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Period finding:

Given: d ¢\, and a black box for a function
f.{0,1,...,d-1}— {0O,1,...m-1}.

Promise: 3 r s.t.
f(x) = f(y) iff x =y mod r (let r|d for now¥*)

Problem: determine r
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* Note f can only be periodic with period r if r|d.
But r is unknown to the problem solver ...
So, this assumption trivializes the problem.



Period finding:

Given: d ¢\, and a black box for a function
f:{0,1,....d-1}+— {0,1,...m-1}.

Promise: 3 r s.t.
f(x) = f(y) iff x =y mod r (let r|d for now¥*)

Problem: determine r

* Note f can only be periodic with period r if r|d.
But r is unknown to the problem solver ...
So, this assumption trivializes the problem.

Plan: (1) find an algorithm "PF1" for the r|d case;
(2) take large d to approximate r|d, modify algorithm
"PF1" to "PF2" and show the latter works.



Period finding algorithm: "PF1 for the case r|d"

(I) The quantum subroutine (essentially same as Simon's alg)
1. Prepare superposition of inputs on 1st register

d-i
oy = —IQTXZ_A | X 7 Where F = QF Tover 24
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Period finding algorithm: "PF1 for the case r|d"

(I) The quantum subroutine (essentially same as Simon's alg)
1. Prepare superposition of inputs on 1st register

o) = —‘—Z | X > where. £ = QFTover 24,

{d x=o ’
2. Prepare |o) in 2nd register and apply blackbox Ug .
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e.g., d=6, r=3, f(x) = x mod .
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Xo=0 Xo= 1 Xo= L
fx)=0 Hxo)= 1 fx)=1



-1 4

I

|
| Kot K [HXo)

Xo=0 K=o

d-I
1
2. Us (T 0 10)) = i
3. Measure 2nd register.

If outcome y = f(s), post meas state on 1st register:

I

Wrs>* Z|S+Kr>

"periodic state" with perlod r, shift s, d/r repetitions.
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3. Measure 2nd regqister.
If outcome y = f(s), post-meas state on 1st register:

I

Mes ) = Z|S+Kr>
"periodic state" with perlod r, shift s, d/r repetitions.

e.g., meas J—(Jr|o>|o>+ 1> 11> + |z>|z>>

4135105+ 14511 > + 15> 12)
Xo=0O Xoz= | Xo= L
fxo)=0 fxo)= 1 fx)=12

Question: if outcome = 1, post-meas state = ?
(@) > (b) (o> +13») (C) =(1>+ 14>
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3. Measure 2nd regqister.

If outcome y = f(s), post meas state on 1st register:

I

N’rs>"— Z|S+Kr>

"periodic state" with perlod r, shift s, d/r repetitions.

e.qg.2, —ﬁ(lx>+lx®f>) from Simon's algorithm has

multi-dim period "p" (equivalent to d/2), random
shift x, and d/r = 2 repetitions.

NB: For s < {o,1,-.,=1} each f(s) occurs with prob 1/r.
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3. Wes) = r||5+‘<f‘>

=0

As before, computational basis meas yields a random
outcome (over the range of f) with no info on .
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As before, computational basis meas yields a random
outcome with no infoonr.

To learn about r: measure in Fourier basis
l.e., invert F (QFT) (step 4), and
measure in computational basis (step 5).



4. Invert F (QFT) on the first reqister.
* Finding F ™;
Flo-15 =55 e y)



4. Invert F (QFT) on the first register.
* Finding F ™ |
Fowoiw=L 2 e )
F= T Wl D

o)

Use new symbols, X— U, 4—> W



4. Invert F (QFT) on the first reqister.
* Finding F ™
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4. Invert F (QFT) on the first register.
* Finding F ™
[ d-| 2Ty
— — d
Folu)y—= W)= EWZDC [w)
F= T Tl
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* Inverting F:
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periodic state from step 3



4. Invert F (QFT) on the first reqister.
* Finding F ™
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* Invertlng F



4. Invert F (QFT) on the first reqister.
* Finding F ™;
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4. F' e s) = dr
The amplitude for
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4. \‘ Mes) = dr
The amplitude for
E G, é‘ U(s +kr)
d K=o
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5. Measure the first (above) reqgister, outcome = z.
Pr(z) = { O f %_fEOMOA_AF

|
— ZOmeod 4
rl»f‘% Y“Ar_

End of quantum subroutine in PF1 for r|d.

