4. Immediate information processing consequences of QM

l.e., more examples of QM :)

\/ (@) No-cloning theorem (NC 1.3.5, box 12.1)

\/ (b) Non-distinguishability of non-orthogonal states
(NC p56-57)
/ (€) Communication of data
- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

(d) Superdense coding and teleportation &
VA (NC 2.3,1.3.7, KLM 5.1-5.2, N 6.4-6.5)

(e) Bell's inequality and nonlocal games (NC 2.6, M 6.6)



Communication scenario from last time:

input

sends quantum \9
/1 or classical data output
- \l > | ﬁ
J é,
Alice (sender) Bob (receiver)

If input data and output data are equal with high
probability, or are similar, we say that the data is
communicated from Alice to Bob.




What if Alice wants to communicate a quantum
state to Bob by sending only classical data?

For simplicity, she wants to communicate a qubit
¥Y= aloy+ b1y to Bob.
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What if Alice wants to communicate a quantum
state to Bob by sending only classical data?

For simplicity, she wants to communicate a qubit
1YY= aloy+bli) to Bob.

Case (i): Alice knows a,b (she authors the messaqge)

She can send approximations of a and b to Bob.

For Bob to decode a qubit closer and closer to |¥)
she has to send more and more bits.

Case (ii): Alice is given the state to be communicated
(she runs Qedex, usual setting)

She does not know a,b, and cannot know more than
1 bit of information about them by Holevo's bound.

Can't comm quantum states by sending classical data.



Free entanglement is like free love
-- it changes the world.

Charles Bennett, Cambridge, 1999



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit |3} = (|oo>+‘..>)

How to think about quantum protocols:

Which party has what classical/quantum information ?
Which party has what quantum system ?

What operations he/she is allowed to do ?



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit |§°>=J‘__(|oo>+“ y)
= .

Schematic diagram to be completed: Black: Alice's
Red: Bob's
Blue: classical
_ M meas
Y= afoy + b indep message from
A of |y) c Alice to Bob
|§o>=J—‘E-(|OD>+||I>) < _ 5
B l ¥

|
indep of |y)



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

1
@y +b1d)  F(100+1n)

= (A 1000y + @A lol11y +bl100) +blIT1Y) . ff



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

A1
@y +bIn) F(100+1n)

:(alooo>+G{lOH>+b\|OO>+b\lll>)MAB n\—if

= = (100) +1113),,, Aoy + bl

]7

1 _ — 1
+ 5= (100y =110) (@7 =blh),
. 1
+ 15 (lon)+110)) (A1 +b0Y), 5
L _ — 1
+ 15 (loy—110)),, (@IHh—=bbY), 5



Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.
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Main mathematical tool:
Expressing an 8-dim quantum state in 2 ways.

A
(a[o>+b\l>jM H(too>+m>)/\E

l
= (A 1000) + @&l011) +bl100) +bllID) ., o 5
_ J—,“Z:([OO>+\||>)MA(\GK|0>+\D\|>){3 ]? %no Cross terms
_\i

l gives @ |000)
+EOO@““|>>MA(\0U°>"“‘D\|>) + bl

oy

+ %OOWMIO»MA(Q“H oY)

1
, B < %:alow
L — — 1 [ +bllo0)
+ 1= (lo1y—=110y) ,, (@lH—=bloy). 5



+ = (101110,
+ = (lon=110)),,,

4
\
(01[0>+b\|>)M

= (100) +111)), (@Y + bl
+ = (100) =111), , (@PY=bl1))

(A1Y+bo))
(A11Y—b10))

oy

oy

oy

oy

PiEN
=(1o0)+111)

_U
Q
C
wn
AN
I
~ N
o
— O
S———
AN
=
|l
~
— 0
QO —
S~——~
&
|l
~ N
o ¢
S——~



H?\’ @7
[00) +11
(ouo>+!o\|>) = (100} +1 ;>)A%
ENA = (100) +111),, (@or+blId), L
4.y T J'\‘“(lOO%H ) p (@07 =bI), &
& ’\ﬂ'\( 01)-+110)),,., (AI1YFbIY),
+ = (1019=10),, (@AI—=bbY), £

