3. Summary of quantum mechanics

- (a) Linear algebra and Dirac notation-(Self-study + test, NC 2.1, KLM 2.1-2.6, 2.8)
- (b) Axioms of quantum mechanics (NC 2.2.1-2.2.5, 2.2.7, KLM 3.1-3.4)
- (c) Composite systems, entanglement, operations on 1 out of 2 systems, locality of QM (NC 2.2.8-2.2.9)

Axioms of quantum mechanics

- 1. Space postulate
- 2. State postulate
- 3. Composite systems
- 4. Evolution
- 5. Measurements

Two equivalent formalisms: pure vs mixed states. We use the simpler pure state formalism on parts 2-7.

Like Go, QM can be complex with simple rules.

1. Space postulate

A finite physical system S is associated with a complex Hilbert space H with finite dimension, say, d.

1. Space postulate

A finite physical system S is associated with a complex Hilbert space H with finite dimension, say, d.

Side note: this is a common description in QM texts. On finite dimensions, this is equivalent to complex Eucliden space with the usual norm (& inner product).

1. Space postulate

A finite physical system S is associated with a complex Hilbert space H with finite dimension, say, d.

2. State postulate

The state of the system S is given by a unit vector in the associated Hilbert space H.

Example: when $d=2$, the state, a 2-dim complex unit vector, is called a "qubit" (a quantum bit) coined by Schumacher

In vector form: $\begin{pmatrix} \alpha_0 \\ a_1 \end{pmatrix}$ where α_0 , $\alpha_1 \in \mathbb{C}$,
 $\begin{pmatrix} \alpha_0 & 1 \\ 0 & \alpha_1 \end{pmatrix}^2 + \begin{pmatrix} \alpha_1 & 1 \\ 0 & \alpha_1 \end{pmatrix}^2 = 1$.

Example: when $d=2$, the state, a 2-dim complex unit vector, is called a "qubit" (a quantum bit) coined by Schumacher

In vector form:
$$
\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}
$$
 where $\alpha_0, \alpha_1 \in \mathbb{C}$,
 $|\alpha_0|^2 + |\alpha_1|^2 = 1$

In Dirac notation, vectors are written as "kets": (Computational) basis vectors:

$$
\begin{pmatrix}\n1 \\
0\n\end{pmatrix} \leftrightarrow |0\rangle, \quad\n\begin{pmatrix}\n0 \\
1\n\end{pmatrix} \leftrightarrow |1\rangle
$$
\n
$$
\text{So: } \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \alpha_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$
\n
$$
= \alpha_0 |0\rangle + \alpha_1 |1\rangle = |\Psi\rangle
$$

A general d-dim complex vector is given by:

$$
\begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{a} \end{bmatrix} \text{ where } \forall \underline{c} \ \alpha_{i} \in \mathbb{C} , \sum_{\overline{i}=1}^{d} |\alpha_{i}|^{2} = 1
$$
\nIn Dirac notation, the ket is written as
$$
\sum_{\overline{i}=1}^{d} \alpha_{\overline{i}} |\overline{i}\rangle,
$$
\nwhere the i-th basis vector\n
$$
\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \text{ is written as } |\overline{i}\rangle.
$$

The ket $|\psi\rangle$, as a vector, has a dual written as $\langle \psi |$ which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a vector v can be taken as the conjugate-transpose of v. The ket $|\Psi\rangle$, as a vector, has a dual written as $\langle \Psi |$ which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a vector v can be taken as the conjugate-transpose of v.

the dual is
$$
\langle \Psi | = [\alpha_1^* \alpha_2^* \dots \alpha_d^*]
$$

$$
\alpha_{\overline{1}}^* \xleftarrow{\text{complex}} \text{conjugate}
$$

The ket $|\Psi\rangle$, as a vector, has a dual written as $\langle \Psi |$ which is called the "bra".

For finite dimensional Hilbert spaces, the dual of a vector v can be taken as the conjugate-transpose of v.

special, only for real vectors Linear algebra in the bra-ket notation

1. Inner product Let $\{|e_{\overline{i}}\rangle\}_{\overline{i-1}}^d$ be ANY basis. (a) the inner product of $\langle e_i \rangle$, $\langle e_i \rangle$ is 1 if 0 if $=$ δ \hat{i} $=$ Kronecker delta-function which we call "delta-function" in this course. (Elsewhere delta-function may refer to the "Dirac delta-function" which is not a function, and will not be used in this course.)