It outputs one sample of z = jd/r for some j uniformly
chosen from {0,1,...,r-1}.



Period finding algorithm: "PF1 for the case r|d"

(1) Quantum subroutine summary QAFT
/

1. Prepare superposition of inputs 7 (o) = I—‘: ZL | X >

2. Prepare |o) in 2nd register and apply blackbox i

d-| -1 44
Ue (T 10100) = 5 T T Inetked 1oy
can be -0 XOOK o

omitted!

3. Measure second register. 1st register left in state:

Mes) = t 1S+kr> for a random S <€ {01, 1]

4. Invert F (QFT) on the 1st register: jl_F e 4 MS\IUO

5. Measure the 1st reqgister to get \ randomness
2=0d for jeg {0l 2mrn Y nfoon



Period finding algorithm: "PF1 for the case r|d"

(1) Quantum subroutine circuit:
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Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:

Question: given z = j d/r,
with random j and r unknown,
how to find r ?



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:

Question: given z = j d/r,
with random j and r unknown,
how to find r 7

(a) Need more samples !
Repeat quantum subroutine 2t times (tbd), get:

%(:3‘i1 %1:325{_; A %z‘t_:-jz'té’—
r r r

where i1, .., 2t are random (and unknown).



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:

Question: given z = d/r,
with random j and r unknown,
how to find r ?

(a) Need more samples !
Repeat quantum subroutine 2t times (tbd), get:

%(:S‘ix %1;32i: (o 'Zzt::gz'ti—
- r .

where 1.)2,.., 2t are random (and unknown).
(b) How to convert 2.2y, v, 250 To  ?

Known: %l \ %L, Gy %’zt
Unknown: T v, .t ,



How to obtain r from random samples of j£ 7

e.g.d=72, r=8,d/r=9

i=0 1 2 3 4 5 6 7
z=jd/r=0 9 18 27 36 45 54 63

what you don't observe (e.g, jand r)
what you may sample from, 1 sample at a time



tell r=8 from r=12 4
How to ebtain—+ from random samples of = ?

e.g.d=72, r=8,d/r=9

i=0 1 2 3 4 5 6 7
z=jd/r=0 9 18 27 36 45 54 63

e.qg.d=72, r=12,d/r =06

ji=0 1 2 3 4 5 6 7 8 9 10 11
z=jd/r=0 6 12 18 24 30 36 42 48 54 60 66

what you don't observe (e.qg, jand r)
what you may sample from, 1 sample at a time
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Say,z1 =18,2z2=36,z3=54. Isr=8o0r 127



How to obtain r from random samples of j£ ?

e.g.d=72, r=8,d/r=9
j=0 1 2

3 4 5 6 7
z=jd/r=0 9 27@ 45@ 63

e.qg.d=72, r=12,d/r=06
j=01 2 3 4 5 6 7 8 9 10 11

z=jd/r=0 6 12(18)24 30 (36) 42 48(54) 60 66

Say,z1 =18,z2 =36,z2z3 =54. Isr=8o0r 127
Question: what if z4 = 30?7 (a) r=8, (b) r=12. (1min)



How to obtain r from random samples of j< 7

e.g.d=72, r=8,d/r=9
j=0 1 2

3 4 5 6 7
z=jd/r=0 9 27 (3% 45@1 63

e.qg.d=72, r=12,d/r =106
j=01 2 3 4 5 6 7 8 9 10 11

z=jd/r=0 6 12(18)24 30 (36) 42 48(54) 60 66

Say,z1 =18,2z2=36,2z3=54. Isr=8o0r 127
Question: what if z4 = 30? (a) r=8, (b) r=12. (1min)
How to tell r=8 from r=12, or to find r EFFICIENTLY?



