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The unitaries acting on a Hilbert space form a 
continuous set.  Is a continuous set of gates needed 
for universality (e.g., CNOT+all 1-qubit gates)?

Idea: approximating any unitary to arbitrary 
accuracy is good enough.  



How to measure the quality of approximate unitaries?

Depends on the goal !

Here: replace one gate (that we want) by another 
(that we can apply) in a circuit without affecting the 
correctness of the "computation." 
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How to measure the quality of approximate unitaries?

If, for all possible input         , the outputs from the two 
circuits are "similar", our computation is not too affected
and the approximation is good.  
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Up to red stage: identical states in both circuits

Green stage onwards, identical computation

Suffices if the states at the green stage are similar.



How to measure the quality of approximate unitaries?

Definition: the error of approximating U by V is 

where U, V act on system S, and system R is arbitrary.

unit vector

Euclidean norm



How to measure the quality of approximate unitaries?

Definition: the error of approximating U by V is 

where U, V act on system S, and system R is arbitrary.

For our circuit: 
S = qubit(s) acted on by the gate to be approximate
R = all other qubits 

the worst case state right before the gate.

unit vector
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Indistinguisability:

Exercise: for two unit vectors 

Recall: Holevo-Helstrom theorem

If each of is chosen with probability 1/2,  

then the max prob to distinguish the states is

So, can be distinguished with prob

so no one can tell if U or V 
has been applied if E* small



How to evaluate this error?

R is arbitrary

i.e., We max over all possible R. 
Non-trivial: we can limit dim(R) to dim(S) 
without affecting the value of the optimization
(deferring the proof which needs more about 
 the Schmidt decomposition).

Note the difference from NC etc.   
R needed to compose approximations. 



How to evaluate this error?

R is arbitrary

Definition:



How to evaluate this error?

R is arbitrary

Definition:

Theorem:  E*(U,V) = E(U,V) ! 



Theorem:  E*(U,V) = E(U,V)

Proof: 

(1) E*(U,V) is optimized over a larger range compared
      to E(U,V) so E*(U,V)      E(U,V). 



Theorem:  E*(U,V) = E(U,V)

Proof: 

(1) E*(U,V) is optimized over a larger range compared
      to E(U,V) so E*(U,V)      E(U,V). 

(2) For any system R, let          attain the max in E*(U,V).

NB. for fixed R, the optimization is compact so      exists. 



Theorem:  E*(U,V) = E(U,V)

Proof: 

(1) E*(U,V) is optimized over a larger range compared
      to E(U,V) so E*(U,V)      E(U,V). 

(2) For any system R, let          attain the max in E*(U,V).

NB. for fixed R, the optimization is compact so      exists. 

(3) Let               be a basis for R (dim r).  Express 

where are unit vectors on S.
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Composition of approximations:

Suppose a gate U1 on S1 is approximated by V1, and 
then a gate U2 on S2 is approximate by V2.  

What is the error of the two step approximation, in 
terms of the error of each step? 
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Composition of approximations:

Suppose a gate U1 on S1 is approximated by V1, and 
then a gate U2 on S2 is approximate by V2.  

What is the error of the two step approximation, in 
terms of the error of each step? 

E without * when R1, R2 explicitly included

+

see NC for proof

+

So, error of composition is subadditive, & without *. 



Recursively, for a circuit with m gates each with error 
e', the overall circuit error is at most e'm.  
To have overall error e, it suffices to implement each
gate with error at most e/m.  



Definition: A set of gates G is universal for quantum 
computation, if for any positive integer n, any n-qubit 
unitary U, and any e > 0, there are V  , V  , ..., V   in G

E(U,  V   ...  V  V  )     e .

1 2 k

suppressing the I parts

k 2 1s.t.



Definition: A set of gates G is universal for quantum 
computation, if for any positive integer n, any n-qubit 
unitary U, and any e > 0, there are V  , V  , ..., V   in G

E(U,  V   ...  V  V  )     e .

1 2 k

suppressing the I parts

k 2 1s.t.

Theorem: {H, T, CNOT} is universal for QC, where 

T is called the     -gate

T = 
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Theorem: {H, T, CNOT} is universal for QC.

Proof: see NC 4.5.2-4.5.3 or PMATH 343.  

Ideas:

(1) HTH = 

(2) T HTH = 

(3) 

(4) HTH T = 

Any single qubit gate is a composition of some 
sequence of and

irrational multiple of     !!



It is CRUCIAL that the universal gate set is discrete !

Quantum computation is discrete, not analog. 
This is how noise can be handled. 
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(f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

Solovay-Kitaev Theorem

using poly( log(    ) ) gates.

Given any universal set of 1-qubit gates G, whose
inverses can be implemented exactly, any 1-qubit 
gate can be approximated with error   



(f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

Solovay-Kitaev Theorem

using poly( log(    ) ) gates.

Proof idea: optional reading in NC Appendix 3, 
                  or PMATH 343.  

Remark: 
Most universal sets of gates are very efficient in 
approximating single qubit gates.  

Given any universal set of 1-qubit gates G, whose
inverses can be implemented exactly, any 1-qubit 
gate can be approximated with error   



Consequence of the Solovay-Kitaev Theorem

Suppose circuit C has m CNOT and 1-qubit gates.  

There is a circuit C' with m' = m poly( log( m/e ) )
gates from {CNOT, H, T} approximating C with error 
at most e.  

i.e., circuit complexity is largely preserved.  



Consequence of the Solovay-Kitaev Theorem

Suppose circuit C has m CNOT and 1-qubit gates.  

There is a circuit C' with m' = m poly( log( m/e ) )
gates from {CNOT, H, T} approximating C with error 
at most e.  

Idea: 

Suffices to approx each 1-qubit gate in C with error 
<= e/m, which takes poly(log( m/e )) H & T gates by
SK-thm.  So, total # gates m' 

i.e., circuit complexity is largely preserved.  
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(h) Hardness of approximating most unitaries (reading)
     (NC 4.5.6)

In short, most classical and quantum computations 
requires a circuit of exponentially many gates ... 

There are too many different computations, but too 
few gates in the universal gate set.  

Polynomial-sized circuits and computations are rare!


