
2. Summary of theory of classical computation

(c) Models of computation
 (Turing Machines, randomized computation)
 (Optional reading, NC 3.1, KLM 1.2)

(a) Bits, gates, circuits, universality, complexity
 (In class, NC 3.1.2, KLM 1.3)

(b) The linear algebra formalism (classical)
 (In class, KLM 1.4)

(d) Reversible computation
(KLM 1.5, NC 3.2.5)

Unit of classical information:

1 bit: use 0 or 1 to label one of two possible
configurations.

Physically, the system has 2 distinguishable
states that can be prepared and manipulated.

Unit of classical information:

1 bit: use 0 or 1 to label one of two possible
configurations.

Physically, the system has 2 distinguishable
states that can be prepared and manipulated.

With n such systems, there are 2 possible
configurations:

e.g. n=3

000, 001, 010, 011, 100, 101, 110, 111

n

Computation:

the task to evaluate a function on any given input

e.g., we can compute the parity of a 3-bit string
e.g., we can compute the sum of a pair of inputs

Computation:

the task to evaluate a function on any given input

e.g., we can compute the parity of a 3-bit string
e.g., we can compute the sum of a pair of inputs

Questions:

Do we need to rebuild our computing machine every
time we change our computation?

Is there a collection of simple steps versatile enough
so that they can be composed to compute anything?

Gates

Definition: A gate with r input bits and s output bits
is a function from {0,1} to {0,1} .r s

Gates

Definition: A gate with r input bits and s output bits
is a function from {0,1} to {0,1} .

e.g.: NOT gate, with r=s=1, NOT(0)=1
NOT(1)=0

r s

Gates

Definition: A gate with r input bits and s output bits
is a function from {0,1} to {0,1} .

e.g.: NOT gate, with r=s=1, NOT(0)=1
NOT(1)=0

e.g.: AND gate, with r=2, s=1, AND(00)=0
AND(01)=0
AND(10)=0
AND(11)=1

r s

Gates

Definition: A gate with r input bits and s output bits
is a function from {0,1} to {0,1} .

e.g.: NOT gate, with r=s=1, NOT(0)=1
NOT(1)=0

e.g.: AND gate, with r=2, s=1, AND(00)=0
AND(01)=0
AND(10)=0
AND(11)=1

e.g.: FANOUT, with r=1, s=2, FANOUT(0)=00
FANOUT(1)=11

r s

Computation by composing gates

e.g., can we compute the OR gate
 (r=2, s=1)
 if you are allowed to use the
 AND gate and the NOT gate?

OR(00)=0
OR(01)=1
OR(10)=1
OR(11)=1

Computation by composing gates

e.g., can we compute the OR gate
 (r=2, s=1)
 if you are allowed to use the
 AND gate and the NOT gate?

OR(00)=0
OR(01)=1
OR(10)=1
OR(11)=1

Answer: for any two bits a and b, the following holds
 NOT(AND(NOT(a), NOT(b))) = OR(ab)

Circuit representation:

a

b

NOT

NOT
AND NOT OR(ab)

General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.
3. The direction of an edge gives the direction of time.
4. Gates are partially time-ordered.

a

b

NOT

NOT
AND NOT OR(ab)

e.g.,

General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.
3. The direction of an edge gives the direction of time.
4. Gates are partially time-ordered.

5. Input/output bits of a gate are given by incoming/
 outgoing edges.

AND
e.g.

General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.
3. The direction of an edge gives the direction of time.
4. Gates are partially time-ordered.

5. Input/output bits of a gate are given by incoming/
 outgoing edges.
6. An edge takes the output bit of a gate to the input
 bit of a subsequent gate.

a

b

NOT

NOT
AND

e.g.,

General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.
3. The direction of an edge gives the direction of time.
4. Gates are partially time-ordered.

5. Input/output bits of a gate are given by incoming/
 outgoing edges.
6. An edge takes the output bit of a gate to the input
 bit of a subsequent gate.
7. Input/output bits of the ciruit are source/sink vertices.

8. A circuit shows which bits are transformed by
 gates, and how simple functions given by the
 gates are composed to obtain any computation.

Circuit example:

0

0 FANOUT 0

AND

1
1

0

0
NOT

AND

time runs from left to right, arrows often omitted

Circuit example:

0

0 FANOUT 0

AND

1
1

0

0
NOT

AND

time runs from left to right, arrows often omitted

Not acyclic:

Not a circuit example:

NOT

Questions:

Do we need to rebuild our computing machine every
time we change our computation?

Is there a collection of gates versatile enough so that
they can be composed to compute anything?