How to obtain r from random samples of j£ 7

e.g.d=72, r=8,d/r=9
j= 0 1 2 3 4 5 6 7

z=jd/r=0 9 18 27 36 45 54 63
fey=0 % ¥ ¥ v ¥ % 7

e.qg.d=72, r=12,d/r=06

j=01 2 3 4 5 6 7 8 9 10 11

z=]jd/r=0 6 12 18 24 30 36 42 48 54 60 66
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How to obtain r from random samples of j£

e.g.d=72, r=8,d/r=9
j=0 1 2 3 4 5 6 7

z=jd/r=0 9 18 27 36 45 54 63
iey=0% ¥ + + ¥ & 7

e.qg.d=72, r=12,d/r=06

ji=01 2 3 4 5 6 7 8 9 10 11

=jd/r=0 6 12 18 24 30 36 42 48 54 60 66

:O_LJ_,_L_ISLL_Z__SSH
L 6 Y 33 12 2 L 3 % b (¥

Z
2
d

—

ﬁ\&\,l

Bring z/d = j/r to lowest term, denominator = r/gcd(r,j).
r = some denominators and more often as Icm's of pairs
of denominators !! (Proof later ...)



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:
(a) Repeat quantum subroutine 2t times to get:

%(:S[il %z:]?-_d’__: AN '-'le‘t_:?g?-té—
r r r~

where 7.}, .., 2t are random (and unknown).



Period finding algorithm: "PF1 for the case r|d"
(2) Classical processing:
(a) Repeat quantum subroutine 2t times to get:

%[:S(i) %1;325{'_1 S N %Zt:SZ‘té’—
r’ - .

where .}, .., 2t are random (and unknown).

(b) For each i : bring to lowest term

< Si/ﬂﬂi(r)j;)
A (/ 6<d<r):\i.)
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Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:
(a) Repeat quantum subroutine 2t times to get:
%(:3‘%x %1:]2%' oy '?Zzt:}lt%_—

where 7, 3., ...t are random (and unknown).

(b) For each i : bring to lowest term

2¢ 3./ 4¢d(r 1) «—ne  both ni, di
d C/ 4cd(r i) e—dv  known

/

both zi, d known both ji, r unknown

—

Ji
=




Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:
(a) Repeat quantum subroutine 2t times to get:
2= 3d, 2= el e, Eae=lat d

where 1.)2,.., 2t are random (and unknown).

(b) For each i : bring to lowest term

3¢/ 4¢d () i) 4—ne  both ni, di
(/qcd(r3) <¢—dv  known

—

both zi, d known both ji, r unknown

(c)Let Ui =lem (d2i-i,dy) fori=1,..t



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing:
(a) Repeat quantum subroutine 2t times to get:
%[:S(.d_) %1;]25{_1 A N %z‘t:SZ‘té—

Y’ r r~

where 1.}, .., 2t are random (and unknown).

(b) For each i : bring to lowest term

21 3t/ 4¢d(n i) 4—ne  both ni, di
d O/ acd(r i) <4—=dv  known

/

both zi, d known both ji, r unknown

—

Ju
=

(c) Let Ut =lecm (doi-(,dy) fori=1,.t.
(d) Output r = max ( ¢, L, ., L.



denominators of z1/d = j1/r, z2/d = j2/r

Lemma: if ged ()= / Z
(=

then lcm R =,
ﬁcA(r,m jc,c!(r,w




Lemma: if SCA ( -~ - \ | denominators of z1/d = j1/r, z2/d = j2/r
. Jus)v ) =
Y
then (cm - —
66(:\(()_\\) jul(rlw

So, our observation from the example is correct --
some pairs of denominators have lcm = r, when
the pair of j's are coprime.



denominators of z1/d = j1/r, z2/d = j2/r

Lemma: if gcA [Ji.)) =1 / j
=

then lcm A = (",
3@&(65\) ﬁc,cl(r,w

Reading ex:
PFOOf: |et 6\: %CA ((\33!\ ) 61 - @CJ (rJSL)

Then r: A\ 41 — Al@l ) A\ ) A)_ : denOminatorS

from the samples

AlSO JSLCJ (:)(»3132[ —-——> %CA(@I:QIL):',

@LIA\ (math 135)  \ di= 4.4, aeN
L'_\\ \r-“-%\ﬂxv.f\, dltglo\) AL:6|Q, \‘\ ﬁC—Q\(Jncl?_qu

o\ (CW\(C&!;AJ: dida — %10\6'0\ = Y
@C&(AUAT.) A




Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing: proof of correctness

(b) 2L _ i - 3t/9c4(r5) e—ne
d C/ qed(r30) —d

(c) Let Ut =1lcm (dai-(,dy) fori=1,..t

From the lemma, if jai-i, po coprime, then, i = 1.