0\/

Paulis: 6, = (5%), 6x= (7o), 6 =(23),

Bell |3,) =
basis:



N B lOOHm;}m )
(@611 he =

4.7~ L ([oo>+\l |>) (ouo>+m N7

B 2
ER +F(IOO%HW)MA(W”“,%“Z/@|Y>
2 T :
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Pauli's: ¢, = (é?), Cx = (?é), éj - (OO>/ 6a:= (é?)
Bell  [2.) = =(lo0) + 11 = 15 (threy=tlol
el 18 = (199 100, 15) = fah0r-iio)
|§x>=J‘—_(llo>+lm>) |§)=J‘—_(|OD>~HI>)
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If Alice measures MA along the Bell basis, each

outcome k< {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is |3,V ® €k [¥)5 .
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If Alice measures MA along the Bell basis, each
outcome k< {0,x,y,z} occurs with prob 1/4, and
postmeasurement state is |3,V ® €¢ [¥)n .

If Alice sends k to Bob, he can apply 6« to B, turning

Ce 1Y) to [W)n.



Teleportation

Alice can communicate a qubit to Bob
If (1) she can send 2 classical bits to Bob, and
(2) they share the ebit lstc,):J‘—_(|oo>+n y)
S .

Schematic diagram: Black: Alice's
Red: Bob's
WY = aloY + b1 M Bell Blue: classical
meas message from
A k  Alice to Bob

2.y == (100) + 1) C T
= | ( B - D
bx 1Y)




Teleportation

Alice can communicate a qubit to Bob

If (1) she can send 2 classical bits to Bob, and

(2) they share the ebit |§o>zj‘§('°°>+“'>) ,

Exercise: verify the following specific implementation

¥y= aloy + bl)

|§o)=l‘—z(|00>+lll>) <
B

"

A

=

bx

— 1Y)
D

Here, k is given by 2 bits (v,w). Note also Sﬂ = 1682 8x -
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An unknown quantum state |¢) can be disassembled into, then later reconstructed from, purely
classical information and purely nonclassical Einstein-Podolsky-Rosen (EPR[ correlations. To do

so the sender, “Alice,” and the recelver, “Bob,” must prearrange the

of this measurement. i i v

pair of particles. Alice makes a
@ system, and

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.4c



The discoverers of quantum teleportation meet six years later to witness application of their
technique. In the first picture the teleportus has not yet undergone the final Pauli rotation.

Photo-credit: Charles Bennett, Cambridge UK 1999.
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Remarks:

0. What is teleported, the body or the soul ?

1. Alice's o
The met
no know

perations are independent of a,b.
nod works on a copy of the qubit, and

edge of the state is needed.

2. Generalizes to higher dimension (use the
unitaries and the basis discussed at the end
of superdense coding).

3. Preserves global state (including entanglement
of the communicated system with anything else)
If applied to one of two systems. (Proof: A2)



4. By 3, we can teleport a 2"-dim system by teleporting
the n qubits one by one.

Exercise: check that Alice can communicate:

7= (51009 + 3 110y lony +7111))
by teleporting the 1st qubit, and then
teleporting the 2nd qubit, each using
the method on p20.
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classical bits to communicate 1 qubit.



4. By 3, we can teleport a 2"-dim system by teleporting
the n qubits one by one.

5. We say that teleportation uses 1 ebit and sends 2
classical bits to communicate 1 qubit.

6. Alice's Bell measurement learns nothing about
the communicated qubit. This is necessary, else,
she can learn information about the qubit without
disturbing it, making non-orthogonal states more
distinguishable than possible.



