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  f(x) = f(y) iff x    y mod r    (let r|d for now*)

Problem: determine r  



Period finding:

Given: d      , and a black box for a function 
f:{0,1,...,d-1}      {0,1,..,m-1}.

Promise:     r s.t. 
  f(x) = f(y) iff x    y mod r  

* Note f can only be periodic with period r if r|d.  
   But r is unknown to the problem solver ...   
   So, this assumption trivializes the problem.  

  (let r|d for now*)

Problem: determine r  



Period finding:

Given: d      , and a black box for a function 
f:{0,1,...,d-1}      {0,1,..,m-1}.

Promise:     r s.t.
  f(x) = f(y) iff x    y mod r  

* Note f can only be periodic with period r if r|d.  
   But r is unknown to the problem solver ...   
   So, this assumption trivializes the problem.  

  (let r|d for now*)

Plan: (1) find an algorithm "PF1" for the r|d case; 
(2) take large d to approximate r|d, modify algorithm 
"PF1" to "PF2" and show the latter works.  

Problem: determine r  
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Period finding algorithm:

(I) The quantum subroutine

1. Prepare superposition of inputs on 1st register

2. Prepare        in 2nd register and apply blackbox       . 

e.g., d=6, r=3, f(x) = x mod r. 

(essentially same as Simon's alg)

"PF1 for the case r|d"



3. Measure 2nd register.  

2. 

"periodic state" with period r, shift s, d/r repetitions. 

If outcome y = f(s), post-meas state on 1st register:



3. Measure 2nd register.  

2. 

"periodic state" with period r, shift s, d/r repetitions. 

If outcome y = f(s), post-meas state on 1st register:

e.g., meas

Question: if outcome = 1, post-meas state = ?

(b) (c)(a)



3. Measure 2nd register.  

2. 

each f(s) occurs with prob 1/r. NB: For s

"periodic state" with period r, shift s, d/r repetitions. 

e.g.2, 

multi-dim period "p" (equivalent to d/2), random 
shift x, and d/r = 2 repetitions.  

from Simon's algorithm has 

If outcome y = f(s), post-meas state on 1st register:



As before, computational basis meas yields a random 
outcome (over the range of f) with no info on r.  

3.



As before, computational basis meas yields a random 
outcome with no info on r.  

3.

To learn about r: measure in Fourier basis 
 i.e., invert F (QFT) (step 4), and 
        measure in computational basis (step 5).  
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4. Invert F (QFT) on the first register. 

* Finding F  : 



* Inverting F: 

4. Invert F (QFT) on the first register. 

* Finding F  : 

periodic state from step 3



4. Invert F (QFT) on the first register. 

* Finding F  : 

* Inverting F: 



4. Invert F (QFT) on the first register. 

* Finding F  : 

* Inverting F: 
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The amplitude for u = 
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The amplitude for u = 

4.

make random s 
irrelevant by meas u

info on r
carried by u



4. 



5. Measure the first (above) register, outcome = z.  

Pr(z) = 

4. 

End of quantum subroutine in PF1 for r|d.
It outputs one sample of z = jd/r for some j uniformly 
chosen from {0,1,...,r-1}.  



Period finding algorithm:

(I) Quantum subroutine summary

1. Prepare superposition of inputs

2. Prepare        in 2nd register and apply blackbox       . 

3. Measure second register.  1st register left in state:

for a random 

4. Invert F (QFT) on the 1st register:

5. Measure the 1st register to get        

can be 
omitted!

randomness
info on r

"PF1 for the case r|d"



(1) Quantum subroutine circuit:

Period finding algorithm: "PF1 for the case r|d"
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(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

Question: given z = j d/r, 
                with random j and r unknown, 
                how to find r ? 

(a) Need more samples !  

where                   are random (and unknown).

Repeat quantum subroutine 2t times (tbd), get:

(b) How to convert 

Known:

Unknown: 
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jd/r =  0  9 18 27 36 45 54 63

r

what you don't observe (e.g, j and r)
what you may sample from, 1 sample at a time

z =
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   j =  0 1 2 3 4 5 6 7

jd/r =  0  9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

   j =  0   1    2    3    4    5    6    7    8    9   10   11

jd/r =  0   6   12  18  24  30  36  42  48  54  60  66

How to tell r=8 from r=12, or to find r EFFICIENTLY?

z =

z =

Say, z1 = 18, z2 = 36, z3 = 54.  Is r = 8 or 12?

