
(d) Superdense coding and teleportation 
  (NC 2.3, 1.3.7, KLM 5.1-5.2, N 6.4-6.5)

4. Immediate information processing consequences of QM 

i.e., more examples of QM :)

(a) No-cloning theorem (NC 1.3.5, box 12.1)

(b) Non-distinguishability of non-orthogonal states

(c) Communication of data 
- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

 (NC p56-57)

(e) Bell's inequality and nonlocal games (NC 2.6, M 6.6)



Communication scenario from last time:

Bob (receiver)Alice (sender)

If input data and output data are equal with high 
probability, or are similar, we say that the data is 
communicated from Alice to Bob. 

sends quantum
or classical data output

input
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What if Alice wants to communicate a quantum 
state to Bob by sending only classical data?  

to Bob.

Case (ii): Alice is given the state to be communicated 
              (she runs Qedex, usual setting)

For simplicity, she wants to communicate a qubit

Case (i): Alice knows a,b (she authors the message) 

She can send approximations of a and b to Bob.  
For Bob to decode a qubit closer and closer to
she has to send more and more bits.  

She does not know a,b, and cannot know more than 
1 bit of information about them by Holevo's bound. 

Can't comm quantum states by sending classical data.



Free entanglement is like free love 
-- it changes the world.  

Charles Bennett, Cambridge, 1999



Teleportation

Alice can communicate a qubit to Bob 
if (1) she can send 2 classical bits to Bob, and 
   (2) they share the ebit

Which party has what quantum system ?  

Which party has what classical/quantum information ?

What operations he/she is allowed to do ?

How to think about quantum protocols:



Teleportation

Alice can communicate a qubit to Bob 
if (1) she can send 2 classical bits to Bob, and 
   (2) they share the ebit

Schematic diagram to be completed:

M

A

B D

C

Black: Alice's
Red: Bob's
Blue: classical
message from
Alice to Bob

meas 
indep
of 

indep of



Main mathematical tool: 
Expressing an 8-dim quantum state in 2 ways. 



Main mathematical tool: 
Expressing an 8-dim quantum state in 2 ways. 



Main mathematical tool: 
Expressing an 8-dim quantum state in 2 ways. 

no cross terms
gives 



Main mathematical tool: 
Expressing an 8-dim quantum state in 2 ways. 

no cross terms
gives 



Pauli's:

Bell
basis: 

= = = =



Pauli's:

Bell
basis: 

= = = =



Pauli's:

Bell
basis: 

= = = =



If Alice measures MA along the Bell basis, each 
outcome k    {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is 



If Alice measures MA along the Bell basis, each 
outcome k    {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is 

 he can apply       to B, turningIf Alice sends k to Bob,
to



Schematic diagram:

M

A

B D
C

k

Bell
meas

Teleportation

Alice can communicate a qubit to Bob 
if (1) she can send 2 classical bits to Bob, and 
   (2) they share the ebit

Black: Alice's
Red: Bob's
Blue: classical
message from
Alice to Bob



Exercise: verify the following specific implementation

M

A

B
D

H
v

w

Here, k is given by 2 bits (v,w). Note also

Teleportation

Alice can communicate a qubit to Bob 
if (1) she can send 2 classical bits to Bob, and 
   (2) they share the ebit

i
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Photo-credit: Charles Bennett, Cambridge UK 1999.  



Remarks:

0. What is teleported, the body or the soul ?

Vote !!! 
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Remarks:

0. What is teleported, the body or the soul ?

1. Alice's operations are independent of a,b. 
    The method works on a copy of the qubit, and 
    no knowledge of the state is needed. 

2. Generalizes to higher dimension (use the 
    unitaries and the basis discussed at the end
    of superdense coding). 

3. Preserves global state (including entanglement 
    of the communicated system with anything else)
    if applied to one of two systems.  (Proof: A2)



4. By 3, we can teleport a 2  -dim system by teleporting
    the n qubits one by one.    

Exercise: check that Alice can communicate: 

35 7
84

by teleporting the 1st qubit, and then 
teleporting the 2nd qubit, each using 
the method on p20.  
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4. By 3, we can teleport a 2  -dim system by teleporting
    the n qubits one by one.    

5. We say that teleportation uses 1 ebit and sends 2 
     classical bits to communicate 1 qubit.  

6. Alice's Bell measurement learns nothing about  
    the communicated qubit.  This is necessary, else, 
    she can learn information about the qubit without 
    disturbing it, making non-orthogonal states more
    distinguishable than possible.  



