3. Summary of quantum mechanics

(a) Linear algebra and Dirac notation
(Self-study + test, NC 2.1, KLM 2.1-2)6, 2.8)

(b) Axioms of guantum mechanics
(NC 2.2.1-2.2.5, 2.2.7, KLM 3.1-3.4)

(c) Composite systems, entanglement,
operations on 1 out of 2 systems, locality of QM
(NC 2.2.8-2.2.9)



Axioms of quantum mechanics

1. Space postulate

2. State postulate

3. Composite systems
4. Evolution

5. Measurements

Two equivalent formalisms: pure vs mixed states.
We use the simpler pure state formalism on parts 2-7.

Like Go, QM can be complex with simple rules.



1. Space postulate

A finite physical system S is associated with a
complex Hilbert space H with finite dimension,
say, d.




1. Space postulate

A finite physical system S is associated with a
complex Hilbert space H with finite dimension,

say, d. /

Side note: this is a common description in QM texts.
On finite dimensions, this is equivalent to complex
Eucliden space with the usual norm (& inner product).




1. Space postulate

A finite physical system S is associated with a
complex Hilbert space H with finite dimension,
say, d.

2. State postulate

The state of the system S is given by a unit vector
In the associated Hilbert space H.




Example: when d=2, the state, a 2-dim complex unit
vector, is called a "qubit" (a guantum bit)
coined by Schumacher

In vector form: [ o, \ where a,, a, € C
O ]Oo\ —}—]Q,‘ — l



Example: when d=2, the state, a 2-dim complex unit

vector, is called a "qubit" (a quantum bit)
coined by Schumacher

In vector form: [, \ where q,,a, € C
a' ‘Qo‘ + lal\ = l

In Dirac notation, vectors are written as "kets":
(Computational) basis vectors:

e, [2) e

o) T )

= 0, /0)+0a,]1) = ]¥)



A general d-dim complex vector is given by:
(OI \ A 7
0, | where \V/L A, E ) Al = |

)

-

—
(=

In Dirac notation, the ket is written as 2. % | 1)
=

where the i-th basis vector | §

i-th position—| | | is written as |1).




The ket (Y7, as a vector, has a dual written as Y|
which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a
vector v can be taken as the conjugate-transpose of v.



The ket [Y?, as a vector, has a dual written as </
which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a
vector v can be taken as the conjugate-transpose of v.

¥ = the dual is V| = [O\,*O&ju .(ﬁ]

4< % complex

conjugate



The ket (Y7, as a vector, has a dual written as <Y|
which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a
vector v can be taken as the conjugate-transpose of v.

(WY = g' the dual is Y| = [O\,*O\:(u ,O\f]
: d K
d = o<1l .
\ 72 =l /J\
d dual of | 1)
= 2.0:]1)
= = [01..0]

= transpose of |1)

special, only
for real vectors



Linear algebra in the bra-ket notation

1. Inner product
Let {Ie—,}}il be ANY basis.

(a) the inner product of |ei) |e5) is

(1 ifT=g
(ealey) &‘\J { 0 if T#]
Kronecker delta-function
which we call "delta-function"
In this course.
(Elsewhere delta-function may
refer to the "Dirac delta-function"
which is not a function, and will
not be used in this course. )



Linear algebra in the bra-ket notation

1. Inner product
Let {)e;}}f{i( be ANY basis.

(a) the inner product of |e7) [e5) is

1 if 1=]
erley = &3 =
Ceileg) = & {Oif"l#j

d
(b) For (¥ =3 0;les), (&) = 5 b; Jes)
1=l J=I
their inner product is

d % d *
Yld) = 2 o; (el '_Zlbj}ﬁj> = AZO‘T b ;
J= =l

A ]

the "bra-ket" ‘Slj so set i=j and obtain a single sum




2. Outer product
3

For 1%y =301, (6Y=3b-]1)
1=l

their outer-product is

Y <P]

