
6. Quantum computational complexity
 (mostly reading)

NC 3.2 (less detailed), KLM 9.1 (more detailed)

Complexity Zoo by Scott Aaronson

Professor John Watrous Lecture notes
Quantum Computation spring 2006, lecture 22
 https://johnwatrous.com/lecture-notes/
scroll to the very bottom!

Big-O notation (reading):

Choose a parameter n.

Polynomial time classical computation --
Problems whose complexity increases "slowly enough"
in the input size, and what's considered "feasible".

P

poly-time

BPP

probabilistic poly time

Suspected: P=BPP
 ie randomness doesn't help

verifiable in
poly-time

P

poly-time

BPP

probabilistic poly time

NP

Nondeterministic polynomial time problems: those,
given the answer, can be verified in polynomial time

May not know how to solve
in poly-time, e.g., 3-SAT

Suspected: P NP

Is a quantum computer much more powerful than
a classical computer?

verifiable in
poly-time

P

poly-time

BPP

probabilistic poly time

BQP

 probabilistic
quantum poly time

NP

Solving NP-complete problems
(hardest in NP) in BQP ?

(not expected)

Is a quantum computer much more powerful than
a classical computer?

verifiable in
poly-time

P

poly-time

BPP

probabilistic poly time

BQP

 probabilistic
quantum poly time

NP

Is BQP in NP? (not expected)

Is a quantum computer much more powerful than
a classical computer?

verifiable in
poly-time

P

poly-time

BPP

probabilistic poly time

BQP

 probabilistic
quantum poly time

NP

Is BPP BQP ???
If not, why bother quantum ?

Is a quantum computer much more powerful than
a classical computer?

verifiable in
poly-time

P

poly-time

BPP

probabilistic poly time

BQP

 probabilistic
quantum poly time

NP

PSPACE

poly-space
BQP PSPACE
Open: P = PSPACE
Unlikely to resolve
 BPP vs BQP ...

Surprisingly hard to show a problem is hard ...

Idea: we turn to a different measure of complexity
(not the circuit size).

The fact we can't find an efficient algorithm doesn't
imply there is none ...

7. Quantum algorithms (part 1)

(a) Quantum query complexity: (KLM 9.2*, 6.2*)
 black box model, phase kick back

(d) Deutsch-Jozsa algorithm
 (NC 1.4.2-1.4.5, KLM 6.3-6.4, M 2.2)

(e) Quantum fourier transform (I)
 (NC 5.1, M 3.5, KLM p110-117)

(f) Simon's algorithm (M 2.5, KLM 6.5)

(g) Shor's factoring algorithm

(h) Hidden subgroup framework (NC 5.4.3, KLM 7.5)

(M 3.1-3.4,3.7-3.10, NC 5.3, 5.4.1-5.4.2,
 KLM 7.1.2-7.1.3, 7.3.1-7.3.2, 7.3.4, 7.4)

Black box model

Let f be a partially unknown function.
Goal: determine some properties of f.

Black box model

Let f be a partially unknown function.
Goal: determine some properties of f.

fx f(x)

If input is x (in domain of f), the blackbox outputs f(x).

Allowed: "query" a blackbox for f :

Not allowed: open a blackbox and see what's inside.

Black box model

Known: f polynomial of degree 2
Unknown: a,b,c.
(1) How many queries are needed to learn c?
(2) What about b?

e.g. f(x) = a x + b x + c, a polynomial over a field F.2

Goal:
- Solve problem with few queries
- Check if solution is optimal

Black box model

e.g. f(x) = a x + b x + c2

(1) 1 query is necessary and sufficient to learn c:

f0 f(0)=c

NB inputs to queries should be optimized!

Black box model

e.g. f(x) = a x + b x + c2

(2) 2 queries are necessary and sufficient to learn b:

Sufficiency:

Black box model

e.g. f(x) = a x + b x + c2

(2) 2 queries are necessary and sufficient to learn b:

i.e., an algorithm to solve the problem,
giving an upper bound on the required # of queries

Sufficiency:

from the black box

Black box model

e.g. f(x) = a x + b x + c2

(2) 2 queries are necessary and sufficient to learn b:

Pick q = 0, query q and -q; b = (f(q) - f(-q))/2q.

