D,

(@) Quantum circuit model (KLM 4.1, NC 1.3.4) /
(b) Quantum gates (NC 4.2-4.3, KLM 4.2) /

(c) Continuous universal set of quantum gates (reading)
(NC4.5.1-4.5.2, KLM 4.3)

Quantum gate approximations (NC Box 4.1, KLM 4.3)
(e) Finite universal set of . gates (NC 4.5.3, KLM 4.3)

(f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

(g) Quantum circuits for measurements (reading/defer)
(KLM 4.5%)

(h) Hardness of approximating most unitaries (reading)
(NC 4.5.6)



The unitaries acting on a Hilbert space form a
continuous set. Is a continuous set of gates needed
for universality (e.g., CNOT+all 1-qubit gates)?

ldea: approximating any unitary to arbitrary
accuracy is good enough.



How to measure the quality of approximate unitaries?

Depends on the goal !

Here: replace one gate (that we want) by another
(that we can apply) in a circuit without affecting the
correctness of the "computation.”
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How to measure the quality of approximate unitaries?

If, for all possible input [¢5 , the outputs from the two
circuits are "similar", our computation is not too affected

and the approximation is good.
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How to measure the quality of approximate unitaries?

If, for all possible input [¢5 , the outputs from the two
circuits are "similar", our computation is not too affected

and the approximation is good.

CN CN

— —
[ N 62 = |5 % G2|

Gl

Up to red stage: identical states in both circuits

Green stage onwards, identical computation

Suffices If the states at the green stage are similar.



How to measure the quality of approximate unitaries?

Definition: the error of approximating U by V is
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where U, V act on system S, and system R is arbitrary.
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How to measure the quality of approximate unitaries?

Definition: the error of approximating U by V is
__X

E(U,V)=max [ Ioy ¥y - TV YD |
¥ s

where U, V act on system S, and system R is arbitrary.

(H/)RS unit vector.)

For our circuit:
S = qubit(s) acted on by the gate to be approximate
R = all other qubits

V%< the worst case state right before the gate.
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Indistinguisability:

Exercise: for two unit vectors a5, (b))
L 1a) =162 ]| = 2 [I=Re<alb)

Recall: Holevo-Helstrom theorem
If each of \Y,7,\V2) is chosen with probability 1/2,

then the max prob to distinguish the states is

L+ T < 2+ ST cnm [ v
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Indistinguisability:

Exercise: for two unit vectors |a5, [b)
ey =162 ]| = ]2 [I=Re <alb)

Recall: Holevo-Helstrom theorem
If each of |Y,7,\Y,) is chosen with probability 1/2,

then the max prob to distinguish the states is

_—Ii_kéd_ IJl_K\hH,Z?{?— S ’]i’f"l‘ljl—{(“’\\"z?l ,JH'K\":HEH

So, 19U , I9VI¥) can be distinguished with prob

_X
< &+ & (U, V) sonoonecan tellifUorV
has been applied if E* small



How to evaluate this error?

X

E(U,V)=max [ Io U 1Y) - TeV |1 |
g

R Is arbitrary

I.e., We max over all possible R.

Non-trivial: we can limit dim(R) to dim(S)
without affecting the value of the optimization
(deferring the proof which needs more about
the Schmidt decomposition).

Note the difference from NC etc.
R needed to compose approximations.
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How to evaluate this error?

X

E(UV)=max || To 14> - TeV ({7 |
MDgs
R is arbitrary
Definition:
E(UV)=max || yim)-Viw|

|[V\7s

Theorem: E*(U,V) = E(U,V) !
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NB. for fixed R, the optimization is compact so |\, exists.



Theorem: E*(U,V) = E(U,V)

Proof:

(1) EX(U,V) is optimized over a larger range compared
to E(U,V) so EX*(U,V) > E(U,V).

(2) For any system R, let |y).. attain the max in E*(U,V).

NB. for fixed R, the optimization is compact so |¥) exists.

(3) Let {le)}., be a basis for R (dim r). Express
¥ )s = Z ey ® 1)

-—

(=

i
where >0, 7 «i* =1, |0} are unit vectors on S.
(B
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Composition of approximations:

Suppose a gate Ul on S1 is approximated by V1, and
then a gate U2 on S2 is approximate by V2.

What is the error of the two step approximation, in
terms of the error of each step?
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Composition of approximations:

Suppose a gate Ul on S1 is approximated by V1, and
then a gate U2 on S2 is approximate by V2.

What is the error of the two step approximation, in
terms of the error of each step?

E( (We®Le,)Ws@Te), (Vas® I, )(Vig®Ig) )

K E without * when R1, R2 explicitly included
L Bl (Ws®Tg,), (Vas®Te)) + BE( WgoTe), (Vig®Ty) )
\see NC for proof
= BE(u,,va) + BE( U, V).

So, error of composition is subadditive, & without *.