N
a,

x[bﬁ by - bzl

’\ matrix multiplication

23 %\
Aiby - - A by
By by - 6\1\0')3
adkf - Aa L-:\)

matrix representation



2. Outer product

d d

For [Yr» =2 0s]1), (¢ = by l7)
1=l J:I

their outer-product in Dirac notation is

A -
(Y P| = {EO‘TIQ Z- by (7|

=
4 4 *
= L L Oiby |17

T=l j=! <
k (i,j) entry of the matrix (Y )<{®|



2. Outer product

4

For [y =22 0:]7), (&)= zbJ 17
1=l LJ =|

their outer—product N Dirac notation is

el = L0017y £ 55 (71
d *J

L Osby [1)(71
':'.J:'

A
\ (i,j) entry of the matrix (V¥ ){d|

d

In general, any matrix M can be written as:
M = ZZ Mij |17

IJ =
where M has r rows and ¢ columns.



In general, any matrix M can be written as:
M = ZZI Mij |77
I J*
where M has r rows and c columns.

Exercise:

M= DMy 1, N= 22 N il

IJ'— K= Q=I

show that the product of M and N is given by

MN = f;i(ilMUN )) M4 |
=l 9=l \ j=

using the delta function for the inner product in
bra-ket notations.



2. Outer product

d

For (V) = 0|1y, ($7 = ZA:bj Ij}
1=l LJ:I

their outer-product (¥ )<{®]

IS a rank 1, dxd matrix taking (¢) to (V)

and any state orthogonal to (¢) to 0



3. Projectors
Let K be a c-dim subspace of H, with basis {Hi)}_‘: ,

Then, the projector onto K can be written as

= 5 50

(Projectors are crucial when we discuss
measurements.)



Axioms of quantum mechanics

v 1. Space postulate
J/ 2. State postulate
Dirac / bra-ket notation for states,
inner product, outer product, and projectors
3. Composite systems
4. Evolution
5. Measurements



3. Composite system postulate

Consider 2 systems S, T with respective associated
Hilbert spaces H and K.

The bipartite system ST is associated with the
Hilbert space which is the tensor product of H and K.



3. Composite system postulate

Consider 2 systems S, T with respective associated
Hilbert spaces H and K.

The bipartite system ST is associated with the
Hilbert space which is the tensor product of H and K.

If H has c dimensions and basis {( 12, 127 ., (c)} )
& K has d dimensions and basis { (1 27 .., (d)} ,

Then H ® K has cd dimensions and basis

ey, 78127, 1@ 1dY
2y QLYy, 178127, 1)@ 1d)

YRy, IRy, v (O ld)



What states are possible on a composite system?

(a) product states, which are of the form

Y?® (¢ € HeK
where (Y>< H and ()¢ K .




What states are possible on a composite system?

(a) product states, which are of the form

Y?® [¢) € He K
where Y < H and () ¢ K .

(b) entangled states, which cannot be written as
product states.

e.g., Eioye Ly ¢ (o
T T
oY ® [0 IDX-2ED

Proof idea: by contradiction. If it is a tensor
oroduct, say, of 2fo>+:11y and cled+d M.

Derive a contradiction concerning a,b,c,d.



Axioms of guantum mechanics

v/ 1. Space postulate
/2. State postulate
Dirac / bra-ket notation for states,
inner product, outer product, and projectors
/ 3. Composite systems
Product and entangled states
4. Evolution
5. Measurements



4. Evolution postulate:

The time evolution of states in a closed quantum
system is described by a unitary operator.




4. Evolution postulate:

The time evolution of states in a closed quantum
system is described by a unitary operator.

Notation: we use the "dagger" to denote the
conjugate transpose (aka the adjoint).

e.d., U is unitary iff AU = U U= 1.



4. Evolution postulate:

The time evolution of states in a closed quantum
system is described by a unitary operator.

Notation: we use the "dagger" to denote the
conjugate transpose (aka the adjoint).

e.g., U is unitary iff AU = Uu= 1.

Crucial fact: a unitary matrix takes a unit vector to
another unit vector. So, a legitimate quantum state
IS evolved to another legitimate quantum state.

Proof: exercise.



