
Shor's algorithm

Quantum
Fourier
transform

Period
finding
algorithm

Order
finding

Factoring

Period finding:

Given: d , and a black box for a function
f:{0,1,...,d-1} {0,1,..,m-1}.

Promise: r s.t.
 f(x) = f(y) iff x y mod r (let r|d for now*)

Problem: determine r

Period finding:

Given: d , and a black box for a function
f:{0,1,...,d-1} {0,1,..,m-1}.

Promise: r s.t.
 f(x) = f(y) iff x y mod r

* Note f can only be periodic with period r if r|d.
 But r is unknown to the problem solver ...
 So, this assumption trivializes the problem.

 (let r|d for now*)

Problem: determine r

Period finding:

Given: d , and a black box for a function
f:{0,1,...,d-1} {0,1,..,m-1}.

Promise: r s.t.
 f(x) = f(y) iff x y mod r

* Note f can only be periodic with period r if r|d.
 But r is unknown to the problem solver ...
 So, this assumption trivializes the problem.

 (let r|d for now*)

Plan: (1) find an algorithm "PF1" for the r|d case;
(2) take large d to approximate r|d, modify algorithm
"PF1" to "PF2" and show the latter works.

Problem: determine r

Period finding algorithm:

(I) The quantum subroutine

1. Prepare superposition of inputs on 1st register

(essentially same as Simon's alg)

"PF1 for the case r|d"

Period finding algorithm:

(I) The quantum subroutine

1. Prepare superposition of inputs on 1st register

2. Prepare in 2nd register and apply blackbox .

(essentially same as Simon's alg)

"PF1 for the case r|d"

Period finding algorithm:

(I) The quantum subroutine

1. Prepare superposition of inputs on 1st register

2. Prepare in 2nd register and apply blackbox .

e.g., d=6, r=3, f(x) = x mod r.

(essentially same as Simon's alg)

"PF1 for the case r|d"

3. Measure 2nd register.

2.

"periodic state" with period r, shift s, d/r repetitions.

If outcome y = f(s), post-meas state on 1st register:

3. Measure 2nd register.

2.

"periodic state" with period r, shift s, d/r repetitions.

If outcome y = f(s), post-meas state on 1st register:

e.g., meas

Question: if outcome = 1, post-meas state = ?

(b) (c)(a)

3. Measure 2nd register.

2.

each f(s) occurs with prob 1/r. NB: For s

"periodic state" with period r, shift s, d/r repetitions.

e.g.2,

multi-dim period "p" (equivalent to d/2), random
shift x, and d/r = 2 repetitions.

from Simon's algorithm has

If outcome y = f(s), post-meas state on 1st register:

As before, computational basis meas yields a random
outcome (over the range of f) with no info on r.

3.

As before, computational basis meas yields a random
outcome with no info on r.

3.

To learn about r: measure in Fourier basis
 i.e., invert F (QFT) (step 4), and
 measure in computational basis (step 5).

4. Invert F (QFT) on the first register.

* Finding F :

4. Invert F (QFT) on the first register.

* Finding F :

Use new symbols,

4. Invert F (QFT) on the first register.

* Finding F :

* Inverting F:

4. Invert F (QFT) on the first register.

* Finding F :

periodic state from step 3

4. Invert F (QFT) on the first register.

* Finding F :

* Inverting F:

4. Invert F (QFT) on the first register.

* Finding F :

* Inverting F:

The amplitude for u =

4.

The amplitude for u =

4.

The amplitude for u =

4.

The amplitude for u =

4.

The amplitude for u =

4.

make random s
irrelevant by meas u

info on r
carried by u

4.

5. Measure the first (above) register, outcome = z.

Pr(z) =

4.

End of quantum subroutine in PF1 for r|d.
It outputs one sample of z = jd/r for some j uniformly
chosen from {0,1,...,r-1}.