How likely are 2 random j's to be coprime?




How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Letr be a (large) positive integer.
Draw |,k randomly & independently from {0,1,...,r-1}.

Prob(ged(jk)=1) > =5 = 0.6077--



How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Let r be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(gcd(jk)=1) > =5 = 0.6077--

Proof: o %, net both eten
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How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Letr be a (large) positive integer.
Draw |,k randomly & independently from {0,1,...,r-1}.

Prob( gcd(j,k)=1) > = = 0.6019.-

i —n—z,
Proof: ¢ %, ot both eten
wp Eo it both mdtiples of 3
\/\)P _2%; net both T &,les o(— S

\,o? \~-“>—2, not both multifles of P

Prob( ged(j,k)=1) = Tl <\~/T[7—-L> cheve P2 =1 prine.
Pey )



How likely are 2 random |'s to be coprime?

KLM Thm 7.1.12. Letr be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob(ged(jk)=1) > =5 = 0.6077--

Proof: nt botlh even

) V\Ot bDT\/\ Mu+ L es o% 3

f
WP
‘3 ) V\o"t bOT\/\ vaut # es o(— S

NIN _J)FQ __(:‘w
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Prob( gcd(j,k)=1) = T (\——J—— ) heve pe= 11 prine.
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How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Letr be a (large) positive integer.
Draw j,k randomly & independently from {0O,1,...,r-1}.

Prob( gcd(j,k)=1) > —?%’7— =~ 0.6079..
Proof: o %, ot both eten

W p -Ogr\ net both mulf {,\es of 3

WP _;_\ e both mult {,\es of 5

\,o\> \H?" net both w»u(JF\'Lles of P

Prob( gcd(j,k)=1) = W( ——%) heve P2 =1 brine.
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How likely are 2 random j's to be coprime?

KLM Thm 7.1.12. Letr be a (large) positive integer.
Draw j,k randomly & independently from {0,1,...,r-1}.

Prob( gcd(j,k)=1) > =5 = 0.6071-

Proof: ¢ %, ot bothy eten
\I\)P -Ogr; Y\bt bOT\f\ W\.Vl “es 0% 3
\NP _;_, ne L both ol t ‘; es o(— S

\")P \"—— 1 net both manlt! ‘,les o(— P

Prob( ged(j,k)=1) = 1l (y—?) heve o= 11" brine.
Pdy )

l |
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Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing: proof of correctness

(b) 2L _ i _ 3t/9c4(n5) e—ne
d r O/ acd(r) ) <—du

(c) Let Ut =lcm (doi-(,dy) fori=1,..t

From the lemma, if j.-1, oo coprime, then, Li =1

From KLM Thm 7.1.12, this happens with prob > 0.6.



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing: proof of correctness

(b) €L _ ..3_'“_ — SL/ﬁCd(rle) d— N
d B . r/ Scd(r)SL) d— di

(c) Let Ut =1lcm (dai-1,dy) fori=1,...t

From the lemma, if 3.1, po coprime, then, 1 = .
From KLM Thm 7.1.12, this happens with prob > 0.6.
(d) Outputr =max ( 0, L, ., L.

With 2 random samples, prob(get correctr) > 0.6.



Period finding algorithm: "PF1 for the case r|d"

(2) Classical processing: proof of correctness

o/ SCd<r)3L) 4— N

2
(b) C/ qcd(r 3) <¢—du

!
(c) Let Ui =lcm (dui-;,dy) fori=1,..t

S
-

From the lemma, if j.-1, 2o coprime, then, Li =1
From KLM Thm 7.1.12, this happens with prob > 0.6.
(d) Output r=max ( 0, L, ., L.