Examples of unitary evolution:

For d = 2, consider the Pauli matrices:

b= 1 = (67) = loXol+ 1]
G =x=() = 10Xl +11%0l
éj:Y: ( ) =dllo><ll+1(l><0| NB: 1. No need to
6= Z=(339) = loXol 111 yeheoenwe

e.g., 6y, (a10Y +b10) = aly+ biey (NOT gate)

The Hadamard matrix, H = r(‘l :) (Fourier trsf)



For d = 4, with basis {(oo>, (017, (107, (||>}

theunitary (| po ) tekes |ab) to | aeb)

0100
O 00 |
(D010,

and iIs called the CNOT.




For d = 8, with basis {(ooo>, (0017, (0107 (0117,
[100Y, [101Y, (110Y, [111) ]
the unitary /l 00 0 Y called the TOFFOLI

O 100 zeros
OO0 | 0
000 |

2eros

0
0
0
|

o - O O

0
|
0
0

O O O —

\ /

takes |abc)y to |[Ab ab®c),



For d = 8, with basis { (000%, [001%, (010% [011Y,
(100, (101Y, (110, (1117}

the unitary

takes

1000
0100
OO0 1| 0
O00 |

Z2eros

\

N\

Zeros

| 000
0100
000 |

O01 0 ;

labc)y to |Ab ab®c),

called the TOFFOLI

note: AND(a,b) = ab

Preview: action of these gates similar to classical
setting; just that our unit vector is in the 2-norm.



In general, a matrix U is unitary

-1HC
iff U= & for some hermitian matrix H

and real numberr.

PS A unitary is the most general transformation
effecting a change of basis.



In general, a matrix U is unitary

-1H(C
iff U= & for some hermitian matrix H

and real numberr.

Question: suppose a system is evolved under U, and
then under V, what is the combine evolution?

Answer: VU. Note that the product of two unitary

matrices is still unitary, so, composing two evolutions
Indeed gives a valid evolution.



In physics, the evolution postulate is given by
Schroedinger's equation:

Tho S 1Y) = Hit) 1Y)

where t is time, and the hermitian matrix H(t) is
called the "Hamiltonian" at time t.

If H(t) = H is time independent, then,
—THt

Vit)y= e LYIo))



In physics, the evolution postulate is given by
Schroedinger's equation:

TS 1Y) = Hit) 1Yie))

where t is time, and the hermitian matrix H(t) is
called the "Hamiltonian" attime t. ¥ =1

If H(t) = H is time independent, then,

()Y = @_\m [Y(0))

important, not just a choice since
we cannot travel back in time



In physics, the evolution postulate is given by
Schroedinger's equation:

TSIVt = Hie) LYie))

where t is time, and the hermitian matrix H(t) is
called the "Hamiltonian" at time t.

If H(t) = H is time independent, then,

YD = e Lvo))

The physical theory or the experimental setup
determines H(t) and the evolution.

In contrast, in guantum information processing,
we focus on the abstract unitary evolution.



Exercise: For any hamiltonian H, any unitary U,
any t, (a) show that

-lHt  + -1kt
€

Le "W =
where K is another hamiltonian.

(b) What is K in terms of U and H?

(c) What is the physical interpretation
of the answers in (a) and (b)?

: : " -lHt
Hint: use poser series decomposition for e

We will see that this is a very useful result in
quantum computation, so, you will derive it in
the test.



Axioms of guantum mechanics

v 1. Space postulate
/2. State postulate
Dirac / bra-ket notation for states,
iInner product, outer product, and projectors
/ 3. Composite systems
Product and entangled states
./ 4. Evolution
Linear, unitary
5. Measurements



5. Measurement postulate

Consider a d-dimensonal Hilbert space H.

Consider an arbitrary basis B = { [¢.)} Li,for H.

A complete von Neumann measurement on H
along the basis B does the following.




5. Measurement postulate

Consider a d-dimensonal Hilbert space H.

Consider an arbitrary basis B = { |€.)} i,for H.

A complete von Neumann measurement on H
along the basis B does the following.

a
If the pre-measurement state is (v = 7% a: \e-)
1z
then the measurement outputs:
. . 2
(1) a measurement outcome i with probability [4v| "

(2) a postmeasurement state \e;) if the outcome is I.