Period finding algorithm:

(I) Quantum subroutine summary

1. Prepare superposition of inputs

2. Prepare in 2nd register and apply blackbox .

3. Measure second register. 1st register left in state:

for a random

4. Invert F (QFT) on the 1st register:

5. Measure the 1st register to get

can be
omitted!

randomness
info on r

"PF1 for the case r|d"

(1) Quantum subroutine circuit:

Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

Question: given z = j d/r,
 with random j and r unknown,
 how to find r ?

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

Question: given z = j d/r,
 with random j and r unknown,
 how to find r ?

(a) Need more samples !

where are random (and unknown).

Repeat quantum subroutine 2t times (tbd), get:

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

Question: given z = j d/r,
 with random j and r unknown,
 how to find r ?

(a) Need more samples !

where are random (and unknown).

Repeat quantum subroutine 2t times (tbd), get:

(b) How to convert

Known:

Unknown:

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

what you don't observe (e.g, j and r)
what you may sample from, 1 sample at a time

z =

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

what you don't observe (e.g, j and r)

what you may sample from, 1 sample at a time

z =

z =

tell r=8 from r=12

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

z =

z =

Say, z1 = 18, z2 = 36, z3 = 54. Is r = 8 or 12?

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

z =

z =

Say, z1 = 18, z2 = 36, z3 = 54. Is r = 8 or 12?

Question: what if z4 = 30? (a) r=8, (b) r=12. (1min)

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

How to tell r=8 from r=12, or to find r EFFICIENTLY?

z =

z =

Say, z1 = 18, z2 = 36, z3 = 54. Is r = 8 or 12?

Question: what if z4 = 30? (a) r=8, (b) r=12. (1min)

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

z =

z =

How to obtain from random samples of

e.g. d=72, r=8, d/r = 9

 j = 0 1 2 3 4 5 6 7

jd/r = 0 9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

 j = 0 1 2 3 4 5 6 7 8 9 10 11

jd/r = 0 6 12 18 24 30 36 42 48 54 60 66

Bring z/d = j/r to lowest term, denominator = r/gcd(r,j).
r = some denominators and more often as lcm's of pairs
of denominators !! (Proof later ...)

z =

z =

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(b) For each i : bring to lowest term

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(b) For each i : bring to lowest term

both zi, d known both ji, r unknown

both ni, di
 known

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(b) For each i : bring to lowest term

both zi, d known both ji, r unknown

both ni, di
 known

(c) Let = lcm for i = 1,...,t.

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(b) For each i : bring to lowest term

both zi, d known both ji, r unknown

both ni, di
 known

(c) Let = lcm for i = 1,...,t.

(d) Output r = max ().

Lemma: if

then

denominators of z1/d = j1/r, z2/d = j2/r

Lemma: if

then

denominators of z1/d = j1/r, z2/d = j2/r

So, our observation from the example is correct --
some pairs of denominators have lcm = r, when
the pair of j's are coprime.

Lemma: if

then

denominators of z1/d = j1/r, z2/d = j2/r

Proof: let

denominators
from the samplesThen

Also

(math 135)

Reading ex:

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t.

From the lemma, if

(b)

coprime, then,

How likely are 2 random j's to be coprime?

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

Proof:

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

Proof:

Prob(gcd(j,k)=1)

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

Proof:

Prob(gcd(j,k)=1)

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

Proof:

Prob(gcd(j,k)=1)

How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(j,k)=1)

Proof:

Prob(gcd(j,k)=1)

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t.

From the lemma, if

(b)

coprime, then,

From KLM Thm 7.1.12, this happens with prob > 0.6.

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t.

From the lemma, if

(b)

coprime, then,

From KLM Thm 7.1.12, this happens with prob > 0.6.

(d) Output r = max ().

With 2 random samples, prob(get correct r) > 0.6.

(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t.

From the lemma, if

(b)

coprime, then,

From KLM Thm 7.1.12, this happens with prob > 0.6.

(d) Output r = max ().

With 2 random samples, prob(get correct r) > 0.6.

With 2t samples, prob(get correct r) > 1 - 0.4t

(84%, 93.6% for t=2,3 ...)