Question: what if z4 = 30?  (a) r=8, (b) r=12.  (1min)
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How to obtain    from random samples of 

e.g. d=72, r=8, d/r = 9

   j =  0 1 2 3 4 5 6 7

jd/r =  0  9 18 27 36 45 54 63

r

e.g. d=72, r=12, d/r = 6

   j =  0   1    2    3    4    5    6    7    8    9   10   11

jd/r =  0   6   12  18  24  30  36  42  48  54  60  66

Bring z/d = j/r to lowest term, denominator = r/gcd(r,j).
r = some denominators and more often as lcm's of pairs
of denominators !!  (Proof later ...) 

z =

z =
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(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

where                  are random (and unknown).

(a) Repeat quantum subroutine 2t times to get:

(b) For each i : bring to lowest term

both zi, d known both ji, r unknown

both ni, di 
  known

(c) Let = lcm for i = 1,...,t. 

(d) Output r = max (                   ). 



Lemma: if 

then 

denominators of z1/d = j1/r, z2/d = j2/r 



Lemma: if 

then 

denominators of z1/d = j1/r, z2/d = j2/r 

So, our observation from the example is correct -- 
some pairs of denominators have lcm = r, when 
the pair of j's are coprime. 



Lemma: if 

then 

denominators of z1/d = j1/r, z2/d = j2/r 

Proof: let

denominators 
from the samplesThen

Also

(math 135)

Reading ex:



(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t. 

From the lemma, if

(b)

coprime, then, 
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(2) Classical processing:

Period finding algorithm: "PF1 for the case r|d"

proof of correctness

(c) Let = lcm for i = 1,...,t. 

From the lemma, if

(b)

coprime, then, 

From KLM Thm 7.1.12, this happens with prob > 0.6.

(d) Output r = max (                   ). 

With 2 random samples, prob(get correct r) > 0.6.

With 2t samples, prob(get correct r) > 1 - 0.4t

(84%, 93.6% for t=2,3 ... )
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Summary for period finding: 

just a few repetitions
lcm

"PF1 for the case r|d"

max



Congrats!  We solved the easy case when r|d !
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Period finding:

Given: a black box for a function f:          {0,1,..,m-1}

Promise:     r s.t. f(x) = f(y) iff x    y mod r 

Problem: determine r  

real deal

Ideas: 

PF2

(1) choose d s.t. restricting the domain to {0,..,d-1} 
      preserves desirable features for the r|d case with 
      high accuracy & preserves the complexity.

(2) additional classical postprocessing to extract r

(3) additional error analysis to ensure correctness



What d makes the function "almost periodic" for all 
unknown r of interest, when restricting the domain 
to {0,1,...d-1}? 

Intuitively, for d very large compared to any such r.  
We assume an upper bound on r is known.



What d makes the function "almost periodic" for all 
unknown r of interest, when restricting the domain
to {0,1,...d-1}? 

Intuitively, for d very large compared to any such r.  
We assume an upper bound on r is known.

We choose d = 2   for an efficient implementation of 
the QFT over      . 

n

Good values of d will come from the error analysis.
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r = 1,2,4 are special with r|d, 
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So what goes wrong when r | d ? 
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Example: 

If r=5, possible states after measuring 2nd register:

meas outcomes
are multiples of
13 if we apply 
QFT for d = 65. 

meas outcomes
are multiples of
12 if we apply 
QFT for d = 60. 

But doing these require knowing
r = 5 and the random shift s!
All we have is d = 64 !

Suppose we know r     {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d, 
r = 3,5,6,7 are generic.  

So what goes wrong when r | d ? 



But all we can do is to apply QFT for d=64!
We cannot tailor to r or s that are unknown to us.  

For r=6, possible states after meas 2nd register:

Example: Suppose we know r     {1,2,..7}; pick d = 64.

r = 1,2,4 are special with r|d, 
r = 3,5,6,7 are generic.  

So what goes wrong when r | d ? 



Surprise: applying QFT for d=64 works well ENOUGH !
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In general: after step 3, postmeasurement state is 

Inverting the QFT (for the known d):

But:

depending on s.

if
otherwise



Instead, 

Pr(u) = 

for the state after step 4:
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tightly peaked at   

Theorem: if an integer u is within 1/2 from 

then pr(u) 

Pr(u) = 

=

=

0.4, loss relative to r|d case
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if with

= drops out
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if

=

Theorem: if an integer u is within 1/2 from 

then pr(u) 
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If in step 5, measurement outcome z is at most 1/2 
from jd/r, how to obtain r? 

Divide by d (as in the r|d case):

If we know and we choose 

then within from

Claim:

Proof: for any r, r' < N, any j, j' : 



If in step 5, measurement outcome z is at most 1/2 
from jd/r, how to obtain r? 