Black box model

e.g. f(x) = a x + b x + c2

Necessity:

(2) 2 queries are necessary and sufficient to learn b:

ie., proving lower-bound on the required # of queries
 -- useful for checking optimality of known solutions

Black box model

e.g. f(x) = a x + b x + c2

Necessity:
Suppose, by contradiction, 1 query suffices.

(2) 2 queries are necessary and sufficient to learn b:

Black box model

e.g. f(x) = a x + b x + c2

Necessity:
Suppose, by contradiction, 1 query suffices.
Let q be the input for that query.

(2) 2 queries are necessary and sufficient to learn b:

Black box model

e.g. f(x) = a x + b x + c2

Necessity:
Suppose, by contradiction, 1 query suffices.
Let q be the input for that query.

(2) 2 queries are necessary and sufficient to learn b:

Define another poly : g(x) = a x + (b+1) x + (c-q)2n

Black box model

e.g. f(x) = a x + b x + c2

Necessity:
Suppose, by contradiction, 1 query suffices.
Let q be the input for that query.

(2) 2 queries are necessary and sufficient to learn b:

Define another poly : g(x) = a x + (b+1) x + (c-q)2n

Now, g(q) = a q + (b+1) q + (c-q)
= a q + b q + c = f(q) .

2

2

Black box model

e.g. f(x) = a x + b x + c2

Necessity:
Suppose, by contradiction, 1 query suffices.
Let q be the input for that query.

So, query q cannot distinguish f(x) from g(x) but they
have different linear coefficients, a contradiction.

(2) 2 queries are necessary and sufficient to learn b:

Define another poly : g(x) = a x + (b+1) x + (c-q)2n

Now, g(q) = a q + (b+1) q + (c-q)
= a q + b q + c = f(q) .

2

2

Student feedback from W2019:

If the coefficients are real, but the input/output are
allowed to be complex, then 1 query suffices. Note
that this scenario breaks the condition that the
polynomial is over a field (both inputs and coeffs
are from the same field). In this scenario, g(x) in
the proof is not a valid polynomial (why there is no
contradiction to our proven result).

Reversible blackbox:

f
(mod 2 if bottom register is a bit)

U

Reversible blackbox:

f
(mod 2 if bottom register is a bit)

Quantum blackbox:

f
(mod 2 if bottom register is a bit)

 U

U

Reversible blackbox:

f
(mod 2 if bottom register is a bit)

Quantum blackbox:

f
(mod 2 if bottom register is a bit)

 U

U

It's like an "f(x)-controlled-NOT".
 1. compute f(x) keeping x
 2. CNOT from f(x) to target
 3. uncompute f(x)

Reversible blackbox:

f
(mod 2 if bottom register is a bit)

Quantum blackbox:

f
(mod 2 if bottom register is a bit)

 U

U

Qn: is quantum computation with quantum black
boxes more powerful than classical computation
with reversible classical blackboxes?

Phase kick back

Quantum programming technique 1

Phase kick back

For a Boolean function f (the range is {0,1}),
the quantum blackbox of f can be modified to
"answer in the phase".

Phase kick back

For a Boolean function f (the range is {0,1}),
the quantum blackbox of f can be modified to
"answer in the phase".

i.e.,
f U

If

then

f U

Phase kick back

For a Boolean function f (the range is {0,1}),
the quantum blackbox of f can be modified to
"answer in the phase".

i.e.,
f U

If

then

f U

Proof:

Uf

Uf

Uf

= if f(x) = 0

if f(x) = 1

Uf

= if f(x) = 0

if f(x) = 1

=

which is what we seek to prove:

f U

Phase kick back
f U

For one x, the black box kicks back an overall phase,
for a superposition of inputs, the phase is relative !

