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(a) Quantum circuit model (KLM 4.1, NC 1.3.4)
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N

p,q
N=pq

e.g., factoring with a quantum computer:

q registers (e.g., qubits): 
ions / spins / atoms / 
photons / quantum dots /
superconducting junctions

unitary quantum gates & 
measurements: laser pulses / 
currents / electric or magnetic 
field applied to a few qubits at 
a time



A computation in the quantum setting:

quantum 
   input

quantum 
  output

quantum
 ancillas

quantum
junk

classical
  input

classical
  output

classical
 ancillas

classical
   junk

- obeys QM : 
- classical registers can control the unitary evolution   
- classical computation allowed in the box
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encoding the bit as or and apply the unitary
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This follows from topic 2 (classical computation is
reversible, the Toffoli gate is unitary and universal 
for classical computation).  
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For quantum computation of classical problems 
(no quantum inputs or outputs in topics 5-7):  

Simplifying ideas: 

(2) Unitary operations controlled by classical data can 
   be implemented as a "controlled-unitary" operation 
   and vice versa. 

e.g., in superdense coding, Alice receives one of 
0,x,y,z and she applies accordingly.

Instead, encode 0,x,y,z as 

This is a unitary controlled by classical data.  

A

B

and apply 2 controlled unitaries:
V

U



For quantum computation of classical problems 
(no quantum inputs or outputs in topics 5-7):  

Simplifying ideas: 

(3) Classical input is encoded in the choice of the 
      unitary. 

quantum
 ancillas

quantum
   junk

classical
 input x

classical
output y

quantum
 ancillas

quantum
   junk

classical
output y

Ux

quantum 
    data 



Canonical quantum computation of classical problems: 

- Only has quantum registers. 
- Computation is unitary until final measurements.   



Canonical quantum computation of classical problems: 

quantum 
junk, WLOG
measured
in the endsimple ancillas, 

no hidden complexity

Conventions as in classical circuits. 

- Only has quantum registers. 
- Computation is unitary until final measurements.  

- Classical input is encoded in the choice of the unitary.  

- Outputs (classical) are measurement outcomes.  

All registers can start as 

computation: arbitrary unitaries
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- time going from left to right
- quantum wires (registers) carry quantum data 
- gates are vertices in the graph

With goals and ideas similar to topic 1: 
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- quantum wires (registers) carry quantum data 
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Each quantum gate acts unitarily on the Hilbert space 
associated with the input registers.  Since a quantum 
gate preserves dimension, for each gate
      # incoming edges = # outgoing edges.

(Assuming each register has the same dimension.)    

With goals and ideas similar to topic 1: 



Quantum circuit (acyclic graph): 
- time going from left to right
- quantum wires (registers) carry quantum data 
- gates are vertices in the graph

Each quantum gate acts unitarily on the Hilbert space 
associated with the input registers.  Since a quantum 
gate preserves dimension, for each gate
      # incoming edges = # outgoing edges.   

Are there "universal sets of quantum gates" that  
implement any arbitrary "computation" (i.e., unitary 
transformation)? 

With goals and ideas similar to topic 1: 
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Universal set of quantum gates

Definition: a set G of quantum gates is universal, if 
for any unitary U, there is a circuit using only gates 
from G performing U.  

(c) Continuous universal set of quantum gates (reading)
(NC 4.5.1-4.5.2, KLM 4.3)



Universal set of quantum gates

Definition: a set G of quantum gates is universal, if 
for any unitary U, there is a circuit using only gates 
from G performing U.  

Theorem (NC 4.5.1-4.5.2)
Let S = set of all single-qubit gates.  
The set G ={CNOT} U S is universal.  

:

(c) Continuous universal set of quantum gates (reading)
(NC 4.5.1-4.5.2, KLM 4.3)

Proof: not difficult but long, left as reading ex.  



. . . 

:.

It means for all n, for all unitary U acting on n qubits,
there is a circuit with CNOT's and single qubit gates
that implements U:

CN

G1

G2
CN

= U

:. :.



