
2. Summary of theory of classical computation

(c) Models of computation 
        (Turing Machines, randomized computation) 
        (Optional reading, NC 3.1, KLM 1.2)

(a) Bits, gates, circuits, universality, complexity 
        (In class, NC 3.1.2, KLM 1.3)

(b) The linear algebra formalism (classical) 
        (In class, KLM 1.4) 

(d) Reversible computation 
(KLM 1.5, NC 3.2.5)



Unit of classical information: 

1 bit: use 0 or 1 to label one of two possible
configurations.

Physically, the system has 2 distinguishable
states that can be prepared and manipulated.



Unit of classical information: 

1 bit: use 0 or 1 to label one of two possible
configurations.

Physically, the system has 2 distinguishable
states that can be prepared and manipulated.

With n such systems, there are 2   possible 
configurations:

e.g. n=3

000, 001, 010, 011, 100, 101, 110, 111 

n



Computation:

the task to evaluate a function on any given input
 
e.g., we can compute the parity of a 3-bit string
e.g., we can compute the sum of a pair of inputs 



Computation:

the task to evaluate a function on any given input
 
e.g., we can compute the parity of a 3-bit string
e.g., we can compute the sum of a pair of inputs 

Questions: 

Do we need to rebuild our computing machine every
time we change our computation?

Is there a collection of simple steps versatile enough 
so that they can be composed to compute anything?
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Gates

Definition: A gate with r input bits and s output bits 
is a function from {0,1}  to {0,1}  .

e.g.: NOT gate, with r=s=1, NOT(0)=1
NOT(1)=0

e.g.: AND gate, with r=2, s=1, AND(00)=0
AND(01)=0
AND(10)=0
AND(11)=1

e.g.: FANOUT, with r=1, s=2, FANOUT(0)=00
FANOUT(1)=11

r s



Computation by composing gates 

e.g., can we compute the OR gate
        (r=2, s=1)
        if you are allowed to use the
        AND gate and the NOT gate?

OR(00)=0
OR(01)=1
OR(10)=1
OR(11)=1



Computation by composing gates 

e.g., can we compute the OR gate
        (r=2, s=1)
        if you are allowed to use the
        AND gate and the NOT gate?

OR(00)=0
OR(01)=1
OR(10)=1
OR(11)=1

Answer: for any two bits a and b, the following holds
             NOT( AND( NOT(a), NOT(b) ) ) = OR(ab) 

Circuit representation: 

a

b

NOT

NOT
AND NOT OR(ab)



General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.  
3. The direction of an edge gives the direction of time.  
4. Gates are partially time-ordered. 

a

b

NOT

NOT
AND NOT OR(ab)

e.g., 
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General properties of a circuit:

1. A circuit is an acyclic directed graph
2. Gates are vertices.  
3. The direction of an edge gives the direction of time.  
4. Gates are partially time-ordered. 

5. Input/output bits of a gate are given by incoming/
    outgoing edges.  
6. An edge takes the output bit of a gate to the input 
    bit of a subsequent gate.  
7. Input/output bits of the ciruit are source/sink vertices. 

8. A circuit shows which bits are transformed by 
    gates, and how simple functions given by the 
    gates are composed to obtain any computation.  



Circuit example:

0

0 FANOUT 0

AND

1
1

0

0
NOT

AND

time runs from left to right, arrows often omitted



Circuit example:

0

0 FANOUT 0

AND

1
1

0

0
NOT

AND

time runs from left to right, arrows often omitted

Not acyclic: 

Not a circuit example:

NOT



Questions: 

Do we need to rebuild our computing machine every
time we change our computation?

Is there a collection of gates versatile enough so that 
they can be composed to compute anything?



A set of gates G is universal if :  

Definition: universal set of gates

n m   for any function f : {0,1}  -> {0,1}  
   there is a circuit to compute f using the gates in G.

 
   for any positive integers n,m   
   and 

 



1. If the number of output bits m=1, 
    then f is given by a truth table, 
            and can be computed by a circuit with 
            AND and NOT gates. 

Example:

(e.g., OR gates)



1. If the number of output bits m=1, 
    then f is given by a truth table, 
            and can be computed by a circuit with 
            AND and NOT gates. 

2. For general f (larger m), given FANOUT, we can 
    computer each output bit using {AND,NOT}. 

Theorem: {AND,NOT,FANOUT} is universal. 