Linear algebra in the bra-ket notation

1. Inner product Let $\{|e_{\overline{i}}\rangle\}_{\tau=1}^d$ be ANY basis. (a) the inner product of $\ket{\mathcal{e}_{\bar{i}}}, \ket{\mathcal{e}_{\bar{j}}}$ is 1 if $=$ $\delta \hat{\mathbf{i}}$ = 0 if (b) For $|\psi\rangle = \sum \alpha_i |e_i\rangle$, $|\phi\rangle =$ their inner product is $\langle \psi | \phi \rangle = \sum_{i=1}^{d} \alpha_i^* \langle e_i | \cdot \sum_{j=1}^{d} b_j | e_j \rangle = \sum_{i=1}^{d} \alpha_i^* b_i$ the "bra-ket" δ_{ij} so set i=j and obtain a single sum

For
$$
|\Psi\rangle = \sum_{i=1}^{d} \Omega_{i} |i\rangle
$$
, $|\Phi\rangle = \sum_{j=1}^{d} b_{j} |j\rangle$

their outer-product is

$$
|\Psi\rangle\langle\Phi| = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_d \end{pmatrix} \times \begin{bmatrix} b_1^* & b_2^* & \cdots & b_d^* \end{bmatrix}
$$

=
$$
\begin{pmatrix} a_1b_1^* & a_1b_2^* & \cdots & a_nb_d^* \\ a_2b_1^* & a_2b_2^* & \cdots & a_2b_d^* \\ \vdots & \vdots & \vdots & \vdots \\ a_a b_1^* & a_a b_2^* & \cdots & a_a b_a^* \end{pmatrix}
$$

matrix representation

For
$$
|\psi\rangle = \sum_{i=1}^{d} \alpha_i |i\rangle
$$
, $|\varphi\rangle = \sum_{j=1}^{d} b_j |j\rangle$

their outer-product in Dirac notation is

$$
|\psi\rangle\langle\varphi| = \sum_{i=1}^{d} \alpha_{i} |i\rangle \sum_{j=1}^{d} \sum_{j=1}^{*} \langle j|
$$

=
$$
\sum_{i=1}^{d} \sum_{j=1}^{d} \alpha_{i} \sum_{j=1}^{*} |i\rangle\langle j|
$$

(i,j) entry of the matrix $|\psi\rangle\langle\varphi|$

For
$$
|\Psi\rangle = \sum_{i=1}^{d} \Omega_{i} |i\rangle
$$
, $|\Phi\rangle = \sum_{j=1}^{d} b_{j} |j\rangle$

their outer-product in Dirac notation is

$$
|\Psi\rangle\langle\varphi| = \sum_{i=1}^{d} \alpha_{i} |i\rangle \sum_{j=1}^{d} \sum_{j=1}^{*} \langle j|
$$

=
$$
\sum_{i=1}^{d} \sum_{j=1}^{d} \alpha_{i} \sum_{j=1}^{*} |i\rangle\langle j|
$$

(i,j) entry of the matrix $|\Psi\rangle\langle\varphi|$

In general, any matrix M can be written as:

$$
M = \sum_{\overline{i}=1}^{r} \sum_{j=1}^{c} M_{ij} | \overline{i} \rangle \langle \overline{j} |
$$

where M has r rows and c columns.

In general, any matrix M can be written as:

$$
M = \sum_{\overline{i}=1}^{r} \sum_{j=1}^{C} M_{ij} | \overline{i} \rangle \langle \overline{j} |
$$

where M has r rows and c columns.

Exercise:

$$
M = \sum_{\overline{i}=1}^{r} \sum_{j=1}^{c} M_{ij} | \overline{i} \rangle \langle j | \, , \, N = \sum_{k=1}^{c} \sum_{l=1}^{c'} N_{kl} | k \rangle \langle l |
$$

show that the product of M and N is given by

$$
MN = \sum_{\overline{i}=1}^{r} \sum_{\ell=1}^{c'} \left(\sum_{j=1}^{c} M_{ij} N_{j\ell} \right) | \overline{\tau} \rangle \langle \ell |
$$

using the delta function for the inner product in bra-ket notations.

For
$$
|\psi\rangle = \sum_{i=1}^{d} \alpha_i |i\rangle
$$
, $|\varphi\rangle = \sum_{j=1}^{d} b_j |j\rangle$

their outer-product $|\psi\rangle\langle\varphi|$

is a rank 1, dxd matrix taking $\ket{\phi}$ to $\ket{\psi}$ and any state orthogonal to $\ket{\varphi}$ to 0.

3. Projectors

Let K be a c-dim subspace of H, with basis $\{|\hat{f}_i\rangle\}_{i=1}^C$. Then, the projector onto K can be written as

$$
\Pi_K = \sum_{i=1}^C |f_i\rangle\langle f_i|
$$

(Projectors are crucial when we discuss measurements.)