7. Teleportation, besides being a useful communication
protocol, IS the conceptual tool for numerous
Important results:

- fault tolerant quantum gates

- programmable gate arrays

- reducing guantum error correction to
entanglement purification

- measurement-based quantum computation

- guantum encryption

- guantum authentication

- blind / delegated quantum computation ...
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protocols are inverses of one another:
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Superdense coding and teleportation:

If entanglement is free, these two communication
protocols are inverses of one another:

supelaqlense
2 bits of AL 1 qubit

communication > of communication
teleportation

Furthemore, each protocol is optimal, because of
the other protocol !
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communicate a qubit while consuming some
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Idea: if X is too good to be true, compose it with
something else Y that's is known to be true, and get
something new Z so good that it's an immediate
contradiction.



in a way that preserves |
Optimality of te|eportation:/ entanglement with the qubit

Any method to communicate one qubit using
entanglement must send at least 2 bits.

Proof:

Suppose, by contradiction, there is a method T to
communicate a qubit while consuming some
entangled state |/A> and sending c < 2 classical bits.

Idea: If X is too good to be true, compose it with
something else Y that's is known to be true, and get
something new Z so good that it's an immediate
contradiction.

X: method T sending fewer than 2 classical bits

Y: known standard superdense coding

Composition: use method T to comm the qubitinY

Z: sending too much classical data with entanglement



Superdense coding (proven to work):

@ Alice sends system C=A to Bob (2-dim).

A
by ——
R \_

B — \/
ebit shared To comm "v" Bob measures
by Alice (A) Alice applies along the Bell
and Bob (B) Pauli-v, for v basis to get v.

in {0,X,y,z}.



Superdense coding (still works if method T exists):

comm
@ Alice sends system C=A to Bob (2-dim)

USING METHOD T.

A
éV
| .) o
B — \/
ebit shared To comm "v" Bob measures
by Alice (A) Alice applies along the Bell
and Bob (B) Pauli-v, for v basis to get v.

in {0,Xx,y,z}.



Superdense coding (still works if method T exists):

comm

@ Alice senrds-system C=A to Bob (2-dim)
USING METHOD T.

o

AI

&bits

BI

D

state iIn M
recovered
in D

— \/

ebit shared To comm "v"
by Alice (A) Alice applies
and Bob (B) Pauli-v, for v

in {0,X,y,z}.

@

Bob measures
along the Bell
basis to get v.



Z: new method to send 2 classical bits v using c bits

& entanglement

@ Alice sends c bits to Bob

M state in M
A e c bits | recovered
6V A x in D
|/A><
| 2.) B D
B — V

@

@

ebit shared To comm "v"
by Alice (A) Alice applies
and Bob (B) Pauli-v, for v

in {0,X,y,z}.

Bob operates @

on D,
then Bob measures

along the Bell
basis to get v.

Alice also operates

on Mand A'.



In @ way that preserves |
Optimality of telepgrtation:/ entanglement with the qubit

Any method to communicate one qubit using
entanglement must send at least 2 bits.

Proof:

Suppose, by contradiction, there is a method T to
communicate a qubit while consuming some
entangled state |/v\> and sending c < 2 classical bits.

Then, take superdense coding scheme, and send the
qubit in SD coding by method T.

New scheme now communicates 2 bits using |/A> NER
and by sending c < 2 bits.

This contradicting the principle of no discounted
lunch+. So, method T cannot exist.



Optimality of superdense coding:

Any method to communicate 2 bits using
entanglement must send at least 1 qubit.

Proof: A2
Discuss what is expected of the answer.

NB. Both optimality proofs assume asymptotically
large number of uses, and consider the average
rate.



From the original teleportation paper:

