
7. Quantum algorithms (part 1)

(a) Quantum query complexity: (KLM 9.2*, 6.2*)
 black box model, phase kick back

(d) Deutsch-Jozsa algorithm
 (NC 1.4.2-1.4.5, KLM 6.3-6.4, M 2.2)

(e) Quantum fourier transform (I)
 (NC 5.1, M 3.5, KLM p110-117)

(f) Simon's algorithm (M 2.5, KLM 6.5)

(g) Shor's factoring algorithm

(h) Hidden subgroup framework (NC 5.4.3, KLM 7.5)

(M 3.1-3.4,3.7-3.10, NC 5.3, 5.4.1-5.4.2,
 KLM 7.1.2-7.1.3, 7.3.1-7.3.2, 7.3.4, 7.4)

Simon's algorithm

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Note: f is NOT boolean.

Quantum blackbox:

f U

n-qubits n-qubits

n-qubits n-qubits

Simon's problem:

Given: a black box for a function f:{0,1}

Example: x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Simon's problem:

Given: a black box for a function f:{0,1}

Example: x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

Question:
What is s in the example?

n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

(a) s = 011
(b) s = 101
(c) s = 000
(d) s = 010

Idea: find (x,y) with f(x)=f(y)
 take s = y-x

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Exponential quantum speed-up (in query complexity)
in BQP compared to BPP for a specific problem.

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Classical: for any queries, algorithm fails wp at

least 99% on at least 99% of the functions.

Exponential quantum speed-up (in query complexity)
in BQP compared to BPP for a specific problem.

(for large n, say, above 400)

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Classical: for any

Quantum: n+3 queries are sufficient to obtain s with
 probability at least 15/16.

queries, algorithm fails wp at

least 99% on at least 99% of the functions.

Exponential quantum speed-up (in query complexity)
in BQP compared to BPP for a specific problem.

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Classical: for any

Quantum: n+3 queries are sufficient to obtain s with
 probability at least 15/16.

queries, algorithm fails wp at

least 99% on at least 99% of the functions.

Exponential quantum speed-up (in query complexity)
in BQP compared to BPP for a specific problem.

To specify f :

1. Specify any s = 00...0 .

f(x) = f(y) iff x=y or x=y s {0,1},

Example:
s = 101

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

There are 4 pairs
(000,101), (001,100),
(010,111), (011,110).

To specify f :

1. Specify any s = 00...0 .

2. s pairs up the 2 inputs into 2 pairs. n n-1

f(x) = f(y) iff x=y or x=y s {0,1},

Example:
s = 101

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

There are 4 pairs
(000,101), (001,100),
(010,111), (011,110).

To specify f :

1. Specify any s = 00...0 .

2. s pairs up the 2 inputs into 2 pairs. n n-1

To get a valid f: give each pair a distinct function value.
For each s, there are valid f's.

f(x) = f(y) iff x=y or x=y s {0,1},

assign 011 to (000,101)
assign 101 to (001,100)
 etc

3.

How does a classical algorithm fail?

For an algorithm with k distinct queries

if (a)

then algorithm fails.

For an algorithm with k distinct queries

distinct and (b)

How does a classical algorithm fail?

if (a)

then algorithm fails.

For an algorithm with k distinct queries

distinct and (b)

(a) means no luck getting a pair (x,y) with f(x) = f(y)

All we know is

This eliminates possibilities for s, but there are

possibilities. (b) means we know little about s.

How does a classical algorithm fail?

Qn: given distinct how many s's does NOT

lead to distinct

Qn: given distinct how many s's does NOT

lead to distinct

So at most

(which are not necessarily distinct).

Ans: this requires some

for some i,j. There are only

such possible s's.

Qn: given distinct how many s's does NOT

lead to distinct

So at most

(which are not necessarily distinct).

Ans: this requires some

for some i,j. There are only

such possible s's.

So, the fraction of s (and also the fraction of f) withOUT

is at mostdistinct

Qn: given distinct how many s's does NOT

lead to distinct

So at most

(which are not necessarily distinct).

Ans: this requires some

for some i,j. There are only

such possible s's.

So, the fraction of s (and also the fraction of f) withOUT

is at most

If for large n
(say, n > 400).

distinct

if (a)

then algorithm fails.

For an algorithm with k distinct queries

distinct and (b)

holds for at least 99%
 of the functions

99% of the s's are
 not eliminated

if (a)

then algorithm fails.

For an algorithm with k distinct queries

distinct and (b)

holds for at least 99%
 of the functions

99% of the s's are
 not eliminated

Classical: for any queries, algorithm fails wp at

least 99% on at least 99% of the functions.

Aside: argument similar to the birthday paradox implies

queries are sufficient.

Simon's problem:

Given: a black box for a function f:{0,1}n {0,1}.

f(x) = f(y) iff x=y or x=y s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Classical: for any

Quantum: n+3 queries are sufficient to obtain s with
 probability at least 15/16.