Single-qubit gates

Quantum gates

Entangling gates

Simpler to implement
and understand

Necessary, harder 
to implement,  
preferably 2-body 

(b) Quantum gates
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The Bloch sphere: a useful way to visualize a qubit

give the arguments of a0, a1. 

= where
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since 

and

The most general qubit: 

real and non-negative



The Bloch sphere: a useful way to visualize a qubit

give the arguments of a0, a1. 

= where

=

since 

and

The most general qubit: 

In test Q2, you showed:

forms a 3-dim, real, unit vector
called the Bloch vector 



x

y

z

=

Plotting the 3 
coordinates:



Single-qubit gates:

These are 2x2 complex unitaries acting on 1 qubit.  

e.g., I, X, Y, Z, Hadamard
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1st characterization of single-qubit gates

The most general single-qubit unitary has the form

for some 

Theorem:

Proof idea:

Any 2x2 hermitian matrix is a linear combination of 
I, X, Y, Z with real coefficients (cf test Q2).  

U unitary  iff  U = e iH

for some hermitian matrix H
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2nd characterization of single-qubit gates

The most general single-qubit unitary has the form

Theorem:

is a unit vector.where 

Proof: From the 1st char, the unitary has the form

We can choose
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do to the Bloch vector? 

2nd characterization of single-qubit gates

What does

If the initial state is , and a unitary U is applied, 

the resulting state is 

So, if 

and 

then the Bloch vector changes from (a,b,c) to (a',b',c').

Note: 

but we are looking at a transformation on 
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e.g., consider U = 

By power series expansion, U = 

=If

then 

So, when 

unchanged



=

unchanged



x

y

z

=

           is a rotation about
the z-axis of angle 

unchanged

End of e.g. 



So, is a rotation about the z-axis of angle 

What is 

use right-
hand-rule 



Claim: 
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Claim: 

about the axis 

by an angle 

2nd characterization of single-qubit gates

rotates the Bloch vector 

Proof: let M = 

M
2

=

=

all equal to I

all equal to 0, since any two of
the Pauli matrices anticommute

= I 

since n is a unit vector



M = 
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So, what are the eigenvalues of M?  

hermitian so real eigenvalues. 
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M = 

tr (M) = 0,  M   = I. 

So, what are the eigenvalues of M?  

hermitian so real eigenvalues. 

2

So, the eigenvalues are +1, -1.  

By spectral decomposition: M = V Z V    for some 
    unitary V!

by test Q1

When we apply V or V   to the qubit, how does the 
Bloch vector transform? 



M = V Z V

When we apply V or V   to the qubit, how does the 
Bloch vector transform? 

(add I to both sides 
 then divide by 2)



M = V Z V
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M = V Z V

When we apply V or V   to the qubit, how does the 
Bloch vector transform? 

V takes the Bloch vector (0,0,1) to  

Furthermore, conjugating the above equation by V

V   M V = Z, so, V   takes to (0,0,1).  



Altogether:

1. V   takes to (0,0,1).  

2.  rotates about the z-axis (0,0,1) of angle 

3. V  takes (0,0,1) back to 

 rotates about the axis of angle 



For the Pauli matrices:

they are all      rotations on the Bloch sphere, but 
they are also generators of rotations, namely:

These are rotations about the x, y, z-axes of angle     . 



Consider the mapping 
from 2x2 matrices to 2x2 matrices: 

What are the invariances of f ? 

Remark:

set of M such that f(M) = M



Consider the mapping 
from 2x2 matrices to 2x2 matrices: 

What are the invariances of f ? 

Remark:

f(I) = I, f(M) = M, 
so, for all scalars a, b, f(aI + bM) = aI + bM 

Fact: if U    I, then, no more invariances.  
Proof: exercise.  Hint: consider a spanning set 
          for 2x2 matrices that include I and M.  



Question:

Suppose a 2x2 unitary U does the following:

Which of the following can be U?

(a) (X+Y+Z) / 

(b) 

(c) 

(d) 



x

y

z

So, the axis of rotation 
on the Bloch sphere is 

since this matrix is an invariant under the 
conjugation by U.  



x

y

z

So, the axis of rotation 
on the Bloch sphere is 

since this matrix is an invariant under the 
conjugation by U.  