A set of gates G is universal if :

Definition: universal set of gates

n m for any function f : {0,1} -> {0,1}
 there is a circuit to compute f using the gates in G.

 for any positive integers n,m
 and

1. If the number of output bits m=1,
 then f is given by a truth table,
 and can be computed by a circuit with
 AND and NOT gates.

Example:

(e.g., OR gates)

1. If the number of output bits m=1,
 then f is given by a truth table,
 and can be computed by a circuit with
 AND and NOT gates.

2. For general f (larger m), given FANOUT, we can
 computer each output bit using {AND,NOT}.

Theorem: {AND,NOT,FANOUT} is universal.

Example:

Exercise:

Define XOR(a,b) = a+b mod 2. Is {XOR} universal?

XOR
a

b
a+b mod 2

Exercise:

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2).

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b

Proof: exercise. Hint: how to compute each of AND,
NOT, FANOUT using TOFFOLI ? Qn: do we need 0/1?

Exercise:

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2).

Theorem: assuming the ability to prepare 0 and 1
 as inputs, {TOFFOLI} is universal.

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b

Proof: exercise. Hint: how to compute each of AND,
NOT, FANOUT using TOFFOLI ? Qn: do we need 0/1?

Exercise:

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2)

Theorem: assuming the ability to prepare 0 and 1
 as inputs, {TOFFOLI} is universal.

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b

Corollary: TOFFOLI self-inverse, gives reversible comp
 & quantum computation of classical circuits !

Why the circuit model?

1. Facilitates analysis

2. Pathway for implementation

Examples: complexity, reversible computation.

Circuit complexity:

Fix a universal set of gates G, and a computation.

(e.g., factoring positive integers n)

Hardness (complexity) measures:

Generate a family of circuits for each input size.

Width w : number of wires (space) in the circuits
Depth d : number of (non-parallelizable) time steps
 in the circuits
Size : wd

(We care about how w,d grow with the input size.)

Exercise:

How does the specific choice of a finite universal set
of gates affect the depth and width?

2. Summary of theory of classical computation

(c) Models of computation
 (Turing Machines, randomized computation)
 (Optional reading, NC 3.1, KLM 1.2)

(a) Bits, gates, circuits, universality, complexity
 (In class, NC 3.1.2, KLM 1.3)

(b) The linear algebra formalism (classical)
 (In class, KLM 1.4)

(d) Reversible computation
(KLM 1.5, NC 3.2.5)

(b) The linear algebra formalism (classical)

Goal: represent bit configurations as vectors, and
 represent the action of the gates as matrices.

Why?
- analysis via powerful tools from linear/Lie algebra
- simple composition rules
- warm up for quantum!

(b) The linear algebra formalism (classical)

Goal: represent bit configurations as vectors, and
 represent the action of the gates as matrices.

We identify:

0 as 1 as

e.g.1 What matrix corresponds to the NOT gate?

Linear algebra:

M = = e =

i-th position
What is Me ?

i

i

Linear algebra:

M = = e =

i-th position
What is Me ? c

i

If M e = v
i i for all i, what is M ?

i i

Linear algebra:

M = = e =

i-th position
What is Me ? c

i

If M e = v
i i for all i, what is M ?

i i

M =

Recipe to reconstruct the matrix!

(b) The linear algebra formalism (classical)

Goal: represent bit configurations as vectors, and
 represent the action of the gates as matrices.

0 as 1 as

e.g.1 What matrix M corresponds to the NOT gate?

We identify:

(b) The linear algebra formalism (classical)

Goal: represent bit configurations as vectors, and
 represent the action of the gates as matrices.

0 as 1 as

e.g.1 What matrix M corresponds to the NOT gate?

We identify:

NOT(0) = 1, so, M takes to which is the
1st column of M

(b) The linear algebra formalism (classical)

Goal: represent bit configurations as vectors, and
 represent the action of the gates as matrices.

0 as 1 as

e.g.1 What matrix M corresponds to the NOT gate?

We identify:

NOT(0) = 1, so, M takes to which is the
1st column of M

NOT(1) = 0, so, M takes to

M =
0 1
1 0

which is the
2nd column of M

0 as 1 as

00 as 01 as 10 as 11 as

e.g.2 FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT,

(a) how many columns does F has? 2? 4?
(b) how many rows?