EPR2 /
e /EPR-1

FIG. 2. Spacetime diagram of a more complex 4-way cod-
ing scheme in which the modulated EPR particle (wavy line)
is teleported rather than being transmitted directly. This dia-
gram can be used to prove that a classical channel of two bits
of capacity is necessary for teleportation. To do so, assume
on the contrary that the teleportation from A’ to B’ uses an
internal classical channel of capacity C < 2 bits, but is still
able to transmit the wavy particle’s state accurately from A’
to B’, and therefore still transmit the external two-bit mes-
sage accurately from B to A. The assumed lower capacity
C < 2 of the internal channel means that if B’ were to guess
the internal classical message superluminally instead of wait-
ing for it to arrive, his probability 27¢ of guessing correctly
would exceed 1/4, resulting in a probability greater than 1/4
for successful superluminal transmission of the external two-
bit message from B to A. This in turn entails the existence
of two distinct external two-bit messages, r and s, such that
P(r|s), the probability of superluminally receiving r if s was
sent, is less than 1/4, while P(r|r), the probability of super-
luminally receiving r if r was sent, is greater than 1/4. By
redundant coding, even this statistical difference between r
and s could be used to send reliable superluminal messages;
therefore reliable teleportation of a two-state particle cannot
be achieved with a classical channel of less than two bits of
capacity. By the same argument, reliable teleportation of an
N-state particle requires a classical channel of 2log,(/N) bits
capacity.

figure drawn as a

< postscript file by

A

AN

e

the late Asher Peres

superdense coding

no discounted
lunch principle



4. Immediate information processing consequences of QM

l.e., more examples of QM :)

\/ (@) No-cloning theorem (NC 1.3.5, box 12.1)

\/ (b) Non-distinguishability of non-orthogonal states

(NC p56-57)
/ (€) Communication of data

- protocols, bounds, and non-signalling principle
- encoding and extraction of classical data in QM

\/ (d) Superdense coding and teleportation
(NC2.3,1.3.7,KLM 5.1-5.2, N 6.4-6.5)

— (e) Bell's inequality and nonlocal games (NC 2.6, M 6.06)
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We saw that entanglement does not:

(1) allow signalling

(2) increase the # bits communicated by a noiseless
classical channel.

But it offers quantum advantages when it is used

with a channel:

(3) it converts a noiseless bit channel into a guantum
channel (teleportation)

(4) it doubles the classical bit rate of the noiseless
gquantum channel (superdense coding)

We will see that entanglement can produce
correlations that are impossible to obtain classically,
why this doesn't contradict item (1), and why this is
Interesting.



Bell's inequality

view from physics

Nonlocal games

view from computer
science

clearer motivations
and less confusing




Scenario:

A referee "runs" a game G with a list of k players
(Alice, Bob, Charlie, ...).

All communication in the game is between the
referee and each individual player. The players do
NOT communicate to one another during the game.



Example: the GHZ game
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Scenario:

A referee "runs" a game G with a list of k players
(Alice, Bob, Charlie, ...).

All communication in the game is between the
referee and each individual player. The players do
NOT communicate to one another during the game.

BEFORE the game, the players can agree on a
strategy and share correlations. The players win or
lose collectively as a team.



During the game:

(1) The referee draws a "query" g from a list L,
according to a distribution p. Each query is a
k-tuple (ordered) of questions, one for each player.



Example: the GHZ game

IZ(rusxt)‘ég{DOO)Oll) [o\)“D} — L
% ,‘F: U\V\.|&DTW\ over L n thig ﬁqm(

@ each query has 3 bits,

j-th bit is the question
to the j-th party

@ @ @ k = 3 players A, B, C




During the game:

(1) The referee draws a "query" q from a list L,
according to a distribution p. Each query is a
k-tuple (ordered) of questions, one for each player.

(2) The referee sends each question to the
corresponding player.

(3) Each player returns an answer to the referee.



Example: the GHZ game
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@ @ @ k = 3 players A, B, C




During the game:

(1) The referee draws a "query" q from a list L,
according to a distribution p. Each query is a
k-tuple (ordered) of questions, one for each player.

(2) The referee sends each question to the
corresponding player.

(3) Each player returns an answer to the referee.

(4) Based on the query and the joint answers, the
referee decides whether the players win or lose.



Example: the GHZ game

win/lose ‘jg"(fst)ég{ooo oll, (o1, no}—(__
\ “) un\{orm over L in this Aame
b, €{01}
y Winning condition:
A 5 asbecmod2 =rv syt
\ i.e., parity of (a,b,c) is:
@ even if rst = 000,

Odd ifrst =011, 101, 110



During the game:

(1) The referee draws a "query" q from a list L,
according to a distribution p. Each query is a
k-tuple (ordered) of questions, one for each player.