Phase kick back
f U

For one x, the black box kicks back an overall phase,
for a superposition of inputs, the phase is relative !

e.g., f(x) = x, x = 0,1

Input (superpose x=0 & x=1).

So, kick back is NOT an overall phase for U .

Uf

f

Phase kick back
f U

In fact, the black box is like a controlled-gate:

I is applied to the target if the control is

with target input is fixed to

Recall: control qubit can change.
Goal: use this change to compute !

7. Quantum algorithms (part 1)

(a) Quantum query complexity: (KLM 9.2*, 6.2*)
 black box model, phase kick back

(d) Deutsch-Jozsa algorithm
 (NC 1.4.2-1.4.5, KLM 6.3-6.4, M 2.2)

(e) Quantum fourier transform (I)
 (NC 5.1, M 3.5, KLM p110-117)

(f) Simon's algorithm (M 2.5, KLM 6.5)

(g) Shor's factoring algorithm

(h) Hidden subgroup framework (NC 5.4.3, KLM 7.5)

(M 3.1-3.4,3.7-3.10, NC 5.3, 5.4.1-5.4.2,
 KLM 7.1.2-7.1.3, 7.3.1-7.3.2, 7.3.4, 7.4)

Deutsch-Josza algorithm

Deutsch's problem:

Given: a black box for a function f:{0,1}->{0,1}

Problem: Is f constant (f(0)=f(1))
 or balanced (f(0)=f(1)) ? i.e., find f(0) f(1)

Deutsch's problem:

Given: a black box for a function f:{0,1}->{0,1}

Problem: Is f constant (f(0)=f(1))
 or balanced (f(0)=f(1)) ? i.e., find f(0) f(1)

Classically, 2 queries are needed.

Ex: for each query x=0 or 1, for each possible answer,
 you have exactly 1 constant & 1 balanced function
 that are possible ...

Deutsch's problem:

Given: a black box for a function f:{0,1}->{0,1}

Problem: Is f constant (f(0)=f(1))
 or balanced (f(0)=f(1)) ? i.e., find f(0) f(1)

Classically, 2 queries are needed.

Quantumly, 1 query suffices!

f U
query in
superposition

What doesn't work:

looks like we have both
f(0) & f(1) but measuring
2nd register gives one of
them at random

f U
query in
superposition

What doesn't work:

(IN)Distinguishability problem!

Possibility (1): f is constant, output is

Possibility (2): f is balanced, output is

or

or

The two states within each possibility are mutually
orthogonal, ...

f U
query in
superposition

What doesn't work:

(IN)Distinguishability problem!

Possibility (1): f is constant, output is

Possibility (2): f is balanced, output is

or

or

The two states within each possibility are mutually
orthogonal, BUT ... each state in possibility (1) is
NOT orthogonal to each state in possibility (2).

So, the two possibilities are NOT distinguishable !

f U
query in
superposition

ancilla for
phase kick
back

What works:

f U
query in
superposition

ancilla for
phase kick
back

What works:

f U
query in
superposition

ancilla for
phase kick
back

What works:

=

overall phase relative phase

f U
query in
superposition

ancilla for
phase kick
back

What works:

perfectly distinguishable!

=

overall phase relative phase

= if f is constant

if f is balanced

The black box:

f U

query in
superposition

ancilla for
phase kick
back

if f is constant

if f is balanced

The complete circuit:

f U

query in
superposition

ancilla for
phase kick
back

meas in

H

X H

H
0: constant
1: balanced

basis

Recall: H = 1 1
1 -1

The complete circuit:

f U

query in
superposition

ancilla for
phase kick
back

meas in

The relative phase (quantum interference) carries a
global property of f which is mapped by the final H to
something measurable in the computational basis !

