
CO481/CS467/PHYS467 Assignment 3

Due March 3, 2025, 8:30am

Instruction: Please submit your solutions to Crowdmark by the due date and time. Take special care to
place the answer to each question in the right place. Questions are ordered according to the sequence of
topics covered in class, and not by difficulty. Also, if you do not prove an earlier part of a question, you
can still use the earlier part to answer a later part.

Question 1. Approximating the quantum Fourier transform on n qubits [14 marks]

Recall the definition of error in approximating a unitary U by V :

E∗(U, V ): = max
|ψ〉RS

‖(I ⊗ U)|ψ〉 − (I ⊗ V )|ψ〉‖,

where U, V are l × l unitaries acting on an l-dimensional system S, and I acts on an arbitrary system R
with finite dimension. Recall also that

E∗(U, V ) = E(U, V ): = max
|µ〉S
‖(U − V )|µ〉S‖.

You can use the fact that E(U, V ) is subadditive ((4.69) in NC and (4.3.3) in KLM):

E(UmUm−1 · · ·U1, VmVm−1 · · ·V1) ≤ E(Um, Vm) + E(Um−1, Vm−1) + · · ·E(U1, V1).

Consider the circuit on p91 of topic07-1b.pdf (and the discussion leading to it). We use the notation Cn for
the circuit implementing the quantum Fourier transform over Z(2n), and the notation Fn for the unitary
matrix describing this quantum Fourier transform.

(a) [2 marks] For each k ∈ {2, 3, · · · , n}, how many c-Rk gates are there in Cn? What is the total number
of gates in Cn (count each Hadamard or c-Rk gate as one gate)?

(b) [3 marks] Show that E(c-Rk, I) ≤ 2π
2k

. You may use the fact sinx ≤ x for any x ≥ 0.

The goal of this question is to find a circuit C̃n that computes a unitary F̃n that approximates Fn to error
ε, but C̃n uses many fewer gates than Cn. Part (b) shows that for large k, c-Rk is close to the identity
operation on 2 qubits. So we take the approach to omit from Cn the c-Rk gates for large k, and bound the
error incurred.

Starting from Cn, consider the circuits Cn,n, Cn,n−1, · · · , Cn,k, · · · , Cn,r where Cn,n is obtained by omitting
all the c-Rn gates from Cn, Cn,n−1 is obtained by omitting all the c-Rn−1 gates from Cn,n, and recursively,
each Cn,k is obtained by omitting all the c-Rk gates from Cn,k+1, for n−1 ≥ k ≥ r. Let Fn,k be the
resulting unitary from the circuit Cn,k.

(c) [4 marks] Show that E∗(Fn,k+1, Fn,k) ≤ (n− k + 1)2π
2k

.

Hint: you will need to use the equality E∗(U, V ) = E(U, V ), subadditivity, and parts (a) and (b). Please
explain how these results are applicable in your answer.

(d) [2 marks] Upper bound E∗(Fn, Fn,r) by 4πn
2r .

You can use without proof E∗(Fn, Fn,r) ≤ E∗(Fn, Fn,n) + E∗(Fn,n, Fn,n−1) + · · ·+ E∗(Fn,r+1, Fr) which is
a simple extension of subadditivity.

(e) [1 mark] Determine r̃ so that E∗(Fn, Fn,r̃) ≤ ε.
(f) [2 marks] If we approximate Cn by C̃n = Cn,r̃ for r̃ obtained from part (e), show that C̃n has ≈ n log

(
n
ε

)
gates for large n (after dropping some unimportant terms).
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Question 2. Period finding [8 marks]

You are given a blackbox function f : Z→ {1, · · · , 20}. You are also given the partial information that f
is periodic with unknown period r, but you are given the upper bound r ≤ 15. You run the period finding
algorithm (see topic07-1c.pdf and the references to the 3 textbooks there) with dimension d = 256. You
run the quantum subroutine 4 times, getting 4 measurement outcomes x = 64, 107, 108, 235.

(a) [2 mark] Give 2 reasons for choosing d = 256.

(b) [6 marks] What is r? You will need to use continued fraction expansion (CFE), and the use of a
computer for this part is allowed. Show all your other steps and provide full justification in each step (e.g.,
what condition you use to stop the CFE, or why you think a data point is spurious).

Question 3. Solving the collision problem using Grover search [4 marks]

Recall that the quantum search algorithm can find a marked item in a search space of size N using
O(
√
N/M) queries, where M is the total number of marked items.

In the collision problem, you are given a black-box function f : {1, 2, . . . , N} → S (for some set S) with the
promise that f is two-to-one. In other words, for any x ∈ {1, 2, . . . , N}, there is a unique x′ ∈ {1, 2, . . . , N}
such that x 6= x′ and f(x) = f(x′). The goal of the problem is to find any such pair (x, x′) (called a
collision).

(a) [2 marks] For any K ∈ {1, 2, . . . , N}, consider the following quantum algorithm for the collision
problem:

1. Query f(1), f(2), . . . , f(K).

2. If a collision is found, output it.

3. Otherwise, using Grover’s algorithm to search for a value x ∈ {K + 1,K + 2, . . . , N} such that
f(x) = f(x′) for some x′ ∈ {1, 2, . . . ,K}.

How many quantum queries does this algorithm need to make in order to find a collision? Your answer
should depend on N and K, and can be expressed using big-O notation.

(b) [2 marks] Make a good choice of K and show that O(N1/3) queries are sufficient.
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