Example:



Exercise: 

Define XOR(a,b) = a+b mod 2.  Is {XOR} universal? 

XOR
a

b
a+b mod 2



Exercise: 

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2).

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b



Proof: exercise.  Hint: how to compute each of AND, 
NOT, FANOUT using TOFFOLI ?  Qn: do we need 0/1?

Exercise: 

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2).

Theorem: assuming the ability to prepare 0 and 1 
                 as inputs, {TOFFOLI} is universal.

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b



Proof: exercise.  Hint: how to compute each of AND, 
NOT, FANOUT using TOFFOLI ?  Qn: do we need 0/1? 

Exercise: 

Define TOFFOLI(a,b,c) = (a, b, c + AND(a,b) mod 2)

Theorem: assuming the ability to prepare 0 and 1 
                 as inputs, {TOFFOLI} is universal.

a

b

c + AND(a,b) mod 2

TOFFOLI

c

a

b

Corollary: TOFFOLI self-inverse, gives reversible comp
               & quantum computation of classical circuits ! 



Why the circuit model? 

1. Facilitates analysis

2. Pathway for implementation

Examples: complexity, reversible computation.



Circuit complexity:

Fix a universal set of gates G, and a computation. 

(e.g., factoring positive integers n) 

Hardness (complexity) measures: 

Generate a family of circuits for each input size.  

Width w : number of wires (space) in the circuits  
Depth d : number of (non-parallelizable) time steps 
               in the circuits 
Size : wd 

(We care about how w,d grow with the input size.) 



Exercise: 

How does the specific choice of a finite universal set 
of gates affect the depth and width?
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(b) The linear algebra formalism (classical) 

Goal: represent bit configurations as vectors, and 
         represent the action of the gates as matrices.

Why? 
- analysis via powerful tools from linear/Lie algebra
- simple composition rules
- warm up for quantum!



(b) The linear algebra formalism (classical) 

Goal: represent bit configurations as vectors, and 
         represent the action of the gates as matrices.

We identify:

0 as                  1 as  

e.g.1 What matrix corresponds to the NOT gate? 



Linear algebra: 

M = = e  =

i-th position
What is Me ?

i

i



Linear algebra: 
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i-th position
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i
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Linear algebra: 

M = = e  =

i-th position
What is Me ?    c

i

If M e  = v 
i i for all i, what is M ? 

i i

M = 

Recipe to reconstruct the matrix!
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(b) The linear algebra formalism (classical) 

Goal: represent bit configurations as vectors, and 
         represent the action of the gates as matrices.

0 as                  1 as  

e.g.1 What matrix M corresponds to the NOT gate? 

We identify:

NOT(0) = 1, so, M takes to which is the 
1st column of M 

NOT(1) = 0, so, M takes to 

M = 
0  1
1  0

which is the 
2nd column of M 



0 as                  1 as  

00 as            01 as             10 as           11 as 

e.g.2  FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT, 

(a) how many columns does F has?  2?  4?    
(b) how many rows?  



0 as                  1 as  

00 as            01 as             10 as           11 as 

e.g.2  FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT, 
1st col of F is:   
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e.g.2  FANOUT(0) = 00, FANOUT(1) = 11
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0 as                  1 as  

00 as            01 as             10 as           11 as 

e.g.2  FANOUT(0) = 00, FANOUT(1) = 11

We identify:

If F is the matrix that corresponds to FANOUT, 
1st col of F is:    2nd col is:



0 as                  1 as  

00 as            01 as             10 as           11 as 

e.g.2  FANOUT(0) = 00, FANOUT(1) = 11

1 0 
0 0
0 0 
0 1

F = 

We identify:

If F is the matrix that corresponds to FANOUT, 
1st col of F is:    2nd col is:



Exercise: which of the following corresponds to AND

1 1 1 0 
0 0 0 1

(a) 0 0 
0 1

(b) 0 1 
0 0
0 0
1 0

(d) 1 0 0 0 
0 1 1 1

(e) 

1 0 
0 0
0 1
0 0

(c) 



Exercise: 

Let CNOT(a,b) = (a, a    b mod 2). 

What matrix corresponds to CNOT? 



is a matrix with 2   columns, 
the i-th column is the vector (of length 2    ) 
representing f(b(i)) where b(i) is the i-th bitstring 
in the ordered list :

Summary:

The matrix representation for a gate 

 f: {0,1}   -> {0,1}
n m

n
m

00...00, 00...01, 00...10, 00...11, .... , 11...11.  