Note that the state being a unit vector gives a
proper probability distribution on the outcome.



Example: d=5, B= {17, [2), 137,14, IS?}
_ | L 3
Yr= g s+ 2w

The complete measurement along B has outcome
"1" with prob 1/8,
"2" with prob O,
"3" with prob 1/2,
"4" with prob 3/8,
"5" with prob O.




Example: d=2,
B= {131} where 1)z £ (1y+113)
W) = atoy + by

What are the probs to obtain the outcomes + & -7



Example: d=2,
B= {1t} where [£)= L (1o>x11)
Y)Y = alod + bl

What are the probs to obtain the outcomes + & -7

Valuable trick in QM: express info in a useful basis.

We want to rewrite [¥) = a1+ + b1



Example: d=2,
B= {16305} where [£)= L (1o>11)
Y = aloy + bItY
What are the probs to obtain the outcomes + & -7
We want to rewrite [¥) = o' 1+> + b’[—>,
From )= = (1o>x11))

we have 10> = = (|-)+|-)), 1= = (|-

“1\—

l.e., express the original basis in terms of the basis
we are measuring along



Example: d=2,

= {H—M—)} where [1)= —(lo>x(1))

¥y = aley + b1y

What are the probs to obtain the outcomes + & -7
We want to rewrite [¥) = a'\+) + b1
From [y = = (1o>x11))
we have 10> = = ([+)+[-)), 11> = = (-1 .
Answer: [¥Y = a (o> + b1

= aZ(I0+12)) + b = (- 1))

= Qa+b a—b
AT | +y + —

S, Prob("+") = 4§ latb|®, Prob("-") = 4 la-b|*,

)



5. Measurement postulate (from a few pages ago)

Consider a d-dimensonal Hilbert space H.

Consider an arbitrary basis B = { |€.)} i,for H.

A complete von Neumann measurement on H
along the basis B does the following.

d
If the pre-measurement state is (v = 72 a: |e-)
(=

then the measurement outputs:

o . 2
(1) a measurement outcome i with probability [4v| "
(2) a postmeasurement state \e;) if the outcome is I.

What are the most general measurements in QM?
Incomplete measurements!



The most general measurement is a coarse-graining
of a complete basis measurement. This is called an
iIncomplete measurement.

d
Let B = {\e;)}i‘jl Y7 = Z ailey) as before.
Let 51, S, ... Sk be a partition of {1,2,...,d}.
e NI+l , SiNSe=90, S0 0« S¢ ={1,2,....d}.

e.g.1,{1,2,3,4,5} can be partitioned into
S1={1,4},52={2,5},53 ={3}.



The most general measurement is a coarse-graining
of a complete basis measurement. This is called an

Incomplete measurement.

d
Let B = {\e_g};‘l (Y9 = Z i les) as before.
Let 51, S, ... Sk be a partition of {1,2,...,d}.
e NI#L , SiNSe=0, SIUS 0 « S¢ = {1,2,...,d}.

eqg.1, {1,2,3,4,5} can be partitioned into
S1={1,4},S2={2,5},S3 ={3}.

e.d.2, Soi = {1,3,5}, Seven = {2,4} is another
partition (k=2, odd=1, even=2).



The most general measurement is a coarse-graining
of a complete basis measurement. This is called an
Incomplete measurement.

4
Let B = {\e;)}sl (Y9 = 2Z i ley) as before.
Let S;, S, ... S¢ be a partition of {1,2,...,d}.
e NI+l , SiNSe=9, STUS U « S ={1,2,...,d}.

The partition defines a measurement with

(1) outcome | £ {1,2,...k} with prob 7. Q< |

labels for L€ Sj
the partition

(2) a postmeasurement state _7_;—§ O lew
Lo

if the outcome is j. Lz s, | &

\’Z_



In other words, the outcome is "which partition" and
we do not seek to distinguish the outcomes within

each partition.

Crucial: the postmeasurement state remains a linear
combination of basis states within the partition corr
to the outcome, and rescaled.