H

X H

H
0: constant
1: balanced

basis

Deutsch-Josza Problem

Given: a black box for a function f : {0,1}n {0,1}

Promise (partial information about f):
 f is either constant
 or balanced (half of the f(x)'s = 0)

Deutsch-Josza Problem

Given: a black box for a function f : {0,1}n {0,1}

Promise (partial information about f):
 f is either constant
 or balanced (half of the f(x)'s = 0)

f(000) = 0 f(100)=1
f(001) = 0 f(101)=1
f(010) = 1 f(110)=1
f(011) = 0 f(111)=0

e.g., n=3, a balanced function is

Deutsch-Josza Problem

Given: a black box for a function f :

Classically, how may queries are needed to solve

{0,1}n {0,1}

Promise (partial information about f):
 f is either constant
 or balanced (half of the f(x)'s = 0)

Problem: Is f constant or balanced?

the D-J problem for the worse f deterministically ?

Question:

(a) 2 (b) 2n-1 (c) 2 n-1 +1 (d) 2n

Deutsch-Josza Problem

Given: a black box for a function f :

Classically, 2 +1 queries are needed.

{0,1}n {0,1}

Promise (partial information about f):
 f is either constant
 or balanced (half of the f(x)'s = 0)

Problem: Is f constant or balanced?

to solve the problem for the worst f deterministically

n-1

Deutsch-Josza Problem

Given: a black box for a function f :

Classically, 2 +1 queries are needed.

Quantumly, 1 query suffices!

{0,1}n {0,1}

Promise (partial information about f):
 f is either constant
 or balanced (half of the f(x)'s = 0)

Problem: Is f constant or balanced?

to solve the problem for the worst f deterministically

n-1

f U

query in
superposition

The black box:

ancilla for
phase kick
back

:.

= if f constant,

orthogonal toif f balanced,

Suffices to prepare query and ancilla, and design a
measurement to distinguish the two possibilities.

f
 U

query in
superposition

ancilla for
phase kick
back

:.

The complete circuit:
meas in a basis
including

H

H

:.

Claim:
00 ... 0 : constant
otherwise: balanced

H

X H

H

Analysis:

1. Initialize input in superposition & ancilla :

(checking that the circuit works)

Analysis:

1. Initialize input in superposition & ancilla :

2. Apply blackbox with phase kick back:

(checking that the circuit works)

Analysis:

1. Initialize input in superposition & ancilla :

2. Apply blackbox with phase kick back:

3. Apply Hadamard to "first register" (first n qubits):

(checking that the circuit works)

derived next page

The Fourier transform:

For 1 qubit: = =

The Fourier transform:

For 1 qubit:

For n qubits:

= =

=

The Fourier transform:

For 1 qubit:

For n qubits:

= =

=

=

The Fourier transform:

For 1 qubit:

For n qubits:

= =

=

=

=

The Fourier transform:

For 1 qubit:

For n qubits:

= =

=

=

=

where = =

3. Apply Hadamard to "first register" (first n qubits):

=

3. Apply Hadamard to "first register" (first n qubits):

=

If f constant,

= c = c if y = 00...0
0 otherwise

3. Apply Hadamard to "first register" (first n qubits):

=

If f constant,

= c = c if y = 00...0
0 otherwise

If f balanced, y = 00...0,

= = 0.

3. Apply Hadamard to "first register" (first n qubits):

=

If f constant,

= c = c if y = 00...0
0 otherwise

If f balanced, y = 00...0,

= = 0.

nonzero only for y=0 if f constant

zero for y=0 if f balanced

4. Measure first register in computational basis:

y=0 if f constant
y=0 if f balanced

nonzero only for y=0 if f constant, outcome y=0 always
zero for y=0 if f balanced, outcome never being y=0.

So, circuit works and 1 query suffices !

You saw the first exponential separation between
quantum and classical computation, in the blackbox
model if the answer must be correct.

If we allow a small error, classically, a constant # of
queries suffices.

We will see more algorithms revolving about the
Fourier transform, and the advantage will be over
BPP, and eventually outside of the blackbox model.

The Deutsch problem with solution was first proposed
by Deutsch in 1985. In 1992, it was extended to the
Deutsch-Jozsa problem and algorithm.

The algorithm you saw today is an improved version
from Cleve, Ekert, Macchiavello, and Mosca 1998, and
independently, by Tapp.

