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An arbitrary unknown bit x can be "cloned," say, by 
one use of the FANOUT or the CNOT :  
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Can we clone an arbitrary unknown qubit

By linearity, CNOT takes

which is not 

Did we miss a better method / circuit ?  
Is there something fundamentally wrong with cloning ?

FANOUT does not preserve dimension, and not unitary. 

CNOT takes to to

if 

to
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No-cloning theorem: 

an arbitrary and some ancilla

and some other state.  

There is no valid unitary taking

to

Proof: suppose such a unitary U exists.  

indep of 
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           copy of

else 

can depend on 

The plan is to prove by contradiction: 
assume the opposite of what we want to prove 
and obtain a contradiction.  
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No-cloning theorem: 

an arbitrary and some ancilla

and some other state.  

There is no valid unitary taking

to

Proof: suppose such a unitary U exists.  

dim of 

= dim of 
x dim of 

U

Apply to              , non-orthogonal with 

indep of 
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else 
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Equating the inner products: 

Note: 

So:

(i)

=

=

= < 1(ii)

= 1

Contradiction! 



Note: we can infer from the proof that we cannot 
clone one out of two possible "distinct", non-ortho 
quantum states. 
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The no-cloning theorem presents both challenges &
opportunities in quantum information processing.

It is also one component of earlier versions of the 
blackhole information paradox.  

Meanwhile, we are given new opportunities to 
perform secure QKD, key recycling etc.  THESE  
ARE REALLY REALLY COOL ! 

For example, techniques in classical information 
processing such as repetition coding, transcribing, 
rewinding/backtracking fail.  (Researchers found 
methods to circumvene the difficulties).  



(d) Superdense coding and teleportation 
  (NC 2.3, 1.3.7, KLM 5.1-5.2, N 6.4-6.5)

4. Immediate information processing consequences of QM 

i.e., more examples of QM :)

(a) No-cloning theorem (NC 1.3.5, box 12.1)

(b) Non-distinguishability of non-orthogonal states

(c) Communication of data 
- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

 (NC p56-57)

(e) Bell's inequality and nonlocal games (NC 2.6, M 6.6)



Non-distinguishability of non-orthogonal states



The state discrimination problem:

Consider two parties, Alice and the referee Richard.  

Alice and Richard agree on a set of quantum states



The state discrimination problem:

Consider two parties, Alice and the referee Richard.  

Alice and Richard agree on a set of quantum states

Richard picks a state        from T, and prepares "a 
copy" -- a d-dim quantum system S in the state 
Richard gives the quantum system S to Alice, who 
does not know



The state discrimination problem:

Consider two parties, Alice and the referee Richard.  

Alice and Richard agree on a set of quantum states

Richard picks a state        from T, and prepares "a 
copy" -- a d-dim quantum system S in the state 
Richard gives the quantum system S to Alice, who 
does not know

Alice applies a measurement to S, gets an outcome
j, and tells Richard "j".  She wins if j = i (she has 
distinguished or discriminated the state correctly).  
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Exercise: 

For the quantum state discrimination problem, 
Alice can perfectly distinguish the set of k states 
iff those k states are mutually orthogonal



Intuitively, two similar states are harder to 
distinguish than two very different states 
(in terms of Alice's probability of "winning").  

If two states are not orthogonal, can they be 
distinguished with very small errors? 

We will define a measure of "similarity" between
two quantum states, and see how Alice's losing 
probability depends on the similarity.  



Definition: 

For the fidelity of is given by

e.g., F = 0 for orthogonal states, 
        F = 1 for states differing by a phase factor.
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Holevo-Helstrom Theorem

If each of is chosen with probability 1/2,  

then the max prob to distinguish the state is

=

Alice can  
achieve 
winning 
prob of 1/2 
by guessing

this term is called the
"bias" -- the advantage
above guess because 
Alice can make a meas
on one copy of the state

closer to 1

means a smaller bias



Proof: see NC 9.2.3 relating the fidelity to the trace
distance, and Prof Watrous textbook Theorem 3.4.  

Holevo-Helstrom Theorem

If each of is chosen with probability 1/2,  

then the max prob to distinguish the state is

e.g., Prob = 1 for orthogonal states, 
        Prob = 1/2 for states differing by a phase factor, 
        Prob = 85.36% for 

=



Prob of correctly discriminating the two states
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Quick question:

Which of the following three pairs of states are least 
distinguisable (Alice wins with smallest prob)? 

(a) 

For 

(b) 

non-orthogonal, 

(c) 
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The no-cloning theorem and the non-distinguishability 
of non-orthogonal states are qualitatively equivalent !

Suppose we can clone.  When given one of 
make many copies, say n.  Then, we have

which are nearly distinguishable (HH Thm) because 

as long as 

Conversely, suppose we can distinguish   
with very high probability.  Then, if the outcome is i, 
prepare copies of 

= 0

= 1.