With 2 random samples, prob(get correctr) > 0.6.
t

With 2t samples, prob(get correctr) >1-0.4

(84%, 93.6% for t=2,3 ... )




Summary for period finding: "PF1 for the case r|d"

Aolin ::/1:2 > %itlls.ﬂr) u;?:di'—? e u)
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just a few repetitions

o7 —F! ETA

M‘F zl‘t:.—)u_‘é:

I O> .L——O«:ﬂztz{(sn)



Summary for period finding: "PF1 for the case r|d"

dj= _C
gca(ﬂj«)

L J_? 4 . ‘E i+ T us,
A *
[ L

107 '_EL\ | @__/7« 527 d
\A{_ Iy
|0 OQ:}j\:‘HSl)
\
W= 4
just a few repetitions
\b> ’_E“ = /7«2 -~ d
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|D> L—-——/7« :ﬂzt':_g(sn)
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d..=
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lcm

MaX
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Summary for period finding: "PF1 for the case r|d"
T,-, X, +, eel

Lo L8 iy T LTy o
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/ VA ,
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Congrats! We solved the easy case when r|d !



Period finding: PF?

Given: a black box for a function f: 4 —{0,1,..,m-1}

Promise: J rs.t. f(x) = f(y) iff x =y mod r

Problem: determine r



Period finding: PF?
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high accuracy & preserves the complexity.



Period finding: PF?2

Given: a black box for a function f: 4—{0,1,..,m-1}

Promise: J rs.t. f(x) = f(y) iff x =y mod r
Problem: determine r

|deas:

(1) choose d s.t. restricting the domain to {0,..,d-1}
preserves desirable features for the r|d case with
high accuracy & preserves the complexity.

(2) additional classical postprocessing to extract r

(3) additional error analysis to ensure correctness



What d makes the function "almost periodic" for all
unknown r of interest, when restricting the domain

to {0,1,...d-1}7

Intuitively, for d very large compared to any suchr.
We assume an upper bound on r is known.



What d makes the function "almost periodic" for all
unknown r of interest, when restricting the domain

to {0,1,...d-1}7?

Intuitively, for d very large compared to any suchr.
We assume an upper bound on r is known.

We choose d = 2" for an efficient Implementation of
the QFT over 7, .

Good values of d will come from the error analysis.



So what goes wrong when r }d ?

Example: Suppose we knowr < {1,2,..7}; pick d = 64.

r=1,2,4 are special with r|d,
r=3,5,6,7 are generic.




So what goes wrong whenr jd ?

Example: Suppose we know r € {1,2,..7}; pick d = 64.

r=1,2,4 are special with r|d,
r=3,5,6,7 are generic.

If r=5, possible states after measuring 2nd register:
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So what goes wrong whenr jd ?

Example: Suppose we know r € {1,2,..7}; pick d = 64.

r=1,2,4 are special with r|d,
r=3,5,6,7 are generic.

If r=5, possible states after measuring 2nd register:

(lkﬂf\S?{’ l(o) + .. F(55)F H;D)’L\
tm— DEGATIDIE NN S AR lm)

meas outcomes
are multiples of

? 13 if we apply

QFT for d = 65.

%

(lSH 2 13) + .- £lT)T lé@)j:——/
meas outcomes
(1€ L) + ok 151 %ﬂg;ﬁmgfm
QFT for d = 60.
But doing these require knowing /_/

r = 5 and the random shift s!
All we haveisd = 64 !




So what goes wrong whenr jd ?

Example: Suppose we know r € {1,2,..7}; pick d = 64.

r=1,2,4 are special with r|d,
r=3,5,6,7 are generic.

For r=06, possible states after meas 2nd regqister:

(T € WD) + . 45T 1))

YT &v\r

‘ RET fov

(l3>‘r\‘17\°\(55+_- S“D«—\gg) A:sewq
(1 o) £ WD + .- £157) ) &méé\v

(ISYy £ LD € L + -0 159 )J(—o @60 here

But all we can do is to apply QFT for d=64!
We cannot tailor to r or s that are unknown to us.



Surprise: applying QFT for d=64 works well ENOUGH !
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In general: after step 3, postmeasurement state is
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Inverting the QFT (for the known d):
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In general; after step 3, postmeasurement state is
| h-1 d J .
e s )= T K§o|S+Kr>’ h = L?J % [—F] depending on s.

Inverting the QFT (for the known d):

I

1 | h-1 d-1 d-! EEL

FMes) =57 L éou__oe_ ) lwlstke)
\ | & e ‘)
| <
o

| -2 s h-! Eﬂiur k
(N e |M>
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In general: after step 3, postmeasurement state is

Mes)= Z [S+ke) h = L—T}J oy P\F] depending on s.