7. Teleportation, besides being a useful communication 
    protocol, IS the conceptual tool for numerous 
    important results:

   - fault tolerant quantum gates
   - programmable gate arrays
   - reducing quantum error correction to 
                                     entanglement purification 
   - measurement-based quantum computation
   - quantum encryption
   - quantum authentication
   - blind / delegated quantum computation  ... 
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Superdense coding and teleportation:

If entanglement is free, these two communication 
protocols are inverses of one another:

2 bits of 
communication

1 qubit 
of communication

teleportation

superdense
    coding

Furthemore, each protocol is optimal, because of 
the other protocol ! 



Optimality of teleportation: 

Any method to communicate one qubit using 
entanglement must send at least 2 bits.  

in a way that preserves 
entanglement with the qubit



Proof: 
Suppose, by contradiction, there is a method T to 
communicate a qubit while consuming some 
entangled state        and sending c < 2 classical bits.  

Optimality of teleportation: 

Any method to communicate one qubit using 
entanglement must send at least 2 bits.  
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entanglement with the qubit

Idea: if X is too good to be true, compose it with 
something else Y that's is known to be true, and get 
something new Z so good that it's an immediate 
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Proof: 
Suppose, by contradiction, there is a method T to 
communicate a qubit while consuming some 
entangled state        and sending c < 2 classical bits.  

Optimality of teleportation: 

Any method to communicate one qubit using 
entanglement must send at least 2 bits.  

in a way that preserves 
entanglement with the qubit

Idea: if X is too good to be true, compose it with 
something else Y that's is known to be true, and get 
something new Z so good that it's an immediate 
contradiction.  

X: method T sending fewer than 2 classical bits
Y: known standard superdense coding
Composition: use method T to comm the qubit in Y
Z: sending too much classical data with entanglement



Superdense coding (proven to work): 
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Superdense coding (still works if method T exists): 

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Alice sends system C=A to Bob (2-dim)
USING METHOD T.  

Bob measures
along the Bell 
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Z: new method to send 2 classical bits v using c bits
& entanglement

A

B

ebit shared
by Alice (A) 
and Bob (B)

To comm "v"
Alice applies 
Pauli-v, for v 
in {0,x,y,z}.

Alice sends c bits to Bob

Bob measures
along the Bell 
basis to get v. 

1 2

3

4

B'

A'

M
c bits

D

state in M
recovered 
in D

Alice also operates 
on M and A'.

Bob operates 
on D, 
then



Proof: 
Suppose, by contradiction, there is a method T to 
communicate a qubit while consuming some 
entangled state        and sending c < 2 classical bits.  

Optimality of teleportation: 

Any method to communicate one qubit using 
entanglement must send at least 2 bits.  

in a way that preserves 
entanglement with the qubit

New scheme now communicates 2 bits using                
and by sending c < 2 bits. 

Then, take superdense coding scheme, and send the 
qubit in SD coding by method T.  

This contradicting the principle of no discounted 
lunch+.  So, method T cannot exist.  



Optimality of superdense coding: 

Any method to communicate 2 bits using 
entanglement must send at least 1 qubit.  

Proof: A2 

NB. Both optimality proofs assume asymptotically 
large number of uses, and consider the average 
rate.  

Discuss what is expected of the answer.  



superdense coding

no discounted 
lunch principle

From the original teleportation paper: 

figure drawn as a  
postscript file by 
the late Asher Peres



(d) Superdense coding and teleportation 
  (NC 2.3, 1.3.7, KLM 5.1-5.2, N 6.4-6.5)

4. Immediate information processing consequences of QM 

i.e., more examples of QM :)

(a) No-cloning theorem (NC 1.3.5, box 12.1)

(b) Non-distinguishability of non-orthogonal states

(c) Communication of data 
- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

 (NC p56-57)

(e) Bell's inequality and nonlocal games (NC 2.6, M 6.6)
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We saw that entanglement does not:
(1) allow signalling
(2) increase the # bits communicated by a noiseless 
     classical channel.  

But it offers quantum advantages when it is used 
with a channel: 
(3) it converts a noiseless bit channel into a quantum 

channel (teleportation)
(4) it doubles the classical bit rate of the noiseless 
        quantum channel (superdense coding)

We will see that entanglement can produce 
correlations that are impossible to obtain classically, 
why this doesn't contradict item (1), and why this is
interesting.  



Bell's inequality Nonlocal games

view from physics view from computer 
          science

clearer motivations
and less confusing



Scenario:

A referee "runs" a game G with a list of k players 
(Alice, Bob, Charlie, ...).  

All communication in the game is between the 
referee and each individual player.  The players do
NOT communicate to one another during the game.  
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Scenario:

A referee "runs" a game G with a list of k players 
(Alice, Bob, Charlie, ...).  

All communication in the game is between the 
referee and each individual player.  The players do
NOT communicate to one another during the game.  

BEFORE the game, the players can agree on a 
strategy and share correlations.  The players win or
lose collectively as a team. 