We've learnt how to derive the matrix representation
for a gate.  

What about a circuit of gates?  



Goal: for a circuit, we want to derive the  
         transformation on the input string by  
         composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of 
    vectors.  

2a. Evolve the register(s) acted on by a gate G,  
      leaving other registers unchanged.

2b. Derive the matrix representation of the joint 
      system due to the gate G.  

3. Compose the evolutions by the gates in the 
    circuit (multiply the matrix representations).



Definition: tensor product for vectors

Let 

The tensor product of a, b, 
denoted as 
has nm entries given by: 



Properties of tensor product: 

1. In general, 

2. For all a, b, c, 

Proof left as exercise.  



Goal: for a circuit, we want to derive the  
         transformation on the input string by  
         composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of 
    vectors.  

2a. Evolve the register(s) acted on by a gate G,  
      leaving other registers unchanged.

2b. Derive the matrix representation of the joint 
      system due to the gate G.  

3. Compose the evolutions by the gates in the 
    circuit (multiply the matrix representations).



Example: 

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

If s = 0, a = 1
0

if s = 1, a = 0
1

Similarly for t and b.  

State 1 = .  What is state 2?  
   What matrix transforms 
   state 1 to state 2?



Example: 

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What is state 2? 

In bit form: stt.  

In vector form: 

What matrix takes 

to ?

1 0 
0 0
0 0 
0 1

F = where



What matrix takes to ? 1 0 
0 0
0 0 
0 1

F = 

1
0

1
0

1
0

1
0
0
0

= 
1
0
0
0

0
0
0
0

1st column = 

=

  
image of 



What matrix takes to ? 1 0 
0 0
0 0 
0 1

F = 

1
0

1
0

1
0

1
0
0
0

= 
1
0
0
0

0
0
0
0

1st col = 

=

1
0

0
1

1
0

0
0
0
1

= 
0
0
0
1

0
0
0
0

2nd col = 

=

F F



What matrix takes to ? 1 0 
0 0
0 0 
0 1

F = 

1
0

1
0

1
0

1
0
0
0

= 
1
0
0
0

0
0
0
0

1st col = 

=

1
0

0
1

1
0

0
0
0
1

= 
0
0
0
1

0
0
0
0

2nd col = 

=

3rd col = 

0
1

1
0
0
0

= 
0
0
0
0

1
0
0
0

=

F F 0
1

1
0

F



What matrix takes to ? 1 0 
0 0
0 0 
0 1

F = 

1
0

1
0

1
0

1
0
0
0

= 
1
0
0
0

0
0
0
0

1st col = 

=

1
0

0
1

1
0

0
0
0
1

= 
0
0
0
1

0
0
0
0

2nd col = 

=

3rd col = 

0
1

1
0
0
0

= 
0
0
0
0

1
0
0
0

=

4th col

= 
0
0
0
0

0
0
0
1

F F 0
1

1
0

F



What matrix takes to ? 1 0 
0 0
0 0 
0 1

F = 

= 
1
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
1

Answer

= 1 F   0 F

0 F   1 F

:= 1 0
0 1

F  = I      F2



Definition: tensor product for matrices

Let A = B =

Then, A    B = 



Properties of tensor product of matrices:

1. Consistent with tensor product of vectors as a
    special case.

2.  ( A    B ) ( a    b ) = (Aa)     (Bb)

3.  ( A    B ) ( C    D ) = (AC)    (BD) 

Proof: exercise



Example: 

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by 
the entire circuit? 

state 1 = 

state 2 =  I    F 



Goal: for a circuit, we want to derive the  
         transformation on the input string by  
         composing the actions of individual gates.

Prescription:

1. Describe the input data as a tensor product of 
    vectors.  

2a. Evolve the register(s) acted on by a gate G,  
      leaving other registers unchanged.

2b. Derive the matrix representation of the joint 
      system due to the gate G.  

3. Compose the evolutions by the gates in the 
    circuit (multiply the matrix representations).

If M is the matrix rep of G, then is the 
matrix rep on the joint system.  