Inverting the QFT (for the known d):

____"[‘ \ l h-1 d-t  d-l "'-7'—“i—U\(A)
o Yes) ~ oo e u:ou—_of—d |u><w|5+\<r>
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\ l d-! —2Ti h-1 2T
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Instead,

| —lTTL“TrIn_ <
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Instead,

| —lTTL“Trh_[ 2
Pr(u) = :
| e-— TTL“Trh_ €+TTLuTrln
= ~ i uc + L uc

d h - Tha

o”\ ngZnuTr



Instead,

| -—7_TTL“T|’In_ <
Pr(u) = — —

dh | e s -
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— dh em TEE g TH T
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h e tightly peaked at << if r«d.
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Instead,

| -—UTL“TFIn [ 2
Pr(u) = :
O‘-L\ ——7_7TL,£_{
| oo TLULh _ rTiLAr 2
—_— O‘.L\ e"’-ﬂ-bf_ 4 TMiL ucC

tightly peaked at 3¢ if r«d.
4 4 4

Theorem: if an integer u is within 1/2 from ]S‘F

then pr(u) > L
~ ot

\ = 0.4, loss relative to r|d case
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Proof: if U= jS 4§
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Proof: if W= 3_~+<3 with \é\$é
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Theorem: if an integer u is within 1/2 from ]:}L

then pr(u) > U

Proof: if \/\:3%+<§ with |8 <=

Pr(u)

—f| STV\ZTT“TFI,, B | STV\ZTT%F\ (Hﬂ--é N t)
dh  sin*mur — dh Sind i . 3E drops ou
*i ngzTT%Eh [\" “‘ﬂ“\ small % 4% )
dh  (mar)?
EL ST(:Z::;z (Trh = | f A»F)
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Theorem: if an integer u is within 1/2 from
then pr(u) > 4

|
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Proof: if U= :\%__ + &  with \é\$‘[z‘,
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Theorem: if an integer u is within 1/2 from :(flr\
then pr(u) > +

~ T

Proof: if U=Jd 4§  with [§]< %
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If In step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

l
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Divide by d (as in the r|d case): ‘ —j— — 'J;
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If In step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

=

Divide by d (as in the r|d case): ‘ T~ ;}r— N 3‘3

Claim: If we know Y < N and we choose 4 > N>

T L 2
then 3| :-‘r— within =37 from T
: - S N R VR S R oA
Proof: foranyr,r' < N, anyj,j': =-5= i




If In step 5, measurement outcome z is at most 1/2
from jd/r, how to obtain r?

l
S 23

Divide by d (as in the r|d case): \ 3:[“_— — %

Claim: If we know Y < N and we choose d > N*

then 3!% within 3]_’0\“ from fj—

. I ] "l . J 3/ _ r—lj__rj/
Proof: forany r,r' <N, any |, |': =--5 = i

J_ 3|2 | fg-ry I IS T

- ~ v’ el Y N T4

Note we only user, r' < N and no other infoonr, r'.
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algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):



If | = _

— S —

o r

algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):

l
S 21

If O<b<1:
L>= l ao=LEJ) b‘="5—010




|f‘:&__;3__ g )

o r

algorithmically, we can obtain j/r from z/d by the
continued fraction expansion (CFE):

|
24

If O<b<1:
/ I N\
E= l ao=L’6 ) l)\_’lb__ao
(o + I c 1 _ |
G+ Oyt oo A = L b|J ) l))_ E—l ‘a,
l ,
To find 23 within _1_ from =% , we can stop the
r 24 o

expansion once the approx is within 3'3 :



Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2" =z N2.
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b. Repeat quantum subroutine 2t times to get
%l, %1, (RN ,%z‘t

From Theorem, an integer u within 1/2 from &
has prob > 0.4 / r to be each of the above outcomes.



Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = " =z N2.

b. Repeat quantum subroutine 2t times to get
%(, %1, RN ,%z‘t_

-rom Theorem, an integer u within 1/2 from jz
nas prob > 0.4 / r to be each of the above outcomes.

c. For each i, apply CFE to 2:;

Stop when the fraction approx is within 1/2d.