The angle of rotation is 

since U   = I. 

???

3



x

y

z

So, the axis of rotation 
on the Bloch sphere is 

since this matrix is an invariant under the 
conjugation by U. 

The angle of rotation is 

Answer = =

(c)



The most general single-qubit unitary has the form

Theorem:

where 

(From Euler angles, but there is also a quick direct 
 proof using linear algebra.) 

3rd characterization of single-qubit gates

(NC Thm 4.1)

Check lecture time ... may demote proof to reading. 



The most general single-qubit unitary has the form

Theorem: (NC Thm 4.1)

where 

Proof: any 2x2 unitary has the form

general qubit
state up to 
overall phase

qubit state
ortho to  
up to a phase

relative phase
between the 
2 columns

overall phase
for both columns



Finally, checking:

completes the proof.  

phases multi-
plied to rows phases multi-

plied to cols



The most general single-qubit unitary has the form

Corollary:
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y in the theorem
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Entangling gates:

Definition: a unitary U that acts on two systems S1, 
S2 is a tensor product unitary if U = U1    U2 for 
some unitaries U1 (U2) acting on S1 (S2). 

A unitary U is called entangling if it is not a tensor 
product unitary.  



Entangling gates:

Example: CNOT control  (1st qubit)

target  (2nd qubit)

Action on a basis: 

Conditioned on control being "1" (filled circle)
apply a NOT to the target.

Matrix representation: 1 0 0 0 
0 1 0 0 
0 0 0 1
0 0 1 0

 



Entangling gates:

control  (1st qubit)

target  (2nd qubit)

Action on a basis: 

Conditioned on control being "1" (filled circle)
apply U to the target.

Matrix representation: 1 0 0 0 
0 1 0 0 

 

Generalization:
controlled-U U

0 0
0 0

U

U

U



control register "C" target register "T"

In Dirac notation:

Labelling the and 



Question: 

Let U = I.  Is there an input for which the control  
qubit is changed by the controlled-U gate?

(a) for any such U, there is always an input such  
     that the control qubit changes, 

(b) for some U, the control qubit never changes, 
     for some other U, there is an input such that
     the control qubit changes, 

(c) the control qubit is never changed by a 
     controlled-U gate.

Answer in the next 3 pages.  Please do not read 
before we vote ... 



Unlike the classical setting, the control register of 
a c-U gate can be changed by the gate !

e.g.1  c-(-I) = Z    I

which is

(c) is wrong.  

NB. Overall phase of U matters when taking c-U.  



e.g.2, for CNOT, consider the input

=

Output after a CNOT:

=



(a) is correct.  If U = I, there is an input whose 
controlled qubit is changed by controlled-U:

Proof: let U has eigenvalues with corresponding

eigenvectors 

Since U = I, at least one eigenvalue not equal to one. 



WLOG: let 

Take the input: 

Output of the gate:

(a) is correct.  If U = I, there is an input whose 
controlled qubit is changed by controlled-U:

Proof: let U has eigenvalues with corresponding

eigenvectors 

Since U = I, at least one eigenvalue not equal to one. 



WLOG: let 

Take the input: 

Output of the gate:

So the control qubit is changed (a "phase kick-back")!

(a) is correct.  If U = I, there is an input whose 
controlled qubit is changed by controlled-U:

Proof: let U has eigenvalues with corresponding

eigenvectors 

Since U = I, at least one eigenvalue not equal to one. 



Question:

Is the SWAP gate, defined by:

entangling? 

(a) Yes
(b) No



Question:

Is the SWAP gate, defined by:

together with all single qubit gates, a universal 
gate set for quantum computation ? 

(a) Yes
(b) No



For quantum circuits: the possible unitaries form a 
continous set.  Do we need a continous set of gates 
for universality (e.g., CNOT+all 1-qubit gates)?

A set of gates G is universal if :  

Definition: universal set of gates

n m   for any function f : {0,1}  -> {0,1}  
   there is a circuit to compute f using the gates in G.

 
   for any positive integers n,m   
   and 

 

Recall for classical circuits:  