0 as 1 as

00 as 01 as 10 as 11 as

e.g.2 FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT,
1st col of F is:

0 as 1 as

00 as 01 as 10 as 11 as

e.g.2 FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT,
1st col of F is: 2nd col is:

0 as 1 as

00 as 01 as 10 as 11 as

e.g.2 FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT,
1st col of F is: 2nd col is:

0 as 1 as

00 as 01 as 10 as 11 as

e.g.2 FANOUT(0) = 00, FANOUT(1) = 11

1 0
0 0
0 0
0 1

F =

We identify:

If F is the matrix that corresponds to FANOUT,
1st col of F is: 2nd col is:

Exercise: which of the following corresponds to AND

1 1 1 0
0 0 0 1

(a) 0 0
0 1

(b) 0 1
0 0
0 0
1 0

(d) 1 0 0 0
0 1 1 1

(e)

1 0
0 0
0 1
0 0

(c)

Exercise:

Let CNOT(a,b) = (a, a b mod 2).

What matrix corresponds to CNOT?

is a matrix with 2 columns,
the i-th column is the vector (of length 2)
representing f(b(i)) where b(i) is the i-th bitstring
in the ordered list :

Summary:

The matrix representation for a gate

 f: {0,1} -> {0,1}
n m

n
m

00...00, 00...01, 00...10, 00...11, , 11...11.

We've learnt how to derive the matrix representation
for a gate.

What about a circuit of gates?

Goal: for a circuit, we want to derive the
 transformation on the input string by
 composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of
 vectors.

2a. Evolve the register(s) acted on by a gate G,
 leaving other registers unchanged.

2b. Derive the matrix representation of the joint
 system due to the gate G.

3. Compose the evolutions by the gates in the
 circuit (multiply the matrix representations).

Definition: tensor product for vectors

Let

The tensor product of a, b,
denoted as
has nm entries given by:

Properties of tensor product:

1. In general,

2. For all a, b, c,

Proof left as exercise.

Goal: for a circuit, we want to derive the
 transformation on the input string by
 composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of
 vectors.

2a. Evolve the register(s) acted on by a gate G,
 leaving other registers unchanged.

2b. Derive the matrix representation of the joint
 system due to the gate G.

3. Compose the evolutions by the gates in the
 circuit (multiply the matrix representations).

Example:

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

If s = 0, a = 1
0

if s = 1, a = 0
1

Similarly for t and b.

State 1 = . What is state 2?
 What matrix transforms
 state 1 to state 2?

Example:

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What is state 2?

In bit form: stt.

In vector form:

What matrix takes

to ?

1 0
0 0
0 0
0 1

F = where

What matrix takes to ? 1 0
0 0
0 0
0 1

F =

1
0

1
0

1
0

1
0
0
0

=
1
0
0
0

0
0
0
0

1st column =

=

image of

What matrix takes to ? 1 0
0 0
0 0
0 1

F =

1
0

1
0

1
0

1
0
0
0

=
1
0
0
0

0
0
0
0

1st col =

=

1
0

0
1

1
0

0
0
0
1

=
0
0
0
1

0
0
0
0

2nd col =

=

F F

What matrix takes to ? 1 0
0 0
0 0
0 1

F =

1
0

1
0

1
0

1
0
0
0

=
1
0
0
0

0
0
0
0

1st col =

=

1
0

0
1

1
0

0
0
0
1

=
0
0
0
1

0
0
0
0

2nd col =

=

3rd col =

0
1

1
0
0
0

=
0
0
0
0

1
0
0
0

=

F F 0
1

1
0

F

What matrix takes to ? 1 0
0 0
0 0
0 1

F =

1
0

1
0

1
0

1
0
0
0

=
1
0
0
0

0
0
0
0

1st col =

=

1
0

0
1

1
0

0
0
0
1

=
0
0
0
1

0
0
0
0

2nd col =

=

3rd col =

0
1

1
0
0
0

=
0
0
0
0

1
0
0
0

=

4th col

=
0
0
0
0

0
0
0
1

F F 0
1

1
0

F

What matrix takes to ? 1 0
0 0
0 0
0 1

F =

=
1
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
1

Answer

= 1 F 0 F

0 F 1 F

:= 1 0
0 1

F = I F2

Definition: tensor product for matrices

Let A = B =

Then, A B =

Properties of tensor product of matrices:

1. Consistent with tensor product of vectors as a
 special case.

2. (A B) (a b) = (Aa) (Bb)

3. (A B) (C D) = (AC) (BD)

Proof: exercise

Example:

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by
the entire circuit?

state 1 =

state 2 = I F

Goal: for a circuit, we want to derive the
 transformation on the input string by
 composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of
 vectors.

2a. Evolve the register(s) acted on by a gate G,
 leaving other registers unchanged.

2b. Derive the matrix representation of the joint
 system due to the gate G.

