
7. Quantum algorithms (part 2)

(i) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

7. Quantum algorithms (part 2)

(i) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

Differences from factoring algorithm:
- intuitive
- easily visualized
- very little analysis needed

Discussion will be relatively brief.

(ii) Optimality of Grover’s algorithm (NC 6.6, KLM 9.3)

Unstructured search:

Given: N

Problem: determine if there is an x s.t. f(x) = 1.

(variation 1)

such an x is called a "marked" item

black box for a function f:{1,...,N} {0,1}

Unstructured search:

Given: N

Problem: determine if there is an x s.t. f(x) = 1.

Motivation I: This models problems in NP.

e.g., 3-SAT. Each instance of size n is a formula of
n binary variables and poly(n) clauses:

(variation 1)

such an x is called a "marked" item

black box for a function f:{1,...,N} {0,1}

Unstructured search:

Given: N

Problem: determine if there is an x s.t. f(x) = 1.

Motivation I: This models problems in NP.

Goal: determine if there is an
 f(x) = 1 (x is called a "satisfying assignment").

e.g., 3-SAT. Each instance of size n is a formula of
n binary variables and poly(n) clauses:

(variation 1)

such an x is called a "marked" item

black box for a function f:{1,...,N} {0,1}

with

Unstructured search:

Given: N

Problem: determine if there is an x s.t. f(x) = 1.

Motivation I: This models problems in NP.

Goal: determine if there is an
 f(x) = 1 (x is called a "satisfying assignment").

e.g., 3-SAT. Each instance of size n is a formula of
n binary variables and poly(n) clauses:

For each x, checking if f(x) = 1 takes poly(n)-time,
and is modeled by a query to the blackbox.

(variation 1)

such an x is called a "marked" item

black box for a function f:{1,...,N} {0,1}

with

Problem: find an x s.t. f(x) = 1.

M = # of marked items.

Unstructured search:

Given: N

(variation 2)

(a "marked" item)

black box for a function f:{1,...,N} {0,1}

Variation 3: M is unknown.

Problem: find an x s.t. f(x) = 1.

Motivation II: This models database search.

M = # of marked items.

e.g., given a phone book sorted by names and a
specific phone number, find whose number it is.
Here, M=1, N = # of entries in the phone book.

Unstructured search:

Given: N

(variation 2)

(a "marked" item)

black box for a function f:{1,...,N} {0,1}

Variation 3: M is unknown.

Focus on variation 2 for now.

Classical query complexity: (counting argument)

Problem: find an x s.t. f(x) = 1.

M = # of marked items.

Unstructured search:

Given: N

(variation 2)

(a "marked" item)

black box for a function f:{1,...,N} {0,1}

Classical query complexity:

Quantum query complexity:

(counting argument)

(Grover's algorithm)

NB. Quantum is advantageous only when the fraction
 of marked items is vanishing (needle in a haystack).

Problem: find an x s.t. f(x) = 1.

M = # of marked items.

Unstructured search:

Given: N

(variation 2)

(a "marked" item)

black box for a function f:{1,...,N} {0,1}

Proof: With M marked items among N,
probability not seeing a marked item after t queries

Claim: classical query complexity:

Proof: With M marked items among N,
probability not seeing a marked item after t queries

Claim: classical query complexity:

Proof: With M marked items among N,
probability not seeing a marked item after t queries

recall

Claim: classical query complexity:

Proof: With M marked items among N,
probability not seeing a marked item after t queries

recall

let x = -1, N-t+1
M

k =

Claim: classical query complexity:

Proof: With M marked items among N,
probability not seeing a marked item after t queries

recall

let x = -1, N-t+1
M

unless exponential is far from 0

k =

queries are needed.

Claim: classical query complexity:

i.e.,

Grover's algorithm:

Let

"reflection" about

Grover's algorithm:

Let

Blackbox:

Phase kick back:

Grover's algorithm:

Let

Blackbox:

Phase kick back:

1. Initialize state to

Grover's algorithm:

Let

Blackbox:

Phase kick back:

1. Initialize state to

2. Apply Grover's iteration k times,

for k to be determined.

Grover's algorithm:

Let

Blackbox:

Phase kick back:

1. Initialize state to

2. Apply Grover's iteration k times,

for k to be determined.

3. Measure 1st register in the computational basis.

Grover's algorithm:

Let

Blackbox:

Phase kick back:

1. Initialize state to

2. Apply Grover's iteration k times,

for k to be determined.

3. Measure 1st register in the computational basis.

4. Check if the measurement outcome is a marked
 item by using

Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

2b. Apply to 1st register :

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

2b. Apply to 1st register :

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

2b. Apply to 1st register :

Example: N=4, M=1 (1-out-of-4 search)

1. Initial state:

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3).