Axioms of quantum mechanics

- $\sqrt{1}$. Space postulate
- 2. State postulate
	- Dirac / bra-ket notation for states,
	- inner product, outer product, and projectors
	- 3. Composite systems
	- 4. Evolution
	- 5. Measurements

3. Composite system postulate

Consider 2 systems S, T with respective associated Hilbert spaces H and K.

The bipartite system ST is associated with the Hilbert space which is the tensor product of H and K.

3. Composite system postulate

Consider 2 systems S, T with respective associated Hilbert spaces H and K.

The bipartite system ST is associated with the Hilbert space which is the tensor product of H and K.

If H has c dimensions and basis $\{ | \psi \rangle, | \psi \rangle, | \psi \rangle,$ & K has d dimensions and basis $\{|1\rangle, |2\rangle, ..., |d\rangle\}$.

Then H \otimes K has cd dimensions and basis

$$
\left\{\n\begin{array}{ccc}\n|1\rangle & \otimes |1\rangle, & |1\rangle & \otimes |2\rangle, & \cdots & |1\rangle & \otimes |d\rangle \\
|2\rangle & \otimes |1\rangle, & |2\rangle & \otimes |2\rangle, & \cdots & |2\rangle & \otimes |d\rangle \\
\vdots & & & & & & \\
|2\rangle & \otimes |1\rangle, & |2\rangle & \otimes |2\rangle, & \cdots & |2\rangle & \otimes |d\rangle\n\end{array}\n\right\}.
$$

What states are possible on a composite system?

(a) product states, which are of the form

 $| \psi \rangle \otimes | \varphi \rangle \in H \otimes K$

where $|\Psi\rangle \in H$ and $|\Phi\rangle \in K$.

What states are possible on a composite system?

(a) product states, which are of the form

 $|\Psi\rangle \otimes |\varphi\rangle \in H \otimes K$

where $|\Psi\rangle \in H$ and $|\Phi\rangle \in K$.

(b) entangled states, which cannot be written as product states.

$$
\begin{array}{cccc}\n\text{e.g.,} & \frac{1}{\sqrt{2}} & \left| \circ \circ \right\rangle + \frac{1}{\sqrt{2}} & \left| \right| & \right\rangle & \leftarrow & \left(\frac{2}{3} \otimes \left(\frac{2}{3}\right) \\
&\left| \circ \right\rangle & \left| \right| & \left| \circ \right\rangle & \left| \right| & \right\rangle & \left| \right| & \right\rangle & \left| \right| & \left| \right\rangle\n\end{array}
$$

Proof idea: by contradiction. If it is a tensor product, say, of $a|0\rangle + b|1\rangle$ and $c|0\rangle + d|1\rangle$. Derive a contradiction concerning a,b,c,d.

Axioms of quantum mechanics

- $\sqrt{1}$. Space postulate
- 2. State postulate
	- Dirac / bra-ket notation for states,
	- inner product, outer product, and projectors
- 3. Composite systems
	- Product and entangled states
	- 4. Evolution
	- 5. Measurements

4. Evolution postulate:

The time evolution of states in a closed quantum system is described by a unitary operator.

4. Evolution postulate:

The time evolution of states in a closed quantum system is described by a unitary operator.

Notation: we use the "dagger" to denote the conjugate transpose (aka the adjoint). e.g., U is unitary iff $UU^{\dagger} = U^{\dagger}U = 1$.

4. Evolution postulate:

The time evolution of states in a closed quantum system is described by a unitary operator.

Notation: we use the "dagger" to denote the conjugate transpose (aka the adjoint). e.g., U is unitary iff $U U^{\dagger} = U^{\dagger} U = 1$.

Crucial fact: a unitary matrix takes a unit vector to another unit vector. So, a legitimate quantum state is evolved to another legitimate quantum state.

Proof: exercise.

Examples of unitary evolution:

For $d = 2$, consider the Pauli matrices: $= 1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =$ $= X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} =$ $= Y = \begin{pmatrix} 0 & -\bar{c} \\ \bar{c} & 0 \end{pmatrix} =$ $= Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$ NB: 1. No need to write the 0 entries. 2. Read from R->L. e.g., $6\sqrt{(a|0\rangle+b|1\rangle)} = a|1\rangle + b|0\rangle$ (NOT gate) The Hadamard matrix, $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. (Fourier trsf)

For $d = 4$, with basis $\{ |00\rangle, |01\rangle, |10\rangle, |11\rangle \}$ the unitary $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ takes $|a b \rangle$ to $|a a \oplus b \rangle$

and is called the CNOT.

```
For d = 8, with basis \{ |000\rangle, |001\rangle, |010\rangle, |011\rangle,|100\rangle, |101\rangle, |110\rangle, |111\rangle
```
the unitary

zeros zeros

called the TOFFOLI

takes $|a b c \rangle$ to $|a b a b \oplus c \rangle$.