Period finding algorithm (PF2),
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b. Repeat quantum subroutine 2t times to get
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-rom Theorem, an integer u within 1/2 from &
nas prob > 0.4 / r to be each of the above outcomes.

c. For each i, apply CFE to :it
Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d ; .

Reject suspicious, spurious 4i's from the 2t values.



Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2" =z N2.

b. Repeat quantum subroutine 2t times to get
%(, %l, (A ,'2'.7_‘[‘__

-rom Theorem, an integer u within 1/2 from jz
nas prob > 0.4 / r to be each of the above outcomes.

c. For each i, apply CFE to %f
Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d ; .

Reject suspicious, spurious 4i's from the 2t values.

d.Let (¢ =1lcm (d2i-(, dy ) if neither di-(,dyi rejected.



Period finding algorithm (PF2),
for unknown r upper bounded by N:

a. Choose d = 2" = N2.

b. Repeat quantum subroutine 2t times to get
%[ | %1; (A I%Zt

From Theorem, an integer u within 1/2 from ;2
has prob > 0.4 / r to be each of the above outcomes.

c. For each i, apply CFE to —’i—L
Stop when the fraction approx is within 1/2d.
Bring fraction to lowest order, call denominator d ; .

Reject suspicious, spurious 4i's from the 2t values.

d.Let (¢ =Icm (dui-(,ds ) if neither du-(,dy rejected.
e. Outputr=max (¢, L, .., ).



Correctness "proof":

1. 40% of the time, step b gives an outcome 2¢
within 1/2 from some jd/r.
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Correctness "proof":

1. 40% of the time, step b gives an outcome 2¢
within 1/2 from some jd/r.

2. with prob > 0.4 *0.4 * 0.6, both 22—, 1oL

are within 1/2 from some Ji-| £, ai 4?

and gcd ( Ja-1, ) = 1.

Ifso, lem (dzi-, day) = 7

3. with small constant t, enough of the Icm's will be
equal to r (and the spurious cases rejected).



Correctness "proof":
1. 40% of the time, step b gives an outcome 2¢
within 1/2 from some jd/r.

2. with prob > 0.4 *0.4 * 0.6, both 22—, Tl
are within 1/2 from some Ji-| &, ai CLF

and gcd ( Ja-1, o) = 1.
If so, lem (dzi-, day) = 7

3. with small constant t, enough of the Icm's will be
equal to r (and the spurious cases rejected).

Cost: O(n?) for QFT, O(n 9 for EEA, O(n ) for CFE
O(1) queries.
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Order finding: called the order

Given: a, N € |\ . / of a (mod N)

Problem: determine the smallest r € Nl such that

Q(E , mod N



Order finding: called the order
/ of a (mod N)

Given: a, N ¢ N .
Problem: determine the smallest r € [\| such that

O(E , mod N

Note:
(1) This is NOT a black box problem !

(2) No solution unless gcd(N,a)=1.
(Checkable with the EEA in polylog(N) time.)
For example, if a=0 mod N, no solution.



Order finding:

Given: a, N € [N .

Problem: determine the smallest r € \| such that

0" 2 1 wmod N
Algorithm:

Let 4(¥) = 0 mod N




Order finding:

Given: a,N ¢ N .

Problem: determine the smallest r € [N such that

O( E l mod N
Algorithm:

Let A(x) = O wmod N .

f is periodic with period r:

Al = 0 med N= 0 med N2 " mod N = £(x)
AW =£Y) D 4T = lwmed N 0T | x—y

X



Order finding:

Given: a,N ¢ N .

Problem: determine the smallest r € |\l such that

O( E , mod N
Algorithm:

Let £(x) = O mod N .

f is periodic with period r:

L) = 0 wed N o= 00 med No= o med N = £(x)
A =£) D 4T = lwed N 0T | x—y

X

We know r < N

Apply period finding algorithm PF2 with 4=7?" z N*.



One "small" detall:

We have to make our own "blackbox" for the function,
and it has to preserve superposition.



One "small" detail:

We have to make our own "blackbox" for the function,
and it has to preserve superposition.