The non-distinguishability of non-orthogonal states
implies that there is a big difference between 
knowing the description of a quantm state and 
having a copy of the quantum state.  

We have to be specific when talking about "a 
quantum state" throughout this course. 
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How many states are there in a quantum system 
of n qubits?  

How many bits of classical information can it carry? 

As many as described by           complex numbers. 

What does this mean?



Communication scenario:
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We say that s dimensions (or one out of s messages 
if classical) are (physically) sent from Alice to Bob. 

Goal: transmitting classical 
data by physically sending
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Communication scenario:

Bob (receiver)Alice (sender)

We say that s dimensions (or one out of s messages 
if classical) are (physically) sent from Alice to Bob.  

If y=x with high probability, we say that t messages
  are communicated from Alice to Bob. 

Goal: transmitting classical 
data by physically sending
classical or quantum data



Remarks on how to think about quantum protocols: 

1. Note which party has which quantum system
    (thus what operations he/she is allowed to do)

2. Note which party has what classical information
    (e.g., Alice knows the message, Bob doesn't)

These will determine how we set up the mathematics
to describe the physics, and how we proceed with the
proofs.  



The non-signalling principle says there is no free lunch:

Alice cannot affect Bob's output if nothing (classical 
or quantum) is being sent physically; 

i.e., if s = 0 or 1, x and y are independent.  



The non-signalling principle says there is no free lunch:

The following theorem says there is no discounted 
lunch for the classical setting.   

Alice cannot affect Bob's output if nothing (classical 
or quantum) is being sent physically; 

i.e., if s = 0 or 1, x and y are independent.  

i.e., x = y with high prob, then s >= t. 
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Alice cannot communicate t > s messages
to Bob by sending s messages.  

WLOG, when Alice's message is x, she produces an
f(x) in {1,..,s} and sends f(x) to Bob, who decodes 
f(x) to obtain an output y.  For each x, Pr(x=y)     1. 

Theorem:

Proof (by contradiction):

Suppose there is a method for Alice to communicate
t messages to Bob by sending only s messages.  

Now modify the above method:  

Alice generates f(x) but does not send it to Bob.  
Bob, without an incoming message, just guesses it
randomly, prob(correct) = 1/s.  



In the modified method, x=y with prob 1/s.
With 1/t values of x, so, x and y are NOT independent.  



In the modified method, x=y with prob 1/s.
With 1/t values of x, so, x and y are NOT independent.  
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method, this contradict the no-signalling principle.

So, it's impossible to communicate t messages from 
Alice to Bob by sending s messages.



In the modified method, x=y with prob at least 1/s.
With 1/t values of x, so, x and y are NOT independent.  

What happens if Alice sends a quantum message to 
Bob instead?

But Alice doesn't send anything in the modified
method, this contradict the no-signalling principle.

So, it's impossible to communicate t messages from 
Alice to Bob by sending s messages.
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Transmitting quantum is not better than classical ... 

Theorem (Holevo73): Alice cannot communicate t>s 
messages to Bob by sending an s-dim quantum sys.  

Intuition for the theorem:

Easy case: 

Bob's
dec-
oder

At most s outcomes 
for y.  

General case (out of scope): 

Bob's decoder

fixed state
independ-
ent of x

mea-
sure-
ment

can have many
measurement
outcomes



What if Alice and Bob share an entangled state 
that they can use ? 
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send s-dimensional
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How to see this?  

send s classical 
messages 
comm no more 
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send s-dimensional
quantum system 
comm no more 
than s messages

send s classical 
messages & use
entanglement
comm no more 
than s messages
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Similar to the proof without entanglement! 

Alice cannot communicate t > s messages
to Bob by sending s messages, 

Theorem: (no discounted lunch thm    )

 Alice and Bob share an entangled state.
even if

Proof sketch:  

(1) start with some discounted-lunch protocol with 
entanglement, (2) replace Alice's message with Bob's 
random guess, (3) Bob's output is correlated with 
Alice's input and contradicts the no-signalling principle
which holds even in the presence of entanglement. 

+



send s classical 
messages 
comm no more 
than s messages

send s-dimensional
quantum system 
comm no more 
than s messages

send s classical 
messages & use
entanglement
comm no more 
than s messages

send s-dimensional
quantum system &
use entanglement
comm how many 
messages ?

The no discounted lunch proof breaks down since 
Bob cannot guess a quantum state.  Holevo's 
theorem applies but to larger dim ... 
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Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state 
and Alice can send an s-dimensional quantum 
system to Bob.  Then, Alice can communicate t=s
messages to Bob!

Which party has what quantum system ?  

Which party has what classical information ?

How to think about quantum protocols:

Alice has a message v.  Bob has nothing. 

