, i.e., the state |ψ〉 being measured
satisfies S|ψ〉 = |ψ〉, show that only two outcomes (+1,+1) and (−1,−1) have positive probabilities to
occur. (So Alice’s outcome and Bob’s outcome always multiple to +1.)

(iv) [2 marks] Suppose the measurement is applied to a−1 eigenstate of S, i.e., the state |ψ〉 being measured
satisfies S|ψ〉 = −|ψ〉, show that only two outcomes (+1,−1) and (+1,−1) have positive probabilities to
occur. (Note that in each case, the product of Alice’s outcome and Bob’s outcome is −1.)

Remark: We’ve derived that, when Alice measures S1 and Bob measures S2, the product of their outcomes
is the same as if the operator S = S1 ⊗ S2 is measured! Note that the actual measurement is local (Alice
does her own and Bob does his own) with 4 joint outcomes; the outcomes are correlated, but in a way
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that does not allow signalling between Alice and Bob (either directly from your work in Q4, or use the
answer to Q3 to see this). If a referee obtains both of their answers, the referee can see the correlation.
This correlation in the measurement outcomes allows the outcome of a nonlocal measurement S = S1⊗S2
to be obtained via local measurements, with additional random outcomes. This is the underlying principle
for non-local games (Bell inequalities), entanglement purification, quantum error correction codes, and
quantum key distribution.
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