Summary for period finding:

just a few repetitions

"PF1 for the case r|d"

Summary for period finding:

just a few repetitions

lcm

"PF1 for the case r|d"

max

Summary for period finding:

just a few repetitions
lcm

"PF1 for the case r|d"

max

Congrats! We solved the easy case when r|d !

Period finding:

Given: a black box for a function f: {0,1,..,m-1}

Promise: r s.t. f(x) = f(y) iff x y mod r

Problem: determine r

real dealPF2

Period finding:

Given: a black box for a function f: {0,1,..,m-1}

Promise: r s.t. f(x) = f(y) iff x y mod r

Problem: determine r

real deal

Ideas:

PF2

(1) choose d s.t. restricting the domain to {0,..,d-1}
 preserves desirable features for the r|d case with
 high accuracy & preserves the complexity.

Period finding:

Given: a black box for a function f: {0,1,..,m-1}

Promise: r s.t. f(x) = f(y) iff x y mod r

Problem: determine r

real deal

Ideas:

PF2

(1) choose d s.t. restricting the domain to {0,..,d-1}
 preserves desirable features for the r|d case with
 high accuracy & preserves the complexity.

(2) additional classical postprocessing to extract r

(3) additional error analysis to ensure correctness

What d makes the function "almost periodic" for all
unknown r of interest, when restricting the domain
to {0,1,...d-1}?

Intuitively, for d very large compared to any such r.
We assume an upper bound on r is known.

What d makes the function "almost periodic" for all
unknown r of interest, when restricting the domain
to {0,1,...d-1}?

Intuitively, for d very large compared to any such r.
We assume an upper bound on r is known.

We choose d = 2 for an efficient implementation of
the QFT over .

n

Good values of d will come from the error analysis.

Example: Suppose we know r {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d,
r = 3,5,6,7 are generic.

So what goes wrong when r | d ?

Example:

If r=5, possible states after measuring 2nd register:

Suppose we know r {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d,
r = 3,5,6,7 are generic.

So what goes wrong when r | d ?

Example:

If r=5, possible states after measuring 2nd register:

meas outcomes
are multiples of
13 if we apply
QFT for d = 65.

meas outcomes
are multiples of
12 if we apply
QFT for d = 60.

But doing these require knowing
r = 5 and the random shift s!
All we have is d = 64 !

Suppose we know r {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d,
r = 3,5,6,7 are generic.

So what goes wrong when r | d ?

But all we can do is to apply QFT for d=64!
We cannot tailor to r or s that are unknown to us.

For r=6, possible states after meas 2nd register:

Example: Suppose we know r {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d,
r = 3,5,6,7 are generic.

So what goes wrong when r | d ?

Surprise: applying QFT for d=64 works well ENOUGH !

In general: after step 3, postmeasurement state is

depending on s.

In general: after step 3, postmeasurement state is

Inverting the QFT (for the known d):

depending on s.

In general: after step 3, postmeasurement state is

Inverting the QFT (for the known d):

depending on s.

In general: after step 3, postmeasurement state is

Inverting the QFT (for the known d):

But:

depending on s.

if
otherwise

Instead,

Pr(u) =

for the state after step 4:

Instead,

Pr(u) =

=

Instead,

Pr(u) =

=

=

Instead,

tightly peaked at

Pr(u) =

=

=

Instead,

tightly peaked at

Theorem: if an integer u is within 1/2 from

then pr(u)

Pr(u) =

=

=

0.4, loss relative to r|d case

Proof:

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof: if with

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof:

Pr(u) =

if with

= drops out

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof:

Pr(u) =

if with

= drops out

small

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof:

Pr(u) =

if with

= drops out

small

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof:

Pr(u) =

if with

= drops out

small

if

Theorem: if an integer u is within 1/2 from

then pr(u)

Proof:

Pr(u) =

if with

= drops out

small

if

=

Theorem: if an integer u is within 1/2 from

then pr(u)

If in step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

Divide by d (as in the r|d case):