2a. Apply

2b. Apply to 1st register :

3. Meas 1st register
 outcome=3 !

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

3. Throughout, the linear combination

is left "as a piece". The state in the 1st register is
a linear combination of

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

3. Throughout, the linear combination

is left "as a piece". The state in the 1st register is
a linear combination of

or of

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

3. Throughout, the linear combination

is left "as a piece". The state in the 1st register is
a linear combination of

or of

Proof:

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

3. Throughout, the linear combination

is left "as a piece". The state in the 1st register is
a linear combination of

or of

Proof:

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

2. Due to phase-kick back, 2nd register is always in the
 state . Grover's iteration acts on 1st register as

3. Throughout, the linear combination

is left "as a piece". The state in the 1st register is
a linear combination of

or of

Proof:

Observations from the example:

1. By symmetry, the algorithm works for any marked
 item (1, 2, 3, or 4).

where

Observations for Grover's algorithm in general:

1. 2nd register stays in the state throughout.

1st register is evolved by where

2. 1st register stays in the span of:

equal superposition of all marked items

equal superposition of all unmarked items

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

equal superposition of all marked items

equal superposition of all unmarked items

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

equal superposition of all marked items

equal superposition of all unmarked items

Intuition: symmetry among all marked items,
and symmetry among all unmarked items.

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

Proof:

Initial state =

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

Proof:

Initial state =

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

Proof:

Initial state =

Observations for Grover's algorithm in general:

2. 1st register stays in the span of:

Proof:

Initial state =

NB.

Observations for Grover's algorithm in general:

Initial state =

Initial state =

Initial state =

Since is in the span of

Initial state =

 , so are

Since is in the span of

Initial state =

 , so are

So, each of V and preserves the span of

Since is in the span of

Initial state =

 , so are

Algorithm starts with

k times. So, 1st register is always

So, each of V and preserves the span of

(in the span of)

and applies

in the span of

Analysis of Grover's algorithm:

We can restrict the analysis to the span of

Initial state =

What does Grover's iteration do?

Analysis of Grover's algorithm:

We can restrict the analysis to the span of

Initial state =

What does Grover's iteration do?

 is a reflection
 about the axis

Analysis of Grover's algorithm:

We can restrict the analysis to the span of

Initial state =

What does Grover's iteration do?

 is a reflection
 about the axis

V is a reflection about the axis.

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

For the initial state

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

For the initial state

rotation of angle

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

For the initial state

rotation of angle

For the initial state

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

For the initial state

rotation of angle

For the initial state

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

For the initial state

rotation of angle

For the initial state

rotation of angle

What does Grover's iteration do?

By linearity, suffices to check its action on
a spanning set:

Each marked
angle is
where sin

is a rotation of angle
(anti-clockwise)

in the plane.

2 reflections
make a rotation!

Optimal # of Grover's iteration

Each marked
angle is
where sin

is a rotation of angle
(anti-clockwise)

in the plane.

Optimal # of Grover's iteration

Each marked
angle is
where sin

is a rotation of angle
(anti-clockwise)

in the plane.

initial
 state

superposition
of marked
states

Goal: rotate to as

close to as possible

Optimal # of Grover's iteration

Each marked
angle is
where sin

is a rotation of angle
(anti-clockwise)

in the plane.

initial
 state

superposition
of marked
states

Goal: rotate to as

close to as possible

(meas in comp
 basis gives an outcome
 that is a marked item.)

Optimal # of Grover's iteration

Each marked
angle is
where sin

is a rotation of angle
(anti-clockwise)

in the plane.

initial
 state

superposition
of marked
states

Goal: rotate to as

close to as possible

After k iterations, state

is from the

axis. Want

(meas in comp
 basis gives an outcome
 that is a marked item.)

Want

Recall is very small, so,

Want

Recall is very small, so,

We take k to be the integer closest to

Solving

Grover's algorithm:

Let

Blackbox:

Phase kick back:

1. Initialize state to

2. Apply Grover's iteration k times,

for k to be determined.

3. Measure 1st register in the computational basis.

4. Check if the measurement outcome is a marked
 item by using

Yes with prob close to 1.

Repeat t = O(1) times, prob failure exp(-t).

Summary:

We proved that quantum query complexity of the
unstructured search problem (variation 2) is

What is the circuit complexity of the algorithm?

Further question:

Optimality: part (ii) of topic07-2

For simplicity,

State initialization:
(n+1) states, apply X to the last qubit,
and then apply Hadamard gates to all.

Circuit complexity of Grover's algorithm

For simplicity,

State initialization:
(n+1) states, apply X to the last qubit,
and then apply Hadamard gates to all.

Computational basis measurement:
n "individual-qubit" measurements along

Circuit complexity of Grover's algorithm

Remains to implement V

Implementing V

Lemma: V =

Proof:

Implementing V

Lemma: V =

Proof:

Since

Implementing V

Lemma: V =

Proof:

Since

Implementing V

Lemma: V =

Proof:

Since

Implementing V

Lemma: V =

Proof:

Since

So we can implement V by applying n Hadamard gates,
then , and n Hadamard gates again.