Exponential quantum speed-up (in query complexity)
in BQP compared to BPP for a specific problem.

queries, algorithm fails wp at

least 99% on at least 99% of the functions.

Simon's algorithm:

1. Prepare a superposition of inputs

Simon's algorithm:

2. Query with phase kick-back:

1. Prepare a superposition of inputs

out

Simon's algorithm:

2. Query with phase kick-back:

1. Prepare a superposition of inputs

out

3. Measure 2nd register !

For each pair (x,x s), we put one of them in a set T.

Each x in T has a unique f(x). Each of these f(x)
occurs as the measurement outcome with prob

Simon's algorithm:

2. Query with phase kick-back:

1. Prepare a superposition of inputs

out

3. Measure 2nd register !

For each pair (x,x s), we put one of them in a set T.

Each x in T has a unique f(x). Each of these f(x)
occurs as the measurement outcome with prob

Corresponding postmeasurement state:

Example:

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

 s=101

T={000,001,010,011}

The pairs (x, x s) are:
(000,101), (001,100), (010,111), (011,110)

Measure the 2nd register of

Question: what is the prob of outcome 010
 & what is the postmeas state (pms)?

(a) prob = 1/8, pms =

(b) prob = 1/4, pms =

in the computational basis.

Example:

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

 s=101

T={000,001,010,011}

The pairs (x, x s) are:
(000,101), (001,100), (010,111), (011,110)

Postmeasurement state:

 Outcome = 010 wp 1/4.

Measure the 2nd register of

in the computational basis.

Example:

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

 s=101

T={000,001,010,011}

The pairs (x, x s) are:
(000,101), (001,100), (010,111), (011,110)

Postmeasurement state:

How to access s from

 Outcome = 010 wp 1/4.

Measure the 2nd register of

in the computational basis.

How NOT to access s from

How NOT to access s from

Measure the first register in the computational basis:
gets x or x s, both are random n-bit strings.

How NOT to access s from

& x s half of the time, together we can deduce s.

Measure the first register in the computational basis:
gets x or x s, both are random n-bit strings.

If we have many copies of

measuring the first register gives x half of the time,

But we cannot clone to make many copies ...

How NOT to access s from

& x s half of the time, together we can deduce s.

for with very high probability, so, doesn't help.

Measure the first register in the computational basis:
gets x or x s, both are random n-bit strings.

If we have many copies of

If we repeat steps 1-3, we get

measuring the first register gives x half of the time,

But we cannot clone to make many copies ...

How to access s from

How to access s from

For quantum algorithms ...

when in doubt, fourier transform !

4. Fourier transform the first register:

Recall from last lecture:

Recall from last lecture:

4. Fourier transform the first register:

4. Fourier transform the first register:

4. Fourier transform the first register:

5. Measuring gives a random y orthogonal to s !

Example:

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

 s=101

Postmeasurement state on the 1st register:

Example:

 x f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

 s=101

Postmeasurement state on the 1st register:

all orthogonal to s = 101 (inner product

no
of binary strings)

measuring gives a random y in 000,
010, 101, 111, orthogonal to s = 101

6. To reconstruct s, repeat steps 1-5 n+t times.

This gives

s.t.

n+t linear equations in n variables

6. To reconstruct s, repeat steps 1-5 n+t times.

We need n-1 such equations that are linearly
independent to find s (the 2 solutions for these
n-1 equations are s and 0). What t suffices?

This gives

s.t.

n+t linear equations in n variables

6. To reconstruct s, repeat steps 1-5 n+t times.

We need n-1 such equations that are linearly
independent to find s (the 2 solutions for these
n-1 equations are s and 0). What t suffices?

KLM appendix 3:
n+3 queries give prob of success at least 2/3.

This gives

s.t.

n+t linear equations in n variables

6. To reconstruct s, repeat steps 1-5 n+t times.

We need n-1 such equations that are linearly
independent to find s (the 2 solutions for these
n-1 equations are s and 0). What t suffices?

KLM appendix 3:
n+3 queries give prob of success at least 2/3.

This gives

s.t.

n+t linear equations in n variables

Mermin appendix G:
n+t queries give prob of success at least 1-2 !

-(t+1)

Mermin's proof:

come from an (n-1)-dim space S orthogonal to s.

Mermin's proof:

come from an (n-1)-dim space S orthogonal to s.

Take any basis for S. Represent each (random)
as an (n-1)-bit string in a row.

There are n-1 linearly independent rows
 iff
the n-1 columns are linearly indep.
(row rank = column rank)

Mermin's proof:

come from an (n-1)-dim space S orthogonal to s.

Take any basis for S. Represent each (random)
as an (n-1)-bit string in a row.

There are n-1 linearly independent rows
 iff
the n-1 columns are linearly indep.
(row rank = column rank)

Mermin's proof:

come from an (n-1)-dim space S orthogonal to s.

Take any basis for S. Represent each (random)
as an (n-1)-bit string in a row.

