
7. Quantum algorithms (part 1)

(a) Quantum query complexity:  (KLM 9.2*, 6.2*)
      black box model, phase kick back

(d) Deutsch-Jozsa algorithm 
          (NC 1.4.2-1.4.5, KLM 6.3-6.4, M 2.2)

(e) Quantum fourier transform (I) 
          (NC 5.1, M 3.5, KLM p110-117)

(f) Simon's algorithm  (M 2.5, KLM 6.5)

(g) Shor's factoring algorithm 

(h) Hidden subgroup framework (NC 5.4.3, KLM 7.5)

(M 3.1-3.4,3.7-3.10, NC 5.3, 5.4.1-5.4.2, 
 KLM 7.1.2-7.1.3, 7.3.1-7.3.2, 7.3.4, 7.4)
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Example:   x  f(x)
000
001
010
011
100
101
110
111

011

011

101

101

000

000

010

010

Question:
What is s in the example?

n  {0,1}.

f(x) = f(y) iff x=y or x=y    s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

(a) s = 011
(b) s = 101
(c) s = 000
(d) s = 010

Idea: find (x,y) with f(x)=f(y)
          take s = y-x 
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To specify f :

1. Specify any s = 00...0 .  
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Example:
s = 101

  x  f(x)
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There are 4 pairs
(000,101), (001,100), 
(010,111), (011,110).

To specify f :

1. Specify any s = 00...0 .  

2. s pairs up the 2   inputs into 2      pairs.  n n-1

To get a valid f: give each pair a distinct function value.
For each s, there are valid f's. 

f(x) = f(y) iff x=y or x=y    s {0,1},

assign 011 to (000,101)
assign 101 to (001,100)
              etc

3.
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How does a classical algorithm fail?



if (a)

then algorithm fails. 

For an algorithm with k distinct queries

distinct and (b)

(a) means no luck getting a pair (x,y) with f(x) = f(y)

All we know is 

This eliminates possibilities for s, but there are 

possibilities.  (b) means we know little about s.

How does a classical algorithm fail?
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if (a)

then algorithm fails. 

For an algorithm with k distinct queries

distinct and (b)

holds for at least 99% 
   of the functions

99% of the s's are 
  not eliminated

Classical: for any queries, algorithm fails wp at 

least 99% on at least 99% of the functions. 

Aside: argument similar to the birthday paradox implies

queries are sufficient.  



Simon's problem:

Given: a black box for a function f:{0,1}n  {0,1}.

f(x) = f(y) iff x=y or x=y    s

n

Promise (partial information about f):

 {0,1},

Problem: determine s.

n

Classical: for any

Quantum: n+3 queries are sufficient to obtain s with 
                  probability at least 15/16.

Exponential quantum speed-up (in query complexity) 
in BQP compared to BPP for a specific problem.  

queries, algorithm fails wp at 

least 99% on at least 99% of the functions. 
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Simon's algorithm:

2. Query with        phase kick-back:

1. Prepare a superposition of inputs

out

3. Measure 2nd register !

For each pair (x,x   s), we put one of them in a set T. 

Each x in T has a unique f(x).  Each of these f(x) 
occurs as the measurement outcome with prob 

Corresponding postmeasurement state:



Example:
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  s=101

T={000,001,010,011}

The pairs (x, x   s) are:
(000,101), (001,100), (010,111), (011,110)

Measure the 2nd register of 

Question: what is the prob of outcome 010
    & what is the postmeas state (pms)?

(a) prob = 1/8, pms = 

(b) prob = 1/4, pms = 

in the computational basis.
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How NOT to access s from

& x     s half of the time, together we can deduce s.

for with very high probability, so, doesn't help.

Measure the first register in the computational basis:
gets x or x    s, both are random n-bit strings. 

If we have many copies of

If we repeat steps 1-3, we get 

measuring the first register gives x half of the time, 

But we cannot clone to make many copies ... 
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How to access s from

For quantum algorithms ... 

when in doubt, fourier transform !