For $d = 8$, with basis $\{1000\}$, $|001\rangle$, $|010\rangle$, $|011\rangle$, $|100\rangle, |101\rangle, |110\rangle, |111\rangle$

the unitary called the TOFFOLI $\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$ Zeros 0100

0001

0001

0010

takes $|a b c \rangle$ to $|a b a b \oplus c \rangle$. note: $AND(a,b) = ab$

Preview: action of these gates similar to classical setting; just that our unit vector is in the 2-norm.

In general, a matrix U is unitary

$$
U = e^{-iH\Gamma}
$$
 for some hermitian matrix H and real number r.

PS A unitary is the most general transformation effecting a change of basis.

In general, a matrix U is unitary

$$
U = e^{-iH\Gamma}
$$
 for some hermitian matrix H and real number r.

Question: suppose a system is evolved under U, and then under V, what is the combine evolution?

Answer: VU. Note that the product of two unitary matrices is still unitary, so, composing two evolutions indeed gives a valid evolution.

In physics, the evolution postulate is given by Schroedinger's equation:

$$
\tilde{d} \upharpoonright \frac{d}{dt} |\Psi(t)\rangle = |H(t)| |\Psi(t)\rangle
$$

where t is time, and the hermitian matrix H(t) is called the "Hamiltonian" at time t.

If $H(t) = H$ is time independent, then, $|\Psi(t)\rangle = e^{-\tilde{t}Ht} |\Psi(0)\rangle$ In physics, the evolution postulate is given by Schroedinger's equation:

$$
\tilde{d} \left(\frac{d}{dt} |\Psi(t) \rangle = H(t) |\Psi(t) \rangle
$$

where t is time, and the hermitian matrix H(t) is called the "Hamiltonian" at time t. $k = 1$

If $H(t) = H$ is time independent, then, $|\Psi(t)\rangle = e^{\frac{-\overline{t}Ht}{\left|\Psi(0)\right\rangle}}.$

> important, not just a choice since we cannot travel back in time

In physics, the evolution postulate is given by Schroedinger's equation:

$$
\tilde{i}K \frac{d}{dt}|\Psi(t)\rangle = H(t) |\Psi(t)\rangle
$$

where t is time, and the hermitian matrix H(t) is called the "Hamiltonian" at time t.

If H(t) = H is time independent, then,
\n
$$
|\Psi(t)\rangle = e^{-\tilde{t}Ht} |\Psi(0)\rangle.
$$

The physical theory or the experimental setup determines H(t) and the evolution.

In contrast, in quantum information processing, we focus on the abstract unitary evolution.

Exercise: For any hamiltonian H, any unitary U, any t, (a) show that

 $10e^{-iHt}$ 10^+ = e^{-ikt}

where K is another hamiltonian.

(b) What is K in terms of U and H?

(c) What is the physical interpretation of the answers in (a) and (b)?

Hint: use poser series decomposition for $e^{-\tau H t}$.

We will see that this is a very useful result in quantum computation, so, you will derive it in the test.

Axioms of quantum mechanics

- $\sqrt{1}$. Space postulate
- $\sqrt{2}$. State postulate
	- Dirac / bra-ket notation for states,
	- inner product, outer product, and projectors
- 3. Composite systems
	- Product and entangled states
- $\sqrt{4}$. Evolution
	- Linear, unitary
	- 5. Measurements

5. Measurement postulate

Consider a d-dimensonal Hilbert space H.

Consider an arbitrary basis $B = \{ | \ell_{\iota} \rangle \}_{\iota = 1}^d$ for H.

A complete von Neumann measurement on H along the basis B does the following.

5. Measurement postulate

Consider a d-dimensonal Hilbert space H. Consider an arbitrary basis $B = \{ | \ell_{\iota} \rangle \}_{\iota = 1}^d$ for H.

A complete von Neumann measurement on H along the basis B does the following.

If the pre-measurement state is $|\psi\rangle = \sum_{i=1}^{d} a_i |e_i\rangle$ then the measurement outputs:

(1) a measurement outcome i with probability $|q_{\nu}|^2$.

(2) a postmeasurement state $\langle e_i \rangle$ if the outcome is i.