(2) The referee sends each question to the
corresponding player.

(3) Each player returns an answer to the referee.

(4) Based on the query and the joint answers, the
referee decides whether the players win or lose.



Scenario:

The game G is defined by

<: the number of players,
_: the list of queries, L known to
0: the distribution of queries, referee &

the range for the answers, all parties
the "winning conditions" in step (4). )

The referee plays honestly, and the players want
to maximize their probability of winning.



Scenario:

The game G is defined by

K: the number of players,
_: the list of queries, E known to
0: the distribution of queries, referee &

the range for the answers, all parties
the "winning conditions” in step (4). )

The referee plays honestly, and the players want
to maximize their probability of winning.

Crux: each player only sees his/her question, so g

IS only partially known to each player. This limits
their coordination to win.



Example: the GHZ game

win/lose jg"(fst)ég{ooo otl, fo), o)=L
\ “) wnrform over L in this Aame
o b, €{0.1}
p Winning condition:
A 5 aebecmod2 =rv syt
\ i.e., parity of (a,b,c) is:
@ even If rst = 000,

Odd ifrst =011, 101, 110

Here each player learns 1 bit about g but not q itself.
e.g., If Bob receives 0, g=000 or 101.



Example: the GHZ game

win/lose ‘js"(fst)ég{ooo oll, (o), no’]—L
\ _‘) W\\&orm over L n this Aame
ot b, ¢ €101}
. Winning condition:
o O " t aeobecmod?2 =rvsvt
\ i.e., parity of (a,b,c) is:
@ even if rst = 000,

Odd ifrst=011, 101, 110

Claim:
Best classical strategy wins with probability 3/4.
Best quantum strategy wins with certainty !

\

type of correlations and operations




Deterministic classical strateqy for the GHZ game

Each player has a deterministic answer for each
possible question. e.q.,

Alice's answer is a=a0 if r=0, a=al if r=1.

Remember Alice only knows r but not know s or t.



Deterministic classical strateqy for the GHZ game

Each player has a deterministic answer for each
possible question.

Alice's answer is a=a0 if r=0, a=al if r=1.
Bob's answer is b=b0 if s=0, b=bl if s=1.
Charlie's answer is c=c0 if t=0, c=cl if t=1.

So, the 6 bits a0,...,cl species any deterministic
classical strategy.



How good are the deterministic classical strateqgies?

(1) The parties must lose at least 1 query.

Proof (by contradiction): Suppose there is a strategy,

specified by a0, al, ..., cl that enables the parties to
always win. Then,



How good are the deterministic classical strategies?

(1) The parties must lose at least 1 query.

Proof (by contradiction): Suppose there is a strategy,

specified by a0, al, ..., cl that enables the parties to
always win. Then,

— (when rst=000, the answer bits
aO D bo ®Co=0 need to have even parity to win)

— (when rst=011, the answer bits
0(‘0 @ b ' @ C = | need to have odd parity to win)
A @ by ®Cpr= |

a|@bo@CI:’



How good are the deterministic classical strategies?

(1) The parties must lose at least 1 query.

Proof (by contradiction): Suppose there is a strategy,

specified by a0, al, ..., cl that enables the parties to
always win. Then,

— (when rst=000, the answer bits
aO @ b O ®Co=0 need to have even parity to win)

— (when rst=011, the answer bits
aO @ b ' @ C = | need to have odd parity to win)
A O by OC, = |

a|@bo@CI:I

Then, if we sum the 4 equations above,
LHS = 0 mod 2, RHS = 1 mod 2 (contradiction).



How good are the deterministic classical strategies?

(2) The winning probability is at most 3/4, since
the parties lose in at least one query, each is drawn

with probability 1/4.



How good are the deterministic classical strategies?