If in step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

Divide by d (as in the r|d case):

If we know and we choose

then within from

Claim:

If in step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

Divide by d (as in the r|d case):

If we know and we choose

then within from

Claim:

Proof: for any r, r' < N, any j, j' :

If in step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

Divide by d (as in the r|d case):

If we know and we choose

then within from

Claim:

Proof: for any r, r' < N, any j, j' :

Note we only use r, r' < N and no other info on r, r'.

algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):

If

algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):

If

If 0<b<1:

= =

=

=

=

algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):

If

If 0<b<1:

= =

=

=

=

To find within from , we can stop the

expansion once the approx is within

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

b. Repeat quantum subroutine 2t times to get

From Theorem, an integer u within 1/2 from
has prob > 0.4 / r to be each of the above outcomes.

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

b. Repeat quantum subroutine 2t times to get

c. For each i, apply CFE to

From Theorem, an integer u within 1/2 from
has prob > 0.4 / r to be each of the above outcomes.

Stop when the fraction approx is within 1/2d.

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

b. Repeat quantum subroutine 2t times to get

c. For each i, apply CFE to

From Theorem, an integer u within 1/2 from
has prob > 0.4 / r to be each of the above outcomes.

Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d

Reject suspicious, spurious from the 2t values.

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

b. Repeat quantum subroutine 2t times to get

c. For each i, apply CFE to

From Theorem, an integer u within 1/2 from
has prob > 0.4 / r to be each of the above outcomes.

Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d

d. Let = lcm if neither

Reject suspicious, spurious from the 2t values.

rejected.

Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2 N .
n 2

b. Repeat quantum subroutine 2t times to get

c. For each i, apply CFE to

From Theorem, an integer u within 1/2 from
has prob > 0.4 / r to be each of the above outcomes.

Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d

d. Let = lcm if neither

e. Output r = max ().

Reject suspicious, spurious from the 2t values.

rejected.

Correctness "proof":

1. 40% of the time, step b gives an outcome

within 1/2 from some jd/r.

Correctness "proof":

1. 40% of the time, step b gives an outcome

within 1/2 from some jd/r.

2. with prob > 0.4 * 0.4 * 0.6, both

are within 1/2 from some

and gcd = 1.

If so, lcm

Correctness "proof":

1. 40% of the time, step b gives an outcome

within 1/2 from some jd/r.

2. with prob > 0.4 * 0.4 * 0.6, both

are within 1/2 from some

and gcd = 1.

If so, lcm

3. with small constant t, enough of the lcm's will be

equal to r (and the spurious cases rejected).

Cost: O(n) for QFT, O(n) for EEA, O(n) for CFE

Correctness "proof":

1. 40% of the time, step b gives an outcome

within 1/2 from some jd/r.

2. with prob > 0.4 * 0.4 * 0.6, both

are within 1/2 from some

and gcd = 1.

If so, lcm

3. with small constant t, enough of the lcm's will be

equal to r (and the spurious cases rejected).

2 2 3

O(1) queries.

Shor's algorithm

Quantum
Fourier
transform

Period
finding
algorithm

Order
finding

Factoring

classical

 Order finding:

Given: a, N .

Problem: determine the smallest r such that

 called the order
 of a (mod N)

 Order finding:

Given: a, N .

Problem: determine the smallest r such that

Note:
(1) This is NOT a black box problem !
(2) No solution unless gcd(N,a)=1.
 (Checkable with the EEA in polylog(N) time.)
 For example, if a=0 mod N, no solution.

 called the order
 of a (mod N)

 Order finding:

Given: a, N .

Problem: determine the smallest r such that

Algorithm:

Let

 Order finding:

Given: a, N .

Problem: determine the smallest r such that

Algorithm:

Let

f is periodic with period r:

 Order finding:

Given: a, N .

Problem: determine the smallest r such that

Algorithm:

Let

f is periodic with period r:

We know

Apply period finding algorithm PF2 with

We have to make our own "blackbox" for the function,
and it has to preserve superposition.