Note that the state being a unit vector gives a proper probability distribution on the outcome. Example: $d=5$, $\beta = \{117, 127, 137, 147, 157\}$ $|\psi\rangle = \frac{1}{\sqrt{8}} |1\rangle + \frac{1}{\sqrt{2}} |3\rangle + \frac{3}{\sqrt{2}} |4\rangle$

The complete measurement along B has outcome "1" with prob 1/8, "2" with prob 0, "3" with prob 1/2, "4" with prob 3/8,

"5" with prob 0.

Example: $d=2$,

$$
B = \{ |+ \rangle, |-\rangle \} \text{ where } | \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle),
$$

$$
|\psi \rangle = a |0 \rangle + b|1 \rangle
$$

What are the probs to obtain the outcomes $+$ & -?

Example: $d=2$, $B = \{ |+ \rangle, |-\rangle \}$ where $| \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle)$, $|\psi\rangle = a|0\rangle + b|1\rangle$

What are the probs to obtain the outcomes $+$ & $-$? Valuable trick in QM: express info in a useful basis. We want to rewrite $|\psi\rangle = a'|+\rangle + b'|-\rangle$

Example: $d=2$,

$$
B = \{ |+ \rangle, |-\rangle \} \text{ where } | \pm \rangle = \frac{1}{J^2} (|0 \rangle \pm |1 \rangle),
$$

$$
|\psi \rangle = a |0 \rangle + b |1 \rangle
$$

What are the probs to obtain the outcomes $+$ & $-$?

We want to rewrite $|\psi\rangle = a'|\psi\rangle + b'|\psi\rangle$

From
$$
| \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle)
$$

we have $|0 \rangle = \frac{1}{\sqrt{2}} (|+ \rangle + |-\rangle)$, $|1 \rangle = \frac{1}{\sqrt{2}} (|+ \rangle - |-\rangle)$

i.e., express the original basis in terms of the basis we are measuring along

Example: $d=2$,

$$
B = \{ |+ \rangle, |-\rangle \} \text{ where } | \pm \rangle = \frac{1}{J^2} (|0 \rangle \pm |1 \rangle),
$$

$$
|\psi \rangle = a |0 \rangle + b|1 \rangle
$$

What are the probs to obtain the outcomes $+$ & $-$?

We want to rewrite $|\psi\rangle = \alpha'|\psi\rangle + \beta'|\psi\rangle$

From $| \pm \rangle = \frac{1}{\sqrt{2}} (10 \pm 11 \pm 1)$ We have $|0\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$, $|1\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$. Answer: $|\psi\rangle = a |0\rangle + b |1\rangle$

$$
= a \frac{1}{\sqrt{2}} (|+\rangle + |-\rangle) + b \frac{1}{\sqrt{2}} (|+\rangle - |-\rangle)
$$

$$
= \frac{a+b}{\sqrt{2}} |+\rangle + \frac{a-b}{\sqrt{2}} |-\rangle
$$

,
Proof("+") = $\frac{1}{2} |a+b|^2$, Prob("-") = $\frac{1}{2} |a-b|^2$

5. Measurement postulate (from a few pages ago)

Consider a d-dimensonal Hilbert space H.

Consider an arbitrary basis $B = \{ |C_i\rangle \}_{i=1}^d$ for H.

A complete von Neumann measurement on H along the basis B does the following.

If the pre-measurement state is $|\psi\rangle = \sum_{i=1}^{d} a_i |e_i\rangle$ then the measurement outputs:

(1) a measurement outcome i with probability $|q_{\nu}|^2$.

(2) a postmeasurement state $|e_i\rangle$ if the outcome is i.

What are the most general measurements in QM? Incomplete measurements!

The most general measurement is a coarse-graining of a complete basis measurement. This is called an incomplete measurement.

Let B = {
$$
|e_i\rangle
$$
}^d_{ii}, $|\Psi\rangle = \sum_{i=1}^{d} a_i |e_i\rangle$ as before.
Let S₁, S₂, ..., S_K be a partition of {1,2,...,d}.
ie Vj≠l, Sj \cap S_l = \emptyset , S₁U S₂U ... S_K = {1,2,...,d}.
e.g. 1, {1,2,3,4,5} can be partitioned into
S1 = {1,4}, S2 = {2,5}, S3 = {3}.

The most general measurement is a coarse-graining of a complete basis measurement. This is called an incomplete measurement.

Let B = {
$$
|e_i\rangle
$$
}^d_{i=1}, $|\Psi\rangle = \sum_{i=1}^{d} a_i |e_i\rangle$ as before.
Let S₁, S₂, ..., S_K be a partition of {1,2,...,d}.
ie Vj≠l, S_j Λ S_l = \emptyset , S₁ \cup S₂ \cup ... S_K = {1,2,...,d}.
e.g. 1, {1,2,3,4,5} can be partitioned into
S1 = {1,4}, S2 = {2,5}, S3 = {3}.

e.g. 2, $S_{odd} = \{1,3,5\}$, $S_{even} = \{2,4\}$ is another partition (k=2, odd=1, even=2).