During the game:

(1) The referee draws a "query" q from a list L, 
according to a distribution p.  Each query is a  
k-tuple (ordered) of questions, one for each player.  



Example: the GHZ game
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each query has 3 bits,
j-th bit is the question
to the j-th party
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The referee plays honestly, and the players want 
to maximize their probability of winning. 

Scenario:

The game G is defined by 
k: the number of players, 
L: the list of queries, 
p: the distribution of queries, 
the range for the answers, 
the "winning conditions" in step (4).  

known to
referee &
all parties



The referee plays honestly, and the players want 
to maximize their probability of winning. 

Scenario:

The game G is defined by 
k: the number of players, 
L: the list of queries, 
p: the distribution of queries, 
the range for the answers, 
the "winning conditions" in step (4).  

known to
referee &
all parties

Crux: each player only sees his/her question, so q 
is only partially known to each player.  This limits 
their coordination to win.  



Example: the GHZ game

win/lose

Winning condition:
 a   b   c mod 2 = r    s    t

i.e., parity of (a,b,c) is:
 even if rst = 000,
 odd   if rst = 011, 101, 110

Here each player learns 1 bit about q but not q itself.  
e.g., If Bob receives 0, q=000 or 101.  



Example: the GHZ game

win/lose

Winning condition:
 a   b   c mod 2 = r    s    t

i.e., parity of (a,b,c) is:
 even if rst = 000,
 odd   if rst = 011, 101, 110

Claim: 
Best classical strategy wins with probability 3/4.
Best quantum strategy wins with certainty !

type of correlations and operations



Deterministic classical strategy for the GHZ game  

Each player has a deterministic answer for each 
possible question. e.g., 

Alice's answer is a=a0 if r=0, a=a1 if r=1.  

Remember Alice only knows r but not know s or t.  



Deterministic classical strategy for the GHZ game  

Each player has a deterministic answer for each 
possible question. 

Alice's answer is a=a0 if r=0, a=a1 if r=1.  
Bob's answer is b=b0 if s=0, b=b1 if s=1.  
Charlie's answer is c=c0 if t=0, c=c1 if t=1.

So, the 6 bits a0,...,c1 species any deterministic 
classical strategy.



How good are the deterministic classical strategies?

(1) The parties must lose at least 1 query. 

Proof (by contradiction):  Suppose there is a strategy, 
specified by a0, a1, ..., c1 that enables the parties to 
always win.  Then,
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 need to have even parity to win)

(when rst=011, the answer bits 
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Proof (by contradiction):  Suppose there is a strategy, 
specified by a0, a1, ..., c1 that enables the parties to 
always win.  Then,



How good are the deterministic classical strategies?

(1) The parties must lose at least 1 query. 

(when rst=000, the answer bits 
 need to have even parity to win)

(when rst=011, the answer bits 
 need to have odd parity to win)

Then, if we sum the 4 equations above, 
LHS = 0 mod 2, RHS = 1 mod 2 (contradiction).  

Proof (by contradiction):  Suppose there is a strategy, 
specified by a0, a1, ..., c1 that enables the parties to 
always win.  Then,



How good are the deterministic classical strategies?

(2) The winning probability is at most 3/4, since 
the parties lose in at least one query, each is drawn 
with probability 1/4. 



How good are the deterministic classical strategies?

(2) The winning probability is at most 3/4, since 
the parties lose in at least one query, each is drawn 
with probability 1/4. 

(3) It is easy to win with probability 3/4.  
e.g., take a0=b0=c0=1, a1=b1=c1=0. 
Then, the parties lose in the first query 000 
(their joint answer 111 has odd parity), 
but they always win the rest 
(e.g., for 110, the answers 001 has odd parity).  



How good are the deterministic classical strategies?

The overall winning probability is the winning prob
averaged over all shared and local random variables.  

most general

Most generally, the parties can share randomness.  
For each random value, they follow a strategy, which 
in turns uses local randomness.  



How good are the deterministic classical strategies?

The overall winning probability is the winning prob
averaged over all shared and local random variables.  

This conclude the first claim, that the best classical 
strategy wins with probabilty 3/4. 

most general

Most generally, the parties can share randomness.  
For each random value, they follow a strategy, which 
in turns uses local randomness.  

By convexity, this average is no better than the best 
case (over random variables) winning probability, 
which is given by some deterministic strategy.  



Quantum strategy for general nonlocal games  

The players can share an entangled state before the
game starts.  

For each player, for each question, a measurement 
that depends on the question is applied on the 
entangled state.  Each answer depends on both 
the question and the measurement outcome.



Quantum strategy for the GHZ game  

The players share a (surprise!) GHZ state: 

Greenberger-Horne-Zeilinger



Quantum strategy for the GHZ game  

The players share a (surprise!) GHZ state: 

Greenberger-Horne-Zeilinger

For each player: 
If the question is 0, measure eigenspace of  

If measurement outcome is +1, answer = 0

Why do they always win?  