One "small" detail:

We have to make our own "blackbox" for the function,
and it has to preserve superposition.

One "small" detail:

The square-and-multiply method gives a fast way to
calculate f(x) classically (Math 135):

up to j = n-1

Cost : poly(n). Turn
reversible & quantum.

Shor's algorithm

Quantum
Fourier
transform

Period
finding
algorithm

Order
finding

Factoring

classical

Factoring:

Problem: find , primes , s.t.

Given: N

Factoring:

Problem: find , primes , s.t.

Given: N

Classical algorithm using order-finding as subroutine:

1. Every time we find a divisor b of N, reduce the
 problem to factoring N/b.

Preamble:

Factoring:

Problem: find , primes , s.t.

Given: N

Classical algorithm using order-finding as subroutine:

1. Every time we find a divisor b of N, reduce the
 problem to factoring N/b.

2. Find all even divisors and reduce to odd N.

Preamble:

Factoring:

Problem: find , primes , s.t.

Given: N

Classical algorithm using order-finding as subroutine:

1. Every time we find a divisor b of N, reduce the
 problem to factoring N/b.

2. Find all even divisors and reduce to odd N.

3. Check if N is a prime power.
 (NC Ex 5.17 gives a log (N)-sized algorithm.)

Preamble:

Factoring:

Problem: find , primes , s.t.

Given: N

Classical algorithm using order-finding as subroutine:

1. Every time we find a divisor b of N, reduce the
 problem to factoring N/b.

2. Find all even divisors and reduce to odd N.

3. Check if N is a prime power.
 (NC Ex 5.17 gives a log (N)-sized algorithm.)

4. WLOG, N is odd, with at least 2 prime factors.

Preamble:

1. Choose a randomly from {2,3,...,N-2}.

Reduction to order finding (Miller 1976):

1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor. Reduce N.

Reduction to order finding (Miller 1976):

1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor. Reduce N.

Reduction to order finding (Miller 1976):

3. WLOG, gcd(a,N)=1. Find the order of a (mod N):

1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor. Reduce N.

Reduction to order finding (Miller 1976):

3. WLOG, gcd(a,N)=1. Find the order of a (mod N):

4. If r is odd, r is not good, so we return to step 1.

If r is even,

1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor. Reduce N.

Reduction to order finding (Miller 1976):

3. WLOG, gcd(a,N)=1. Find the order of a (mod N):

4. If r is odd, r is not good, so we return to step 1.

If r is even,

5. Note else r is not the order of a.

1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor. Reduce N.

Reduction to order finding (Miller 1976):

3. WLOG, gcd(a,N)=1. Find the order of a (mod N):

4. If r is odd, r is not good, so we return to step 1.

If r is even,

5. Note else r is not the order of a.

If a is not good; return to step 1.

6. From 4,

If r is even,

6. From 4,

From 5, neither is a multiple of N.

else r is not the order of a.

If a is not good; return to step 1.

Note

is a nontrivial factor of N.

Each prime factor in N either divides

6. From 4,

From 5, neither is a multiple of N.

So, one of

is a nontrivial factor of N.

Each prime factor in N either divides

6. From 4,

From 5, neither is a multiple of N.

So, one of

It remains to upper bound the probability of failure in
steps 4 and 5. It is derived in detail in NC Appendix
A4.3, Thm A.4.13. If N has m distinct prime factors,
the prob of failure is

Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.

Each repetition requires polylog(N) (O(log (N))
classical pre/post-processing, and one period finding

Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.

3

Each repetition requires polylog(N) (O(log (N))
classical pre/post-processing, and one period finding
(with similar complexity for the classical computations),
and O(log (N)) quantum gates for the QFT.

Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.

3

2

Not covered in the lectures:

Remaining discussions in the lectures:

Cryptographic consequences of quantum algorithms
(postponed until after covering search algorithms).

Phase estimation and algorithms based on it.
These are discussed in Chapter 7 of KLM (reading
assignment).

Hidden subgroup framework.