The most general measurement is a coarse-graining of a complete basis measurement. This is called an incomplete measurement.

Let B = {
$$
|e_i\rangle
$$
} $_{i=1}^d$, $|\Psi\rangle = \sum_{i=1}^d a_i |e_i\rangle$ as before.

Let S_1 , S_2 , ..., S_k be a partition of $\{1,2,...,d\}$.

 $ie \forall j \neq l$, $S_{\bar{l}} \cap S_{\ell} = \emptyset$, $S_{\bar{l}} \cup S_{\bar{l}} \cup ... S_{\bar{k}} = \{1,2,...,d\}.$

The partition defines a measurement with

(1) outcome $j \in \{1,2,..,k\}$ with prob $\sum |q_i|^2$. $LES₁$ labels for the partition

(2) a postmeasurement state if the outcome is j.

 $\sum_{\tau \in S_{\tau}} |a_{\tau}|^{2}$

In other words, the outcome is "which partition" and we do not seek to distinguish the outcomes within each partition.

Crucial: the postmeasurement state remains a linear combination of basis states within the partition corr to the outcome, and rescaled.

Complete measurement is the special case of the partition: $S1 = \{1\}$, $S2 = \{2\}$, ..., $Sd = \{d\}$.

Example: $d=5$, $\beta = \{117, 127, 137, 147, 157\}$ $|\psi\rangle = \frac{1}{8}$ 117 + $\frac{1}{12}$ 13) + $\frac{3}{8}$ 14)

Consider an incomplete measurement with 2 outcomes where :

$$
\mathcal{S}_{\text{odd}} = \{1, 3, 5\}, \ \mathcal{S}_{\text{even}} = \{2, 4\}
$$

With prob $5/8$, outcome $=$ "odd",

postmeasurement state is $\left(\int \frac{1}{8}$ li) + $\frac{1}{52}$ li3>) $\right)$ $\sqrt{\frac{5}{8}}$.

With prob $3/8$, outcome $=$ "even",

postmeasurement state is $|\psi\rangle$.

3. Summary of quantum mechanics

- (a) Linear algebra and Dirac notation-(Self-study + test, NC 2.1, KLM 2.1-2.6, 2.8)
- (b) Axioms of quantum mechanics (NC 2.2.1-2.2.5, 2.2.7, KLM 3.1-3.4) mostly done!
- (c) Composite systems, entanglement, operations on 1 out of 2 systems, locality of QM (NC 2.2.8-2.2.9)

Axioms of quantum mechanics

 $\sqrt{1}$. Space postulate $\sqrt{2}$. State postulate Dirac / bra-ket notation for states, inner product, outer product, and projectors 3. Composite systems Product and entangled states \angle 4. Evolution Linear, unitary 5. Measurements Incomplete measurement along a basis, defined by a partition of the labels of the basis vectors.

Exercise:

Let $d = 3$. Consider the incomplete measurement along the basis: $B = \{ (+) , |- \rangle, |2 \rangle \}$ where $| \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle),$ with partition $S1 = \{+, 2\}$, $S2 = \{-\}$.

If the pre-measurement state is $|\psi\rangle = a |0\rangle + b |1\rangle + c |2\rangle$, what is the probability to obtain the outcome "1"? (a) $|b|^2$ (b) $|a|^2 + |b|^2$ (c) $\left| \frac{a+b}{b} \right|^2$ (d) $\left| \frac{0+b}{5} \right|^{2} + |C|^{2}$ (e) $\left| \frac{0-b}{5} \right|^{2} + |C|^{2}$

Answer:

Let $d = 3$. Consider the incomplete measurement along the basis: $B = \{ (+) , |- \rangle, |2 \rangle \}$ where $| \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle),$ with partition $S1 = \{+,2\}$, $S2 = \{-\}$.

