
CO481/CS467/PHYS467 Assignment 5

Due Friday night April 05, 2019, 10:00pm, Q3 has an extension until Sunday April 07, 3:00am

Instruction: Please submit your solutions to Crowdmark by the due date and time. Take special care to
place the answer to each question in the right place. Turn everything in before Friday 10pm, but
you can resubmit Q3 until Sunday 3am.

Question 1. The 5-qubit QECC [6 marks]

Recall that the 5-qubit QECC has four generators for the stabilizer group:

G1 = X ⊗ Z ⊗ Z ⊗X ⊗ I
G2 = I ⊗X ⊗ Z ⊗ Z ⊗X
G3 = X ⊗ I ⊗X ⊗ Z ⊗ Z
G4 = Z ⊗X ⊗ I ⊗X ⊗ Z

(a)[3 marks] List the 16 possible 0- or 1-qubit Pauli errors for this code. For each of these errors, write
down the ± outcome resulting from measuring each of the 4 generators. You can provide the answers in a
table, similar to the one we have started in class.

(b)[3 marks] Show that H⊗5 is not a logical operation for this code.

Question 2. Encoded R gate on 7-qubit code [7 marks]

We define the R gate as the 2× 2 unitary (up to a phase) satisfying the following commutation relations:

RXR† = iXZ, RZR† = Z.

Side remark: if we consider Z as a π/2 rotation, T as a π/8 rotation, R is a π/4 rotation, all along the
z-axis, and up to a phase, R =

√
Z = T 2. R is in the Clifford group. We choose to specify R using

commutation relation and not bother with the irrelevant overall phase.

Recall from class that the 7-qubit Steane code has stabilizer group generated by

G1 = I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X
G2 = I ⊗X ⊗X ⊗ I ⊗ I ⊗X ⊗X
G3 = X ⊗ I ⊗X ⊗ I ⊗X ⊗ I ⊗X
G4 = I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ Z ⊗ Z
G5 = I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ Z ⊗ Z
G6 = Z ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ Z

with XL = X⊗7, ZL = Z⊗7. In this question you will show that U = R⊗7Z⊗7 effects a transversal,
encoded, R gate on the 7-qubit code.

(a)[4 marks] For each Gi, i = 1, · · · , 6, write down UGiU
† as a product of the above generators (thus U is

an encoded operation on the 7-bit code). Because of the symmetry in U and similarities in the generators,
it suffices to show your work/reasoning for UG1U

† and UG4U
†, and state the answers for the rest.

(b)[3 marks] Show that UXLU
† = iXLZL and UZLU

† = ZL (thus showing U is an encoded R gate).
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Question 3. A magic multi-purpose 4-qubit code [13 marks + 4 marks bonus]

Consider a stabilizer code C whose stabilizer group S is generated by

G1 = X ⊗X ⊗X ⊗X
G2 = Z ⊗ Z ⊗ Z ⊗ Z

C encodes 2 qubits into 4 qubits.

(a) [3 marks] Explain why the following 4 matrices are encoded operations. Explain why we can choose
them as the encoded Pauli X and Z operators on the two encoded qubits.

X1L = X ⊗X ⊗ I ⊗ I
Z1L = I ⊗ Z ⊗ Z ⊗ I
X2L = I ⊗X ⊗X ⊗ I
Z2L = I ⊗ I ⊗ Z ⊗ Z

(b) [2 marks] Show that H ⊗H ⊗H ⊗H is an encoded operation.

(c) [4 marks] (bonus) What encoded operation does H⊗4 perform? (Hint: check commutation relation
with the encoded X and Z’s, and recall that each element of the stabilizer group is an encoded identity
operator.)

(d) [2 marks] Find the codewords |00L〉, |01L〉, |10L〉, |11L〉 using the stabilizer generators and the encoded
Pauli operators X1L, Z1L, X2L, Z2L given in part (a).

(e) Show that an erasure on any of the 4 qubits can be corrected. By symmetry, it suffices ot show that
erasure on the fist qubit can be corrected.

(i) [2 marks] Suppose one of I, X, Y , Z happens to the first qubit. What are the outcomes if G1 and G2

are measured?

(ii) [2 marks] State a method to correct the erasure on the first qubit. Detail explanation is not needed.

(f) [2 marks] Instead of correcting an erasure error, the same code C can be used to detect a single unknown
Pauli error. Explain how. (Here, you want to show that there are measurements that distinguish the no
error case from the case with any single-qubit Pauli error.)

(g) [0 marks] Demoting a question to a remark:

Consider a new QECC C ′ obtained by adding Z2L to the list of stabilizer generator. This encodes 1 qubit
in 4, and correct 1 amplitude damping error without satisfying the QECC condition!

Question 4. QECC for the 50-50 erasure channel? [4 marks]

Consider the quantum operation E which erases a qubit input with probability 50%. It is called the 50-50
erasure channel. We described it in class, and it has an alternative description:
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In the above, A is the input qubit system and B1B2 are the output systems. E1B2E2 are qubit systems
initialized in a fixed pure state |a〉E1B2E2 = |0〉E1⊗ 1√

2
(|00〉+|11〉)B2E2 . Then, a unitary U is applied, which

conditioned on B2 being in the state |1〉, swaps B1 and E1. Finally, performing a partial trace of E1E2

gives the output in systems B1B2. The information whether a system is erased or not can be found in B2.
In other words, E(ρ) = trE1E2 U (ρA ⊗ |a〉〈a|E1B2E2)U †.

Let n be any positive integer. Explain why there is no QECC that encodes 1 qubit into n qubits such that
the encoded qubit can be recovered with very high probability after the noise process E⊗n. (Hint: you can
use the fact that we cannot clone a qubit with very high probability, and find a contradiction if such a
QECC exists.)

Question 5. Deriving a remote CNOT using 1-bit teleportation [0 marks]

PRACTICE QUESTION, DO NOT TURN IN.

Suppose two remote parties Alice and Bob wish to perform a CNOT on two qubits in systems AB, where
the control qubit A is held by Alice, and the target qubit B is held by Bob. We will derive a method for
them to do so by using one maximally entangled state 1√

2
(|00〉+ |11〉), one classical bit of communication

from Alice to Bob, and one classical bit of communication from Bob to Alice.

First consider the following circuit. A vertical double line connecting a measurement box (in the compu-
tational basis) to a unitary U means that “conditioned on the measurement outcome being 1, perform U ,
otherwise do nothing”.

(a) [2 marks] Explain why the above circuit performs a CNOT on the two incoming qubits in systems AB,
and leaves the output in systems CD.

(b) [4 marks] Show that the following circuit implements the same transformation as the previous circuit.
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(c) [4 marks] Extract from the circuit in part (b) a protocol for Alice and Bob to apply a CNOT on AB
using one maximally entangled state 1√

2
(|00〉+ |11〉), one classical bit of communication from Alice to Bob,

and one classical bit of communication from Bob to Alice.
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