1

-1 1.



In A1 Q4, you show that:

If

For a state 

S1, S2 hermitian operators with eigenvalues +/- 1, 

then, measuring S1, S2 locally, separately, gives 
two outcomes u and v such that uv is always +1.  

i.e., only (u,v) = (+1,+1) or (-1,-1) occurs.  
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In A1 Q4, you show that:

If

For a state 

S1, S2 hermitian operators with eigenvalues +/- 1, 

then, measuring S1, S2 locally, separately, gives 
two outcomes u and v such that uv is always +1.  

i.e., only (u,v) = (+1,+1) or (-1,-1) occurs.  

If

i.e., only (u,v) = (+1,-1) or (-1,+1) occurs.  

, uv is always -1. 

This extends to any number of systems by induction,
in particular, to k=3 qubits.  



Quantum strategy for the GHZ game  

The players share 

which is a +1 eigenstate of 

and a -1 eigenstate of 

Each of and has eigenvalues +/- 1.  

(Exercise)

Recall:



Quantum strategy for the GHZ game  

The players share 

which is a +1 eigenstate of 

and a -1 eigenstate of 

the product of the 3 outcomes is always +1 (A1Q4).

Converting +1 to 0, and -1 to 1, a+b+c = 0 mod 2.  

(Exercise)

If the query is 000, each of ABC measures and

So they win.  



Quantum strategy for the GHZ game  

The players share 

which is a +1 eigenstate of 

and a -1 eigenstate of 

one qubit, and on the others, outcomes have 
product -1, so a+b+c = 1 mod 2.  

(Exercise)

So, the quantum strategy has winning prob 1 ! 

the product of the 3 outcomes is always +1 (A1Q4).

Converting +1 to 0, and -1 to 1, a+b+c = 0 mod 2.  

If the query is 000, each of ABC measures and

If the query is 110, 101, or 011, measuring  on

So, they also win.



Summary: in nonlocal games, remote parties can 
overcome their lack of information on the query 
using quantum correlations that are extracted by
quantum measurements.  

In the GHZ game, a quantum strategy has winning
probability 1, while the best classical strategy has 
winning probability 3/4.  
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Summary: in nonlocal games, remote parties can 
overcome their lack of information on the query 
using quantum correlations that are extracted by
quantum measurements.  

In the GHZ game, a quantum strategy has winning
probability 1, while the best classical strategy has 
winning probability 3/4.  

Can such quantum correlation enable signalling 
between the parties? 

No.  No party can affect the outcome distribution of
any other.  You prove that in A1Q3 (for 2 parties)!  
The non-classical correlation in the JOINT answer is 
only observed by the referee (he talks to all 3 parties).  
Marginal distribution for each party does not depend 
on what the other two parties are doing.  



Remark: the prob of winning is not a measurement 
outcome ... and cannot be observed directly, not even 
to the referee.  To verify the correlation, independent 
copies of the game should be played, and the winning 
prob estimated.  A method to enforce independence 
is needed.  



Remark: the prob of winning is not a measurement 
outcome ... and cannot be observed directly, not even 
to the referee.  To verify the correlation, independent 
copies of the game should be played, and the winning 
prob estimated.  A method to enforce independence 
is needed.  

But these can be done, and in fact, with advanced 
techniques, the referee can verify that the parties 
share the optimal state and perform the optimal  
measurements.  That's allows very secure quantum 
key distribution wherein the referee does not even 
need to do anything quantum!  

Similarly for delegated computation.  
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Connecting nonlocal games to Bell inequalities:

Questions Measurement settings

Nonlocal game Bell inequality

Answers Measurement outcomes

No communication Spacelike separated

Winning prob Expectation of a function
        of the observables

Entanglement 
strictly increases
winning probability

Bell's inequality: upper bound 
the expectation, given shared 
randomness (local hidden 
variable model).  

QM violates the Bell's 
inequality.



In physics, the main interest in Bell inequalities come
from the fact that it refutes local hidden variables. 

In recent years, "loopholes-free demonstrations" have
been reported.   

Note this does not verify quantum mechanics, but 
rules out the obvious competing physical theory. 



Further opportunities to study quantum subjects:

Graduate courses at IQC :

Quantum information -- DL (F23, F25?)

Quantum communication -- DL (F20)

Nonlocal games and entanglement -- Professor Cleve

(W19)

Quantum algorithms -- Professor Gosset (S23, 25?)

Quantum error correction & fault tolerance -- 
      DL, Yoshida, Vasmer (W22, 24, ?)

Quantum entanglement -- Professor G Smith (W25)