Implementing

This gate takes |0> to |0>, and |x> to -|x> on all other
computational basis states.

Implementing

This gate takes |0> to |0>, and |x> to -|x> on all other
computational basis states.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas
statistics.

Implementing

This gate takes |0> to |0>, and |x> to -|x> on all other
computational basis states.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas
statistics.

After the sign change, the gate takes |0> to -|0>, and
all other |x> to |x>.

Implementing

This gate takes |0> to |0>, and |x> to -|x> on all other
computational basis states.

Same as negating all n bits,
then mapping |1..1> to -|1...1> & keeping all other
|x>'s the same (this is a control-control-...-control-Z),
and finally negating all n bits again.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas
statistics.

After the sign change, the gate takes |0> to -|0>, and
all other |x> to |x>.

Implementing up to a "-" sign:

X

X

X

X

X

X

X

XZ

n qubits

Implementing up to a "-" sign:

X

X

X

X

X

X

X

XZ

n-1
qubits

n-2
qubits

n qubits

1 c-Z
2(n-2) Toffoli's

from NC

Implementing up to a "-" sign:

X

X

X

X

X

X

X

XZ

n-1
qubits

n-2
qubits

n qubits

1 c-Z
2(n-2) *
 (6 CNOTs, 9 T's, 2 H's).

from NC

Implementing up to a "-" sign:

X

X

X

X

X

X

X

XZ

n-1
qubits

n-2
qubits

n qubits

1 c-Z
2(n-2) *
 (6 CNOTs, 9 T's, 2 H's).

H

H

H

H

H

H

H

H

total: O(n)
2n+4(n-2)+2
 = 6n-6 H's
12(n-2)+1 CNOT's
18(n-2) T's
2n X's
each X: 2H's,4T's

Grover algorithm summary:

X

X

X

X

X

X

X

XZH

H

H

H

H

H

H

H

H

H

H

H

X H

1 iteration

n

iterations

X

X

X

X

X

X

X

XZH

H

H

H

H

H

H

H

1 iteration

1?

final
check

What if M (the # marked items) is unknown? (vars 1,3)

Use a quantum algorithm to estimate M using
queries, with accuracy

Such algorithms can be Grover like or based on phase
estimation. (Reading exercise)

Alternative: trying M=1,2,4,8,... etc works too.
You see the marked item in the final check
if and only if M is about right.

7. Quantum algorithms (part 2)

(i) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

Differences from factoring algorithm:
- intuitive
- easily visualized
- very little analysis needed

Discussion will be relatively brief.

(ii) Optimality of Grover’s algorithm (NC 6.6, KLM 9.3)

Optimality of Grover's algorithm

Theorem

queries are required to

Given there is either no marked item or a

unique marked item,

determine which case holds.

Corollary queries are required to determine

if there is a marked item, or to find one.

Proof: Most general algorithm with T queries

if no mark-
 ed items

if marked
 item = x

The "no marked item case" also corresponds to Uf = I.

Let be the state before the (t+1)-st query, in the
absence of marked items.

Let be the state before the (t+1)-st query, if the
marked item is x.

Let be the state before the (t+1)-st query, in the
absence of marked items.

Let be the state before the (t+1)-st query, if the
marked item is x.

Recall Holevo-Helstrom Theorem (topic04) that two
non-orthogonal states are hard to distinguish
if is too small.

If are somewhat distinguishable, it is necessary
that (some constant).

Let be the state before the (t+1)-st query, in the
absence of marked items.

Let be the state before the (t+1)-st query, if the
marked item is x.

If t queries enable us to determine if there is a marked
item, it holds that:

Let be the state before the (t+1)-st query, in the
absence of marked items.

Let be the state before the (t+1)-st query, if the
marked item is x.

If t queries enable us to determine if there is a marked
item, it holds that:

When we say "the algorithm works", it works for any
marked item x, so:

:

(Similar if alg works for
 average case input.)

How does change with each query?

For one x:

For one x:

For one x:

diff induced by
1 use of on

bound this
recursively

Let

computational basis on input to Uf

Use method 2 to express
bipartite state, topic03-02, p7.

register not acted on by Uf

Let

computational basis on input to Uf

Use method 2 to express
bipartite state, topic03-02, p7.

WLOG, Uf used with phase
kick-back (use blackboard).

register not acted on by Uf

Let

computational basis on input to Uf

Use method 2 to express
bipartite state, topic03-02, p7.

WLOG, Uf used with phase
kick-back (use blackboard).

register not acted on by Uf

Combining all possible x's:

from last page

Combining all possible x's:

from last page

Combining all possible x's:

from last page

Combining all possible x's:

from last page

Combining all possible x's:

from last page