If the pre-measurement state is $|\psi\rangle = a |0\rangle + b |1\rangle + c |2\rangle$, what is the probability to obtain the outcome "1"? (a) $|b|^2$ (b) $|a|^2 + |b|^2$ (c) $\frac{|a+b|^2}{5}$ (a) $\left| \frac{a+b}{\pi} \right|^2 + |c|^2$ (e) $\left| \frac{a-b}{\pi} \right|^2 + |c|^2$ \since $|\psi\rangle = a |0\rangle + b|1\rangle + c|2\rangle = \frac{a+b}{5}|+\rangle + \frac{a-b}{5}|-\rangle + c|2\rangle$ Postmeasurement state is $\left(\frac{a+b}{\sqrt{2}}|+\rangle+c|2\rangle\right)/\sqrt{\frac{|a+b|^2}{\sqrt{2}}+|c|^2}$. Alternative way to specific an incomplete measurement

Previous e.g.: d=5,
$$
\beta = \{117, 127, 137, 147, 157\}
$$

$$
\text{S}_{odd} = \{1, 3, 5\}, \quad \text{S}_{even} = \{2, 4\}
$$

Instead of the partition, define 2 projectors:

 $P_{odd} = |1 \times 11 + |3 \times 31 + |5 \times 5|$, $P_{even} = |2 \times 21 + |4 \times 4|$.

Alternative way to specific an incomplete measurement

Previous e.g.: d=5,
$$
\beta = \{117, 127, 137, 147, 157\}
$$

$$
S_{odd} = \{1, 3, 5\}, S_{even} = \{2, 4\}
$$

Instead of the partition, define 2 projectors:

 $P_{odd} = 11 \times 11 + 13 \times 31 + 15 \times 51$, $P_{even} = 12 \times 21 + 14 \times 41$.

For premeas state:
$$
|\psi\rangle = \sqrt{\frac{1}{8}} |1\rangle + \frac{i}{\sqrt{2}} |3\rangle + \sqrt{\frac{3}{8}} |4\rangle
$$

 $P_{odd} |\psi\rangle = \sqrt{\frac{1}{8}} |1\rangle + \frac{i}{\sqrt{2}} |3\rangle$

Prob(outcome = "odd") = $\left|\left|\rho_{\text{odd}}\left|\Psi\right\rangle\right|\right|_{2}^{2} = \frac{5}{8}$.

Postmeas state is = $||P_{odd}|\Psi\rangle||_{2}$

$$
P_{even} | \Psi \rangle = \int \frac{3}{8} | \Psi \rangle
$$

Prob(outcome = "even") = $\left\| P_{even} | \Psi \rangle \right\|_2^2 = \frac{3}{8}$.
Postmeas state is $\frac{P_{even} | \Psi \rangle}{\left\| P_{even} | \Psi \rangle \right\|_2} = | \Psi \rangle$.

Initial specification \longrightarrow Alternative specification $B = \left\{ |e_i \rangle \right\}$ Let S_1 , S_2 , ..., S_k be a partition of {1,2,...,d}. $|\Psi\rangle = \sum_{i=1}^{d} a_i |e_i\rangle$ (1) outcome = $j \in \{1,..,k\}$

with prob $\sum |q_i|^2$ $i\in S$

(2) corresponding postmeas state

$$
= \frac{\sum_{\bar{L}\in S_{\bar{j}}} a_{\bar{L}} |e_{\bar{\iota}}\rangle}{\sum_{\bar{L}\in S_{\bar{j}}} |a_{\bar{\iota}}|^2}
$$

Projectors P_1 , P_2 , ..., P_k \forall ; $P_i = \sum_{i \in S_i} |e_i \rangle \langle e_i| \quad (\sum_{i=1}^{k} P_i = I)$

$$
|\Psi\rangle = \sum_{i=1}^d a_i |e_i\rangle
$$

(1) outcome = $j \in \{1,..,k\}$ with prob $\left\| P_1 \left| \psi \right\rangle \right\|_2^2$.

(2) corresponding postmeas state

$$
= \frac{P_{j}|\Psi\rangle}{\left\|P_{j}|\Psi\rangle\right\|_{2}}.
$$

First equivalent way to specify a measurement:

(I) specifying a measurement using projectors

Consider a d-dimensonal Hilbert space H.

The most general measurement on H can be specified by a set of projectors acting on H, $\{P_i\}_{i=1}^K$, such that

 $\sum_{\overline{y}} P_{\overline{y}} = \mathbb{L}.$

First equivalent way to specify a measurement:

(I) specifying a measurement using projectors Consider a d-dimensonal Hilbert space H.

The most general measurement on H can be specified by a set of projectors acting on H, $\{P_i\}_{i=1}^K$, such that $\sum_{\vec{\lambda}} \hat{P}_{\vec{\lambda}} = \sum$.

Euclidean

If the pre-measurement state is $|\Psi\rangle$

then the measurement outputs:

(1) measurement outcome j with prob $||P_{\vec{i}}|\Psi\rangle||_2^2$.