Example: 

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by 
the entire circuit? Let A = 1 1 1 0 

0 0 0 1

state 1 = 

state 2 =  I    F 

state 3 =  (A    I)  (I    F)  (a    b) 



Example: 

b

FANOUT

AND

a

state 1 state 2 state 3 state 4

?
NOT

AND

s

t

What matrix corresponds to the transformation by 
the entire circuit? Let A = 1 1 1 0 

0 0 0 1
, X = 0 1

1 0
.

state 1 = 

state 2 =  I    F 

state 3 =  (A    I)  (I    F)  (a    b) 

state 4 = A  (X    I)  (A    I)  (I    F)  (a    b) 



For all a and b, the circuit takes 

to A  (X    I)  (A    I)  (I    F)  (a    b) 

The transformation is thus given by the matrix 

A  (X    I)  (A    I)  (I    F) 

1 1 1 0 
0 0 0 1= 0 0

0 0
1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1
0
0
0

0
0
0
0

0
0
0
1

0
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

0
0
0
1



1. From a circuit, a gate on the i-th bit transforms the
    joint vector by 

Summary: 

I     A     I 

on bits 1, 2, ..., i-1 on bits i+1, i+2, ...

on the i-th bit

Mi = 

matrix corresponding to the i-th gate



1. From a circuit, a gate on the i-th bit transforms the
    joint vector by 

Summary: 

I     A     I 

on bits 1, 2, ..., i-1 on bits i+1, i+2, ...

on the i-th bit

2. We multiple the matrices corresponding to the 
    gates in the circuit to get the transformation by 
    the circuit: Mr ... M2 M1

first gatesecond gatelast gate

Mi = 

matrix corresponding to the i-th gate
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Probabilistic computation:

The input bits are now given according to a 
distribution.   For example, for 1 bit, the input 
vector is now : 

and similarly for more input bits.  



Probabilistic computation:

The input bits are now given according to a 
distribution.   For example, for 1 bit, the input 
vector is now : 

and similarly for more input bits.  

Theorem: the matrix representation for the circuit 
transforms the input distribution (the input vector)
to the output distribution (the output vector). 

Proof: exercise. 

Reason: the matrix representation of the circuit acts 
LINEARLY on the vector representation of the input.  



Example: 

Probabilities of 00, 01, 10, 11 are 1/2, 1/3, 0, 1/6 resp.

NOT
AND

The output distribution is: 



Example: 

Probabilities of 00, 01, 10, 11 are 1/2, 1/3, 0, 1/6 resp.

NOT
AND

1 1 1 0 
0 0 0 1

10
01

10
01

00
00

00
00

The output distribution is: 

matrix rep for the circuit

1/2
1/3
  0
1/6

input distribution

= 1011
0100

1/2
1/3
 0
1/6

= 2/3
1/3

output = 0
with pr 2/3
output = 1
with pr 1/3



Reversible computation:

We will learn that quantum mechanical evolution is 
reversible.  But many classical gates are not reversible.

Question: can a quantum computer perform any 
classical computation? 



Reversible computation:

We will learn that quantum mechanical evolution is 
reversible.  But many classical gates are not reversible.

Question: can a quantum computer perform any 
classical computation? 

Answer: yes, luckily!  

Idea: use the universal gate set {TOFFOLI} where the
gate TOFFOLI is self-inverse.  



Reversible computation:

input

output

junk
ancillas

more 
junk

output 
holder

input
copied

input
output

ancillas

more
ancillas

junk

TOFFOLI gates only

ancillas prepared 
in 1's instead ... or
the gate T instead
of TOFFOLI



Reversible computation (canonical):

output

no
more 
junk

output 
holder

input
copied

input

ancillas

more
ancillas

reverse
gate
by
gate

reversible 
copying 
by CNOTS

a a

b a   b

CNOT
Both TOFFOLI 
& CNOT are 
reversible ! 



Overhead:

An irreversible circuit C with width w and depth d 
can be turned into a reversible circuit C" with width
O(wd) and depth d, copying the output and cleaning
roughly preserves the width and doubles the depth. 

Bennett 73: much more efficient reversible versions

   depth O(d     ) and width O(w log(d))

or

   depth O(d) and width O(wd  ).

NB. depth = time, width = space in KLM.  



Summary for topic 2: 

- Bits, gates, circuits, width, depth, size, universality
corollary: reversible computation

- linear algebraic representation of bit strings & gates
corollary: probabilistic computation

These results are readily extended to the quantum 
setting.