The square-and-multiply method gives a fast way to
calculate f(x) classically (Math 135):

|

\—e—'t X: an 2_#

m—

+ XV\'—I 1V\’-L+ R —‘" ><k Z -+ ><D

Fin d O mod N = A% mod N
L \

A mod N3 % el N

u&'\q' V\/\bl N = 0\11 ywhod N

G el N uptoj=n-1

*= T LV Cost : poly(n). Turn
% T ¥e O med N aversible & quantum.
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Factoring:

Given: N € \\|

Problem: find ei €™, primes pi, s.t.
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Classical algorithm using order-finding as subroutine:

Preamble:

1. Every time we find a divisor b of N, reduce the
problem to factoring N/b.
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2. Find all even divisors and reduce to odd N.
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Classical algorithm using order-finding as subroutine:

Preamble:

1. Every time we find a divisor b of N, reduce the
problem to factoring N/b.

2. Find all even divisors and reduce to odd N.

3. Check if N is a prime power.
(NC Ex 5.17 gives a log3(N)-sized algorithm.)



Factoring:
Given: N <€ W\
Problem: find e; <™, primes pi, s.t. N=T P;G;.

\
L

Classical algorithm using order-finding as subroutine:

Preamble:

1. Every time we find a divisor b of N, reduce the
problem to factoring N/b.

2. FInd all even divisors and reduce to odd N.

3. Check if N is a prime power.
(NC Ex 5.17 gives a log3(N)-sized algorithm.)

4. WLOG, N is odd, with at least 2 prime factors.



Reduction to order finding (Miller 1976):

1. Choose a randomly from {2,3,...,N-2}.
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3. WLOG, gcd(a,N)=1. Find the order of a (mod N):
0 =\ wmod N
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0 =\ wed N
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Reduction to order finding (Miller 1976):

1. Choose a randomly from {2,3,...,N-2}.
2. 1f a, N not coprime, gcd(a,N) is a divisor. Reduce N.

3. WLOG, gcd(a,N)=1. Find the order of a (mod N):
0 =1 wed N
4 =12 0 wmod N
4. If r is odd, r is not good, so we return to step 1.
fris even, (oT=1) (&F+1) = © Mod N
5. Note O* —| 3 0 msd N else ris not the order of a.

If 6=+ = © mod N ais not good; return to step 1.



6.From4, 9 ke N <t (a€~l) (0(5+l) = LN

\

If r is even, (O\I’:—() (afqtl) = 0 mod N



6. From4, 4 bke N <t (O{’E~I) (d‘fﬂ) = KN

From 5, neither ¢*~1 o & + | is a multiple of N.

|

Note o(rf—\ + 0 msd N else ris not the order of a.

If 6=+ = © ™ol N ais not good; return to step 1.



6.From4, 9 be M <t (af\l) (O\_E—El) = LN

From 5, neither ¢*~1 or & + | is a multiple of N.
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Each prime factor in N either divides 0(5 ~1or A+ | .
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IS @ nontrivial factor of N.



6. From4, 4 ke N <t (a’g\\) (0‘\:“':—%\) = KL N

From 5, neither 6% ~1 or &> + | is a multiple of N.

r

Each prime factor in N either divides a’g ~1ov A+ |,

So, one of %LA(O\%«\)M) fi\c_cl(O\%Jr\)M

IS @ hontrivial factor of N.

It remains to upper bound the probability of failure in
steps 4 and 5. It is derived in detail in NC Appendix
A4.3, Thm A.4.13. If N has m distinct prime factors,

the prob of failure is Elv';‘ ‘



Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.



Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.

Each repetition requires polylog(N) (O(log 3(N))
classical pre/post-processing, and one period finding



Cost:

Steps 1-6 give one factor with high probability,
so, O(1) repetitions are sufficient to give a factor.

N has O(log N) factors.
Steps 1-6 are repeated O(log N) times.

Each repetition requires polylog(N) (O(log 3(N))
classical pre/post-processing, and one period finding
(with similar complexity for the classical computations),

and O(log2(N)) guantum gates for the QFT.



Not covered in the lectures:

Phase estimation and algorithms based on it.
These are discussed in Chapter 7 of KLM (reading
assignment).

Hidden subgroup framework.

Remaining discussions in the lectures:

Cryptographic consequences of guantum algorithms
(postponed until after covering search algorithms).