(2) The winning probability is at most 3/4, since
the parties lose in at least one query, each is drawn

with probability 1/4.

(3) It is easy to win with probability 3/4.
e.g., take a0=b0=c0=1, al=bl=cl=0.
Then, the parties lose in the first query 000
(their joint answer 111 has odd parity),

but they always win the rest
(e.g., for 110, the answers 001 has odd parity).



most general
How good are the deterministic classical strateqgies?

Most generally, the parties can share randomness.
For each random value, they follow a strategy, which
In turns uses local randomness.

The overall winning probability is the winning prob
averaged over all shared and local random variables.



most general
How good are the deterministic classical strateqgies?

Most generally, the parties can share randomness.
For each random value, they follow a strategy, which
In turns uses local randomness.

The overall winning probability is the winning prob
averaged over all shared and local random variables.

By convexity, this average is no better than the best
case (over random variables) winning probability,
which is given by some deterministic strategy.

This conclude the first claim, that the best classical
strategy wins with probabilty 3/4.



Quantum strateqy for general nonlocal games

The players can share an entangled state before the
game starts.

For each player, for each question, a measurement
that depends on the question is applied on the
entangled state. Each answer depends on both
the question and the measurement outcome.




Quantum strateqy for the GHZ game

The players share a (surprise!) GHZ state:
/N
\{)Z ﬁ([@@@)-ﬁ]u@) \

Greenberger-Horne-Zeilinger



Quantum strateqy for the GHZ game

The players share a (surprise!) GHZ state:
/N
\,\(>:J’%([ooo>+]\\.>) \

Greenberger-Horne-Zeilinger

For each player:
If the question is 0, measure eigenspace of 6

1 65.

If measurement outcome is +1, answer =0
-1 1.

Why do they always win?



In A1 Q4, you show that:

For a state [{)
S1, S2 hermitian operators with eigenvalues +/- 1,

If S80S, Yy =YD

then, measuring S1, S2 locally, separately, gives
two outcomes u and v such that uv is always +1.

l.e., only (u,v) = (+1,+1) or (-1,-1) occurs.



In A1 Q4, you show that:

For a state [{)
S1, S2 hermitian operators with eigenvalues +/- 1,

If S80S, (Y)Y =YD

then, measuring S1, S2 locally, separately, gives
two outcomes u and v such that uv is always +1.

l.e., only (u,v) = (+1,+1) or (-1,-1) occurs.

If S80S, [YY = —|¥), uvis always -1.
l.e., only (u,v) = (+1,-1) or (-1,+1) occurs.



In A1 Q4, you show that:

For a state |V}
S1, S2 hermitian operators with eigenvalues +/- 1,

If S8, Y)Y =YD

then, measuring S1, S2 locally, separately, gives
two outcomes u and v such that uv is always +1.

l.e., only (u,v) = (+1,+1) or (-1,-1) occurs.

If Si8S,[YY = —|¥), uvis always -1.
l.e., only (u,v) = (+1,-1) or (-1,+1) occurs.

This extends to any number of systems by induction,
In particular, to k=3 qubits.



Quantum strateqy for the GHZ game

The players share |Y )= f;—/ ([000) 1 Ju1y)
which is a +1 eigenstate of & ® €x ® ¢, ,
and a -1 eigenstate of Sj® Gj ® €y |
Sj@) Cx ® Gj ,

Cx ® Sj ® gj . (Exercise)

Recall: Each of €x and €, has eigenvalues +/- 1.

]



Quantum strateqy for the GHZ game

The players share |Y )= J’%‘/(_NOO)T Jwy)
which is a +1 eigenstate of & ® €x ® €y |,
j ® 6% )
Sj® Cx ® €
Sy ® Sj ® €

and a -1 eigenstate of Sj ® €

'K
g
If the query is 000, each of ABC measures €x and

the product of the 3 outcomes is always +1 (A1Q4).
Converting +1to 0, and -1to 1, a+b+c = 0 mod 2.

(Exercise)

So they win.