Recursively, for a circuit with m gates each with error

e', the overall circuit error is at most e'm.
To have overall error e, it suffices to implement each

gate with error at most e/m.



Definition; A set of gates G is universal for quantum
computation, if for any positive integer n, any n-qubit
unitary U, and any e > 0O, there are V,, V, ..., vV, in G

s.t. E(U, Vi ... VL,V ) <e.

\

suppressing the | ® parts



Definition: A set of gates G is universal for quantum
computation, if for any positive integer n, any n-qubit
unitary U, and any e > O, there are V;, V, ..., vV, in G

s.t. E(U, V.. VL,V;) <e.

\

suppressing the | ® parts

Theorem: {H, T, CNOT} is universal for QC, where
T

T Is called the 2 -gate
T= Rz (%) .




Theorem: {H, T, CNOT} is universal for QC.
Proof: see NC 4.5.2-4.5.3 or PMATH 343.
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Theorem: {H, T, CNOT} is universal for QC.
Proof: see NC 4.5.2-4.5.3 or PMATH 343.

(1) HTH = R, () irrational multiple of 11 !
_ _ /

(2) THTH = R () Rx(F) = Rale) = U

B)VE, VT, et E(U, RE) ¢¢

(M) HTHT = Ry (F) Ro(F) =Rale) , A2 m




Theorem: {H, T, CNOT} is universal for QC.
Proof: see NC 4.5.2-4.5.3 or PMATH 343.

ldeas:
(1) HTH = R, () irrational multiple of 1T !!

|
(2) THTH = R () Ry () = Rale) = U
B)VYE, VT, I et E(U, RelE) ¢

(M HTHT = Ry (F) Ra(F) = Rale) , A2 m

Any single qubit gate is a composition of some
sequence of Rﬁ and R~ .



It is CRUCIAL that the universal gate set is discrete !

Quantum computation is discrete, not analog.
This Is how noise can be handled.



(a) Quantum circuit model (KLM 4.1, NC 1.3.4) /
(b) Quantum gates (NC 4.2-4.3, KLM 4.2) /

(c) Continuous universal set of quantum gates (reading)
(NC4.5.1-4.5.2, KLM 4.3)

/ (d) Quantum gate approximations (NC Box 4.1, KLM 4.3)
/ (e) Finite universal set of q. gates (NC 4.5.3, KLM 4.3)
@Ef‘ﬁciency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

(g) Quantum circuits for measurements (reading/defer)
(KLM 4.5%)

(h) Hardness of approximating most unitaries (reading)
(NC 4.5.6)



(f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

Solovay-Kitaev Theorem

Given any universal set of 1-qubit gates G, whose
inverses can be implemented exactly, any 1-qubit
gate can be approximated with error < ¢

using poly( log( %) ) gates.



(f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

Solovay-Kitaev Theorem

Given any universal set of 1-qubit gates G, whose
Inverses can be implemented exactly, any 1-qubit
gate can be approximated with error < ¢

using poly( log( %) ) gates.

Remark:

Most universal sets of gates are very efficient in
approximating single qubit gates.

Proof idea: optional reading in NC Appendix 3,
or PMATH 343.



Consequence of the Solovay-Kitaev Theorem

Suppose circuit C has m CNOT and 1-qubit gates.

There is a circuit C' with m' = m poly( log( m/e ) )
gates from {CNOT, H, T} approximating C with error
at most e.

l.e., circuit complexity is largely preserved.



Consequence of the Solovay-Kitaev Theorem

Suppose circuit C has m CNOT and 1-qubit gates.

There is a circuit C' with m' = m poly( log( m/e ) )
gates from {CNOT, H, T} approximating C with error
at most e.

l.e., circuit complexity is largely preserved.

ldea:

Suffices to approx each 1-qubit gate in C with error
<= e/m, which takes poly(log( m/e )) H & T gates by
SK-thm. So, total # gates m'
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(@) Quantum circuit model (KLM 4.1, NC 1.3.4) /
(b) Quantum gates (NC 4.2-4.3, KLM 4.2) /

(c) Continuous universal set of quantum gates (reading)
(NC 4.5.1-4.5.2, KLM 4.3)

/ (d) Quantum gate approximations (NC Box 4.1, KLM 4.3)
/ (e) Finite universal set of . gates (NC 4.5.3, KLM 4.3)
Vv (f) Efficiency & Kitaev-Solovay thm (NC App 3, KLM 4.4)

(g) Quantum circuits for measurements (reading/defer)
(KLM 4.5%)

(h) Hardness of approximating most unitaries (reading)
(NC 4.5.06)



(h) Hardness of approximating most unitaries (reading)
(NC 4.5.6)

In short, most classical and guantum computations
requires a circuit of exponentially many gates ...

There are too many different computations, but too
few gates Iin the universal gate set.

Polynomial-sized circuits and computations are rare!