3. Compose the evolutions by the gates in the
 circuit (multiply the matrix representations).

If M is the matrix rep of G, then is the
matrix rep on the joint system.

Example:

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by
the entire circuit? Let A = 1 1 1 0

0 0 0 1

state 1 =

state 2 = I F

state 3 = (A I) (I F) (a b)

Example:

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by
the entire circuit? Let A = 1 1 1 0

0 0 0 1
, X = 0 1

1 0
.

state 1 =

state 2 = I F

state 3 = (A I) (I F) (a b)

state 4 = A (X I) (A I) (I F) (a b)

For all a and b, the circuit takes

to A (X I) (A I) (I F) (a b)

The transformation is thus given by the matrix

A (X I) (A I) (I F)

1 1 1 0
0 0 0 1= 0 0

0 0
1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
1

1. From a circuit, a gate on the i-th bit transforms the
 joint vector by

Summary:

I A I

on bits 1, 2, ..., i-1 on bits i+1, i+2, ...

on the i-th bit

Mi =

matrix corresponding to the i-th gate

1. From a circuit, a gate on the i-th bit transforms the
 joint vector by

Summary:

I A I

on bits 1, 2, ..., i-1 on bits i+1, i+2, ...

on the i-th bit

2. We multiple the matrices corresponding to the
 gates in the circuit to get the transformation by
 the circuit: Mr ... M2 M1

first gatesecond gatelast gate

Mi =

matrix corresponding to the i-th gate

2. Summary of theory of classical computation

(c) Models of computation
 (Turing Machines, randomized computation)
 (Optional reading, NC 3.1, KLM 1.2)

(a) Bits, gates, circuits, universality, complexity
 (In class, NC 3.1.2, KLM 1.3)

(b) The linear algebra formalism (classical)
 (In class, KLM 1.4)

(d) Reversible computation
(KLM 1.5, NC 3.2.5)

Probabilistic computation:

The input bits are now given according to a
distribution. For example, for 1 bit, the input
vector is now :

and similarly for more input bits.

Probabilistic computation:

The input bits are now given according to a
distribution. For example, for 1 bit, the input
vector is now :

and similarly for more input bits.

Theorem: the matrix representation for the circuit
transforms the input distribution (the input vector)
to the output distribution (the output vector).

Proof: exercise.

Reason: the matrix representation of the circuit acts
LINEARLY on the vector representation of the input.

Example:

Probabilities of 00, 01, 10, 11 are 1/2, 1/3, 0, 1/6 resp.

NOT
AND

The output distribution is:

Example:

Probabilities of 00, 01, 10, 11 are 1/2, 1/3, 0, 1/6 resp.

NOT
AND

1 1 1 0
0 0 0 1

10
01

10
01

00
00

00
00

The output distribution is:

matrix rep for the circuit

1/2
1/3
 0
1/6

input distribution

= 1011
0100

1/2
1/3
 0
1/6

= 2/3
1/3

output = 0
with pr 2/3
output = 1
with pr 1/3

Reversible computation:

We will learn that quantum mechanical evolution is
reversible. But many classical gates are not reversible.

Question: can a quantum computer perform any
classical computation?

Reversible computation:

We will learn that quantum mechanical evolution is
reversible. But many classical gates are not reversible.

Question: can a quantum computer perform any
classical computation?

Answer: yes, luckily!

Idea: use the universal gate set {TOFFOLI} where the
gate TOFFOLI is self-inverse.

Reversible computation:

input

output

junk
ancillas

more
junk

output
holder

input
copied

input
output

ancillas

more
ancillas

junk

TOFFOLI gates only

ancillas prepared
in 1's instead ... or
the gate T instead
of TOFFOLI

Reversible computation (canonical):

output

no
more
junk

output
holder

input
copied

input

ancillas

more
ancillas

reverse
gate
by
gate

reversible
copying
by CNOTS

a a

b a b

CNOT
Both TOFFOLI
& CNOT are
reversible !

Overhead:

An irreversible circuit C with width w and depth d
can be turned into a reversible circuit C" with width
O(wd) and depth d, copying the output and cleaning
roughly preserves the width and doubles the depth.

Bennett 73: much more efficient reversible versions

 depth O(d) and width O(w log(d))

or

 depth O(d) and width O(wd).

NB. depth = time, width = space in KLM.

Summary for topic 2:

- Bits, gates, circuits, width, depth, size, universality
corollary: reversible computation

- linear algebraic representation of bit strings & gates
corollary: probabilistic computation

These results are readily extended to the quantum
setting.