Divide by d (as in the r|d case):

If we know and we choose 

then within from

Claim:

Proof: for any r, r' < N, any j, j' : 

Note we only use r, r' < N and no other info on r, r'.
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continued fraction expansion (CFE):
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algorithmically, we can obtain j/r from z/d by the 
continued fraction expansion (CFE):

If 

If 0<b<1:

= =

=

=

=



algorithmically, we can obtain j/r from z/d by the 
continued fraction expansion (CFE):

If 

If 0<b<1:

= =

=

=

=

To find  within from , we can stop the 

expansion once the approx is within 
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Period finding algorithm (PF2), 
for unknown r upper bounded by N:

a. Choose d = 2       N  .  
n 2

b. Repeat quantum subroutine 2t times to get

c. For each i, apply CFE to 

From Theorem, an integer u within 1/2 from 
has prob > 0.4 / r to be each of the above outcomes.

Stop when the fraction approx is within 1/2d. 
Bring fraction to lowest order, call denominator d

d. Let = lcm if neither  

e. Output r = max (                   ). 

Reject suspicious, spurious from the 2t values.

rejected.
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Correctness "proof": 

1. 40% of the time, step b gives an outcome 

within 1/2 from some jd/r.  

2. with prob > 0.4 * 0.4 * 0.6, both  

are within 1/2 from some 

and gcd = 1. 

If so, lcm

3. with small constant t, enough of the lcm's will be 

equal to r (and the spurious cases rejected).  



Cost: O(n  ) for QFT, O(n  ) for EEA, O(n  ) for CFE

Correctness "proof": 

1. 40% of the time, step b gives an outcome 

within 1/2 from some jd/r.  

2. with prob > 0.4 * 0.4 * 0.6, both  

are within 1/2 from some 

and gcd = 1. 

If so, lcm

3. with small constant t, enough of the lcm's will be 

equal to r (and the spurious cases rejected).  

2 2 3

O(1) queries.   
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 Order finding:

Given: a, N          . 

Problem: determine the smallest r          such that 

Note: 
(1) This is NOT a black box problem !   
(2) No solution unless gcd(N,a)=1.  
    (Checkable with the EEA in polylog(N) time.) 
    For example, if a=0 mod N, no solution.  

 called the order 
   of a (mod N)
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Algorithm:
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f is periodic with period r:



 Order finding:

Given: a, N          . 

Problem: determine the smallest r          such that 

Algorithm:

Let

f is periodic with period r:

We know 

Apply period finding algorithm PF2 with 



We have to make our own "blackbox" for the function,
and it has to preserve superposition.  

One "small" detail: 



We have to make our own "blackbox" for the function,
and it has to preserve superposition.  

One "small" detail: 

The square-and-multiply method gives a fast way to 
calculate f(x) classically (Math 135): 

up to j = n-1

Cost : poly(n).  Turn
reversible & quantum.  
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Factoring:

Problem: find             , primes       ,  s.t.  

Given: N

Classical algorithm using order-finding as subroutine:

1. Every time we find a divisor b of N, reduce the 
    problem to factoring N/b. 

2. Find all even divisors and reduce to odd N. 

3. Check if N is a prime power.  
    (NC Ex 5.17 gives a log  (N)-sized algorithm.) 

4. WLOG, N is odd, with at least 2 prime factors. 

Preamble:
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1. Choose a randomly from {2,3,...,N-2}.

2. If a, N not coprime, gcd(a,N) is a divisor.  Reduce N.

Reduction to order finding (Miller 1976):

3. WLOG, gcd(a,N)=1.  Find the order of a (mod N): 

4. If r is odd, r is not good, so we return to step 1. 

If r is even, 

5. Note else r is not the order of a. 

If a is not good; return to step 1.
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else r is not the order of a. 

If a is not good; return to step 1.

Note 
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is a nontrivial factor of N.  

Each prime factor in N either divides

6. From 4, 

From 5, neither is a multiple of N. 

So, one of 

It remains to upper bound the probability of failure in 
steps 4 and 5.  It is derived in detail in NC Appendix 
A4.3, Thm A.4.13.  If N has m distinct prime factors, 
the prob of failure is 
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Each repetition requires polylog(N) (O(log  (N)) 
classical pre/post-processing, and one period finding
(with similar complexity for the classical computations), 
and O(log  (N)) quantum gates for the QFT. 

Cost: 

Steps 1-6 give one factor with high probability, 
so, O(1) repetitions are sufficient to give a factor.  

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.  

3
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Not covered in the lectures:

Remaining discussions in the lectures:

Cryptographic consequences of quantum algorithms 
(postponed until after covering search algorithms).

Phase estimation and algorithms based on it.  
These are discussed in Chapter 7 of KLM (reading 
assignment).  

Hidden subgroup framework.