This happens with prob:

Can prove an arithmetic result (by induction):

if 0 a+b+c ... 1,
then (1-a)(1-b)(1-c).... 1-(a+b+c...)

Can prove an arithmetic result (by induction):

if 0 a+b+c ... 1,
then (1-a)(1-b)(1-c).... 1-(a+b+c...)

So, prob that there are n-1 linearly independent rows

Simon's algorithm altogether:

A quantum subroutine (steps 1-5) using 1 query to
obtain one random y = y1 orthogonal to s.

Simon's algorithm altogether:

Repeat quantum subroutine n+t times to obtain n+t
random orthogonal to s.

Simon's algorithm altogether:

Classically compute s from

With prob at least , s can be found.

Simon's algorithm altogether:

classical computer
doing Gaussian
elimination O(n)
ops

n+t queries
for constant t

4n*(n+t)
other ops

3

non-query, circuit complexity

7. Quantum algorithms (part 1)

(a) Quantum query complexity: (KLM 9.2*, 6.2*)
 black box model, phase kick back

(d) Deutsch-Jozsa algorithm
 (NC 1.4.2-1.4.5, KLM 6.3-6.4, M 2.2)

(e) Quantum fourier transform (I)
 (NC 5.1, M 3.5, KLM p110-117)

(f) Simon's algorithm (M 2.5, KLM 6.5)

(g) Shor's factoring algorithm

(h) Hidden subgroup framework (NC 5.4.3, KLM 7.5)

(M 3.1-3.4,3.7-3.10, NC 5.3, 5.4.1-5.4.2,
 KLM 7.1.2-7.1.3, 7.3.1-7.3.2, 7.3.4, 7.4)

Deustch-Josza Simon's Shor's

speed up only
if seeking
exact solution

allows error
in solution

allows error
in solution

Quantum
solution

Quantum
subroutine

Classical
processing

Speed-up in
blackbox model

Speed-up in
blackbox model

Natural model, no
proof of speed-up

Heavy classical
processing

Analysis

Quantum
subroutine

Heavy Analysis

Concocted
problem

Concocted
problem

Critical problem
for crypto

Shor's algorithm

Quantum
Fourier
transform

Period
finding
algorithm

Order
finding

Factoring

Shor's algorithm

Quantum
Fourier
transform

Period
finding
algorithm

Order
finding

Factoring

Simon's algorithm

Shor: key to Simon's algorithm was periodicity, and
periodicity was closely connected with discrete log.

The problems by DJ and Simon are made to
demonstrate quantum advantage using special
properties of the Fourier transform .

The natural (and interesting problem) discrete log
or period finding requires new tools.

New tool (1): a new quantum Fourier transform.

Quantum Fourier transform over

Quantum Fourier transform over

Quantum Fourier transform over

primitive
dth root
of unity

multiplication
mod d

QFT over

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

e.g., n = 3,

QFT over

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

QFT over

1 1 1 1 1 1 1 1
1
1
1
1
1
1
1

e.g., n = 3, e.g., d = 8, n = 3

QFT over

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

QFT over

1 1 1 1 1 1 1 1
1
1
1
1
1
1
1

Implementable with
single qubit gates.

How to implement
this with a circuit?

e.g., n = 3, e.g., d = 8, n = 3

Quantum Fourier transform (QFT)

Standard basis:

Associate x with an integer:

Quantum Fourier transform (QFT)

Standard basis:

Associate x with an integer:

Fourier basis:

Exercise: check that the Fourier basis is orthonormal,
i.e.,

multiplication of integers

both an integer & an n-bit string

How to implement the QFT efficiently as a circuit?

How to implement the QFT efficiently as a circuit?

How to implement the QFT efficiently as a circuit?

How to implement the QFT efficiently as a circuit?

Use the association:

* For the first qubit:

Use the association:

* For the first qubit:

Use the association:

* For the first qubit:

Use the association:

* For the first qubit:

Use the association:

* For the first qubit:

Use the association:

* For the first qubit:

* For the second qubit:

Use the association:

* For the first qubit:

* For the second qubit:

Use the association:

* For the first qubit:

* For the second qubit:

Use the association:

* For the first qubit:

* For the second qubit:

* For the (n-k)-th qubit:

the terms

are multiplied to an integer *

* For the (n-k)-th qubit:

the terms

are multiplied to an integer *

* For the first qubit:

* For the second qubit:

* For the (n-k)-th qubit:

H

So can be implemented as

up to reversing the order of the output qubits

* For the first qubit:

H

H

So can be implemented as

up to reversing the order of the output qubits

* For the second qubit:

H

H

H

So can be implemented as

up to reversing the order of the output qubits

* For the (n-k)-th qubit:

H

H

H

H

NB 1. alternative proof QFT is unitary
 2. circuit size O(n). A3 Q1: improve to O(n log n).2

So can be implemented as

up to reversing the order of the output qubits

time derivation

Exercise: work through the derivation of the QFT
 circuit for 3 or 4 qubits.