Quantum strategy for the GHZ game

The players share |Y )= j;: (1000 + Juy)
which is a +1 eigenstate of & ® €x ® €y |,
and a -1 eigenstate of Sj® Sy ® €x

Sj@) §x @ €
€y ® Sj®g

j )
y -
If the query is 000, each of ABC measures €x and

the product of the 3 outcomes is always +1 (A1Q4).

Converting +1to 0,and -1to 1, a+b+c = 0 mod 2.

(Exercise)

If the query is 110, 101, or 011, measuring ¢, on
one qubit, and Sj on the others, outcomes have

product -1, so a+b+c =1 mod 2. So, they also win.

So, the quantum strategy has winning prob 1!



Summary: in nonlocal games, remote parties can
overcome their lack of information on the query
using quantum correlations that are extracted by

gquantum measurements.

In the GHZ game, a quantum strategy has winning
probability 1, while the best classical strategy has

winning probability 3/4.
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probability 1, while the best classical strategy has

winning probability 3/4.

Can such quantum correlation enable signalling
between the parties?



Summary: in nonlocal games, remote parties can
overcome their lack of information on the query
using quantum correlations that are extracted by
quantum measurements.

In the GHZ game, a quantum strategy has winning
probability 1, while the best classical strategy has
winning probability 3/4.

Can such quantum correlation enable signalling
between the parties?

No. No party can affect the outcome distribution of
any other. You prove that in A1Q3 (for 2 parties)!
The non-classical correlation in the JOINT answer is
only observed by the referee (he talks to all 3 parties).
Marginal distribution for each party does not depend
on what the other two parties are doing.



Remark: the prob of winning is not a measurement
outcome ... and cannot be observed directly, not even
to the referee. To verify the correlation, independent
copies of the game should be played, and the winning
prob estimated. A method to enforce independence
IS needed.



Remark: the prob of winning is not a measurement
outcome ... and cannot be observed directly, not even
to the referee. To verify the correlation, independent
copies of the game should be played, and the winning
prob estimated. A method to enforce independence
IS needed.

But these can be done, and in fact, with advanced
techniques, the referee can verify that the parties
share the optimal state and perform the optimal
measurements. That's allows very secure quantum
key distribution wherein the referee does not even
need to do anything quantum!

Similarly for delegated computation.



Connecting nonlocal games to Bell inequalities:

Nonlocal game Bell inequality
Questions Measurement settings
Answers Measurement outcomes

No communication Spacelike separated




Connecting nonlocal games to Bell inequalities:

Nonlocal game

Bell inequality

Questions
Answers

No communication
Winning prob

Measurement settings
Measurement outcomes

Spacelike separated

Expectation of a function
of the observables

@ﬂ\gx@ 6x®€x “"sj® 6j ®SX

Bell's inequality: upper bound
the expectation, given shared
randomness (local hidden
variable model).



Connecting nonlocal games to Bell inequalities:

Nonlocal game

Bell inequality

Questions
Answers

No communication
Winning prob

Entanglement
strictly increases
winning probability

Measurement settings
Measurement outcomes

Spacelike separated

Expectation of a function
of the observables

e4. & ® €x ® €y — Sj® Sj ® €«

¢éj® Cx @ €, — 6@ sj@)gj

Bell's inequality: upper bound
the expectation, given shared
randomness (local hidden
variable model).

QM violates the Bell's
inequality.



In physics, the main interest in Bell inequalities come
from the fact that it refutes local hidden variables.

In recent years, "loopholes-free demonstrations"” have
been reported.

Note this does not verify quantum mechanics, but
rules out the obvious competing physical theory.



Further opportunities to study quantum subjects:
Graduate courses at 1QC :

Quantum information -- DL (F23, F257)

Quantum communication -- DL (F20) (W19)

Nonlocal games and entanglement -- Professor Cleve

Quantum entanglement -- Professor G Smith (W25)

Quantum algorithms -- Professor Gosset (523, 257)

Quantum error correction & fault tolerance --
DL, Yoshida, Vasmer (W22, 24, ?)