Complete measurement is the special case of the
partition: S1={1}, S2={2}, ..., Sd={d}.



Example: d=5, B= {117, 123, 137,147, 15)}

Consider an incomplete measurement with 2
outcomes where :

S.u=1{1,3,5} Sew.=12,4}

With prob 5/8, outcome = "odd",
postmeasurement state is (Em «—J_L_;\n)/\}%.

With prob 3/8, outcome = "even',

postmeasurement state is |4,



3. Summary of quantum mechanics

(a) Linear algebra and Dirac notation
(Self-study + test, NC 2.1, KLM 2.1-2.6, 2.8)

(b) Axioms of quantum mechanics mostly

(c) Composite systems, entanglement,
operations on 1 out of 2 systems, locality of QM
(NC 2.2.8-2.2.9)



Axioms of guantum mechanics

v/ 1. Space postulate
/2. State postulate
Dirac / bra-ket notation for states,

inner product, outer product, and projectors
/ 3. Composite systems

Product and entangled states
/ 4. Evolution

Linear, unitary

5. Measurements
Incomplete measurement along a basis, defined
by a partition of the labels of the basis vectors.



Exercise:

Letd = 3.
Consider the incomplete measurement along the basis:

B={It) ->,12>} where 1) = = (1> 2 11),
with partition S1 = {+,2}, S2 = {-}.

If the pre-measurement stateis [¥) = a (o) + b1IY + ¢ 1),
what is the probability to obtain the outcome "1"?

@) L™ ) lal T+ L™ (c) [ath|®
Jyr

(d) |ath|* 3 n—b|L 3

=2+ (cl (e) 274 (C]




Answer:

Let d = 3.
Consider the incomplete measurement along the basis:
B= {1t)1-),12>} where |1)= = (1o£11),
with partition S1 = {+,2}, S2 = {-}.

If the pre-measurement state is |[¥) = a (o) + b1y t ¢ 1)
what is the probability to obtain the outcome "1"?

@) |bl™  (b) lal"+ LI (c) [ath|®
Jr

nth|t 2 bt 3

I t 1 () I +1cl

— oo N = Oth b s
since |¥)=alo> + bny + i J_i|+>+£\>+c >

Postmeasurement state is ( Ath iyt m) / J

(c

Jr



Alternative way to specific an incomplete measurement

Previous e.g.: d=5, B= {117, 125, 137, 14), |57}
SOC\A =1{1,3,5}, gewn = {2, 4}

Instead of the partition, define 2 projectors:

Poat = 1T H1DG] + 1G], Poen= 1241+ 19Ky



Alternative way to specific an incomplete measurement

Previous e.g.: d=5, D=4 117, 129, 137,147, |57\]
S\Oc\é = {1' 3' 5}r geWn = {2, 4}

Instead of the partition, define 2 projectors:

Poag = 1K1+ 1G]+ 18X5], Peren= 11+ 19<4].
F tate: = |+ -~ 2

or premeas state: (v r\m +ﬁ‘37+j’“<g:\t">
Poad Y7 “rer 13)
Prob(outcome = "odd") = H P (\HH i = % ,

Postmeas state is P, ., (¥ (fm«—tm)/J
[P t0]],




Peven 147 = |51

Prob(outcome = "even") =

Peven V]| = %

Postmeas state is Pem(‘w — ILF>\

Peven 13|,




Initial specification ——  Alternative specification

B = !L\e.‘)}i‘l Projectors P ,le o Pr
Let SI;SZ, SK be a \Y}'j PJ: _\Z&S_\E;XE:l <§P321~)
partition of {1,2,...,d}.
a d
Y = § a. \e-) Y7 = \Z} a: 1ex)
(1) outcome =j £ {1,...k} (1) outcome =j £ {1,..k}
with prob 7°  |g-|* with prob H D (LHHl
L€ S ' . E
(2) corresponding (2) corresponding
postmeas state postmeas state
= L agled = _PIY¥7
T | HPAH/>‘|1-

) a-|*
L€ 53 , \



First equivalent way to specify a measurement:

(I) specifying a measurement using projectors
Consider a d-dimensonal Hilbert space H.
The most general measurement on H can be specified

. . K
by a set of projectors acting on H, {?J 33:[ , such that

7;/1)3:1.