(2) a postmeasurement state $P_1 \left(4 \right)$ if the outcome is j. $\left\| P_{\vec{i}}|\psi\rangle\right\|_2$ 2-norm

Reminder:

P is a projector

- \Leftrightarrow (i) P is hermitian, and (ii) eigenvalues of P are either 0 or 1
- \Leftrightarrow P is normal. P = P^2 .

Reminder:

P is a projector

- $\langle \rightleftharpoons$ (i) P is hermitian, and (ii) eigenvalues of P are either 0 or 1
- \Leftrightarrow P is normal. P = P^2 .

Exercise: Show that

(1) If a list of projectors $P_{1, m, m}$ acting on H sum to I, then the projectors are mutually orthogonal. (2) For each j, the support of P_i is a subspace of H. (3) Let $\{e_{\tilde{i},\tilde{j}}\}$ be a basis for the support of $Note P = 7 10 - x0 - 1$

Let
$$
S_{\overline{j}} = \{(i,j)\}_{i=1}^{dim(supb(P_{\overline{j}}))}
$$
.
Then, the $S_{\overline{i}}$'s are disjoint with a total of d elements.

This turns the second specification back to the first.

Exercise:

Let $d = 3$. Consider the incomplete measurement along the basis: $B = \{ |+ \rangle, |- \rangle, |2 \rangle \}$ where $| \pm \rangle = \frac{1}{\sqrt{2}} (|0 \rangle \pm |1 \rangle),$ with partition $S1 = \{+, 2\}$, $S2 = \{-\}$.

Which of the following is an equivalent specification of the above measurement?

(a)
$$
P_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \ 1 & 0 \ 0 & 0 \end{pmatrix}
$$
, $P_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-1 & 0 \ -1 & 0 \ 0 & 0 \end{pmatrix}$, $P_3 = \begin{pmatrix} 0 & 0 \ 0 & 0 \ 0 & 0 \end{pmatrix}$
\n(b) $P_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & 0 \ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & 0 \ 0 & 0 \end{pmatrix}$, $P_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1-1 & 0 \ -1 & 0 \ 1 & 0 \ 0 & 0 \end{pmatrix}$
\n(c) $P_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \ 1 & 0 \ 1 & 0 \ 0 & 0 \end{pmatrix}$, $P_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & 0 \ \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} & 0 \ 0 & 0 \end{pmatrix}$

Second equivalent way to specify a measurement:

(II) Specifying a measurement using an observable.

Notation: an observable is a hermitian matrix acting on a Hilbert Space.

For an observable M, suppose $\lambda_1, \dots, \lambda_k$ are the distinct eigenvalues. Let P_7 be the projector onto the eigenspace corresponding to λ_j . Then $\sum_{j=1}^k P_j = I$ and $\{P_i\}$ defines a measurement.

Second equivalent way to specify a measurement:

(II) Specifying a measurement using an observable.

Notation: an observable is a hermitian matrix acting on a Hilbert Space.

For an observable M, suppose $\lambda_1, \dots, \lambda_k$ are the distinct eigenvalues. Let P_7 be the projector onto the eigenspace corresponding to λ_i . Then $\sum_{i=1}^{k} P_i = I$ and $\{P_i\}$ defines a measurement.

Conversely, starting from a set of projectors $P_1, ..., P_K$, let $M = \sum_{i=1}^{k} r_i \hat{P}_i$ where the r_i 's are distinct real numbers. The observable M specifies the same measurement as the projectors $P_1, ..., P_k$.

Exercise:

Recall the Pauli matrices $6x, 6x$.

- (1) Show that each of $6x$, $6x$ has eigenvalues 1, -1. Find the corresponding eigenvectors.
- (2) What are the eigenvalues of 6×8 6×7 What is the multiplicity of each eigenvalue?
- (3) What are the projectors for the measurement specified by $6_x \otimes 6_x$?
- (4) Describe a basis, and a partition of the labels of the basis that gives the same measurement.

Discuss the exercise?

Why overall phase of the state vector is irrelevant:

1. The probabilities of the outcomes of a measurement is INDEPENDENT of an overall phase in the state vector.

2. The overall phase can carry over from the pre-measurement state to the post-measurement state but it still will not be observed in later measurements.

Relative phase is crucial, and must be carried over through all steps, e.g., from pre-measurement to post-measurement state.

3. Summary of quantum mechanics

- (a) Linear algebra and Dirac notation-(Self-study + test, NC 2.1, KLM 2.1-2.6, 2.8)
- $\sqrt{}$ (b) Axioms of quantum mechanics (NC 2.2.1-2.2.5, 2.2.7, KLM 3.1-3.4)
- \rightarrow (c) Composite systems, entanglement, operations on 1 out of 2 systems, locality of QM (NC 2.2.8-2.2.9)