Initially, Alice has register A, Bob has register B of 
the shared state.  Alice also has an s-dim system C.  
She then sends C to Bob.  Then, Bob has both B, C. 

A        B



Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state 
and Alice can send an s-dimensional quantum 
system to Bob.  Then, Alice can communicate t=s
messages to Bob!

What operations he/she is allowed to do ?

How to think about quantum protocols:

Before Alice sends C to Bob, she can apply any 
operation on AC that depends on v.  C depends
on A and v, and C can be A itself.  

After Bob receives C from Alice, he can apply any 
operation on AC that does not depend on v. 



Proof: for simplicity, first consider s=2. 

Suppose Alice & Bob share the state 

so that Alice (Bob) holds the first (second) qubit A (B). 
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Proof: for simplicity, first consider s=2. 

Suppose Alice & Bob share the state 

Recall the Pauli matrices: 

so that Alice (Bob) holds the first (second) qubit. 

= = = =

Suppose Alice wants to communicate a message v 
from the set 

If her message is v, she applies to A.

The shared state         on AB is transformed by 



These 4 states are mutually orthogonal, forming 
the "Bell basis".  Note that Alice operates on a 2-dim 
system A, but the shared state on AB traverses to  
1 out of 4 possible distinguishable (ortho) states.  

For

= = = =



These 4 states are mutually orthogonal, forming 
the "Bell basis".  Note that Alice operates on a 2-dim 
system A, but the shared state on AB traverses to 
1 out of 4 possible distinguishable (ortho) states.  

If Alice sends C=A to Bob, he has AB in the state

He can measure AB along the Bell basis to find v !  

For

= = = =



Communication protocol: 

A

B

Initial state shared
between Alice and 
Bob. Alice is holding
system A; Bob is 
holding system B.  

1
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Communication protocol: 

A

B

Initial state shared
between Alice and 
Bob. Alice is holding
system A; Bob is 
holding system B.  

If Alice wants to 
communicate "v"
   {0,x,y,z} to Bob
she applies 

Alice 
sends system C=A
    to Bob (2-dim).

Having both
systems A & B,
Bob measures
along the Bell 
basis. 
Outcome is v
with certainty.  (4 possibilities)

1 2

3

4

qubit A.
to 



Exercise: verify that the following circuit measures 
       along the Bell basis. 

measurements 
along the basis

Hadamard
gate

H

CNOT



Thoughts:

1. Entanglement enables the operation on a 2-dim 
    system to map the shared state over 4 dimensions.  

2. Bob has a 4-dim system (AB) after the channel 
    transmission, so superdense coding is consistent 
    with Holevo's bound.  
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Thoughts:

1. Entanglement enables the operation on a 2-dim 
    system to map the shared state over 4 dimensions.  

2. Bob has a 4-dim system (AB) after the channel 
    transmission, so superdense coding is consistent 
    with Holevo's bound.  

3. Is there a catch?  Does Alice also need to prepare 
    the entangled state in AB and send B to Bob before 
    superdense coding so altogether she sends 4 dims?  

Not really.  Bob can prepare the entangled state in 
AB and send A to Alice instead, or a common friend 
Charlie can prepare the entangled state and send 
A to Alice and B to Bob.  

SD turns entanglement or back quantum comm into 
increased forward classical communication !! 
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Note that for s = 2

we can simply repeat "SD coding for s=2" n times.  

For general s: let be a primitive s-th root of unity.

Let Alice's message be (k,j) {1,2,...,s} x {1,2,...,s}.

Consider the unitaries:
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NB for s=2, are "generalized Pauli's."



Exercise:

How does SD coding work for general s?  

Note that for s = 2

we can simply repeat "SD coding for s=2" n times.  

For general s: let be a primitive s-th root of unity.

Let Alice's message be (k,j) {1,2,...,s} x {1,2,...,s}.

Consider the unitaries:

Verify that the

are mutually orthogonal. 

  states
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Theorem: superdense coding (Bennett-Wiesner 93)

Suppose Alice and Bob share the state 
and Alice can send an s-dimensional quantum 
system to Bob.  Then, Alice can communicate t=s
messages to Bob!

s-dim quantum state = log s qubits
s  classical messages = 2 log s bits
max entangled state of local dim s = log s "ebits"

Converting the units of various resources:

Dividing everything by log s, on average, 
SD coding uses 1 ebit and sends 1 qubit 
to communicate 2 bits (doubling the rate).  



(d) Superdense coding and teleportation 
  (NC 2.3, 1.3.7, KLM 5.1-5.2, N 6.4-6.5)

4. Immediate information processing consequences of QM 

i.e., more examples of QM :)

(a) No-cloning theorem (NC 1.3.5, box 12.1)

(b) Non-distinguishability of non-orthogonal states

(c) Communication of data 
- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

 (NC p56-57)

(e) Bell's inequality and nonlocal games (NC 2.6, M 6.6)