First equivalent way to specify a measurement:

(I) specifying a measurement using projectors
Consider a d-dimensonal Hilbert space H.
The most general measurement on H can be specified

. . K
by a set of projectors acting on H, 1¥55 .., such that

TZ;iPS:: 1.
J

If the pre-measurement state is |'{'7

then the measurement outputs:

(1) measurement outcome j with prob H PJ\‘W ”i .

\

Euclidean

(2) a postmeasurement state E;N’?
if the outcome is j. HPJ\“WHZ 2-norm




Reminder:
P is a projector

& (i) P is hermitian, and
(11) eigenvalues of P are either 0 or 1

& Pis normal. P = PZ.



Reminder:
P is a projector

& (1) P is hermitian, and
(||) eigenvalues of P are either O or 1

& Pis normal. P = Pz.

Exercise: Show that

(1) If a list of projectors P, .. % acting on H sum to |,
then the projectors are mutually orthogonal.
(2) For each j, the support of P IS @ subspace of H.

(3) Let {ie:n) be a basis for the support of ;.

Note P: = Z e Xes|.
et S {h))} m(subb (93)) — T {

Then, the &;'s are disjoint with a total of d elements.

This turns the second specification back to the first.



Exercise:

Letd = 3.
Consider the incomplete measurement along the basis:

B= {H), ->,12> Y where IT_>:J%(\0>1“H>),
with partition S1 = {+,2}, S2 = {-}.

Which of the following is an equivalent specification of
the above measurement?

— L[V (O — L [1= 0O D =[000
(a)P(_J”l L1 © ’Pz ol o] 3 00 O
OO © OO0 o 0o |



Second equivalent way to specify a measurement:

(I1) Specifying a measurement using an observable.

Notation: an observable is a hermitian matrix
acting on a Hilbert Space.

For an observable M, suppose A\, , \« are the

distinct eigenvalues. Let P, be the projector onto

the eigenspace correspondingto - . Then sp -1
el

_ J
and {?;} defines a measurement.



Second equivalent way to specify a measurement:

(I1) Specifying a measurement using an observable.

Notation: an observable is a hermitian matrix
acting on a Hilbert Space.

For an observable M, suppose N\, , \« are the
distinct eigenvalues. Let P; be the prOJector onto
the eigenspace correspondmg to >\J Then j_‘_\)a - T

and {?;} defines a measurement. g

Conversely starting from a set of projectors ¥, .., %,

let M= Z (; ¥; where the s are distinct real numbers.
J l

The observable M speciﬁes the same measurement

as the projectors ?, .. °



Exercise:

Recall the Pauli matrices £y, 85 .

(1) Show that each of 6y, §5 has eigenvalues 1, -1.

Find the corresponding eigenvectors.

(2) What are the eigenvalues of £, ® €5
What is the multiplicity of each eigenvalue?

(3) What are the projectors for the measurement
specified by ¢, ® ¢, 7

(4) Describe a basis, and a partition of the labels of
the basis that gives the same measurement.



Discuss the exercise?



Why overall phase of the state vector is irrelevant:

1. The probabilities of the outcomes of a measure-
ment is INDEPENDENT of an overall phase in the
state vector.

2. The overall phase can carry over from the
pre-measurement state to the post-measurement
state but it still will not be observed in later
measurements.

Relative phase is crucial, and must be carried over
through all steps, e.qg., from pre-measurement to
post-measurement state.



3. Summary of guantum mechanics

.~ (a) Linear algebra and Dirac notation
(Self-study + test, NC 2.1, KLM 2.1-2.\6, 2.8)

./ (b) Axioms of quantum mechanics
(NC 2.2.1-2.2.5, 2.2.7, KLM 3.1-3.4)

N (c) Composite systems, entanglement,
operations on 1 out of 2 systems, locality of QM
(NC 2.2.8-2.2.9)