4. Fourier transform the first register:
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4. Fourier transform the first register:

5. Measuring gives a random y orthogonal to s !
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Example:
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  s=101

Postmeasurement state on the 1st register:

all orthogonal to s = 101 (inner product

no 
of binary strings)

measuring gives a random y in 000, 
010, 101, 111, orthogonal to s = 101
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6. To reconstruct s, repeat steps 1-5  n+t  times. 

We need n-1 such equations that are linearly 
independent to find s (the 2 solutions for these 
n-1 equations are s and 0).  What t suffices?

KLM appendix 3: 
n+3 queries give prob of success at least 2/3.

This gives

s.t.

n+t linear equations in n variables

Mermin appendix G:
n+t queries give prob of success at least 1-2       !

-(t+1)
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Mermin's proof: 

come from an (n-1)-dim space S orthogonal to s.  

Take any basis for S.  Represent each       (random) 
as an (n-1)-bit string in a row.

This happens with prob:



Can prove an arithmetic result (by induction): 

if 0    a+b+c ...    1, 
then (1-a)(1-b)(1-c)....      1-(a+b+c...) 



Can prove an arithmetic result (by induction): 

if 0    a+b+c ...    1, 
then (1-a)(1-b)(1-c)....      1-(a+b+c...) 

So, prob that there are n-1 linearly independent rows 



Simon's algorithm altogether:

A quantum subroutine (steps 1-5) using 1 query to 
obtain one random y = y1 orthogonal to s. 



Simon's algorithm altogether:

Repeat quantum subroutine n+t times to obtain n+t
random                   orthogonal to s. 



Simon's algorithm altogether:

Classically compute s from 

With prob at least , s can be found. 



Simon's algorithm altogether:

classical computer
doing Gaussian
elimination O(n  )
ops

n+t queries 
for constant t

4n*(n+t) 
other ops

3

non-query, circuit complexity
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Deustch-Josza Simon's Shor's

speed up only
if seeking 
exact solution

allows error
in solution

allows error
in solution

Quantum
solution

Quantum
subroutine

Classical 
processing

Speed-up in 
blackbox model

Speed-up in 
blackbox model

Natural model, no
proof of speed-up

Heavy classical
processing

Analysis

Quantum
subroutine

Heavy Analysis

Concocted 
problem

Concocted 
problem

Critical problem
for crypto
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Quantum 
Fourier
transform

Period 
finding
algorithm

Order 
finding

Factoring

Simon's algorithm



Shor: key to Simon's algorithm was periodicity, and
periodicity was closely connected with discrete log. 

The problems by DJ and Simon are made to 
demonstrate quantum advantage using special 
properties of the Fourier transform       .

The natural (and interesting problem) discrete log 
or period finding requires new tools.

New tool (1): a new quantum Fourier transform. 
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Quantum Fourier transform over 

primitive
dth root
of unity

multiplication
mod d
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1   1   1   1   1   1   1   1
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QFT over

1   1   1   1   1   1   1   1
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1 
1  
1 
1  
1   

Implementable with 
single qubit gates.  

How to implement 
this with a circuit?  

e.g., n = 3, e.g., d = 8, n = 3



Quantum Fourier transform (QFT)

Standard basis:

Associate x with an integer:



Quantum Fourier transform (QFT)

Standard basis:

Associate x with an integer:

Fourier basis: 

Exercise: check that the Fourier basis is orthonormal, 
i.e., 

multiplication of integers

both an integer & an n-bit string
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* For the (n-k)-th qubit:

the terms

are multiplied to an integer *
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the terms

are multiplied to an integer *
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* For the first qubit:



H

H

So can be implemented as

up to reversing the order of the output qubits

* For the second qubit:



H

H

H

So can be implemented as

up to reversing the order of the output qubits

* For the (n-k)-th qubit:



H

H

H

H

NB 1. alternative proof QFT is unitary
      2. circuit size O(n  ).  A3 Q1: improve to O(n log n).2

So can be implemented as

up to reversing the order of the output qubits

time derivation



Exercise: work through the derivation of the QFT
                circuit for 3 or 4 qubits.  


