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7. Quantum algorithms (part 2)

(i) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

Differences from factoring algorithm:
- intuitive
- easily visualized
- very little analysis needed

Discussion will be relatively brief.  

(ii) Optimality of Grover’s algorithm (NC 6.6, KLM 9.3)
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Motivation I: This models problems in NP. 

Goal: determine if there is an   
          f(x) = 1 (x is called a "satisfying assignment").

e.g., 3-SAT.  Each instance of size n is a formula of 
n binary variables and poly(n) clauses:

For each x, checking if f(x) = 1 takes poly(n)-time, 
and is modeled by a query to the blackbox.  

(variation 1)

such an x is called a "marked" item

black box for a function f:{1,...,N}      {0,1}

with 



Problem: find an x s.t. f(x) = 1. 

M = # of marked items.

Unstructured search:
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(variation 2)

(a "marked" item)

black box for a function f:{1,...,N}      {0,1}
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Problem: find an x s.t. f(x) = 1. 

Motivation II: This models database search.

M = # of marked items.

e.g., given a phone book sorted by names and a 
specific phone number, find whose number it is.  
Here, M=1, N = # of entries in the phone book.

Unstructured search:

Given: N  

(variation 2)

(a "marked" item)

black box for a function f:{1,...,N}      {0,1}

Variation 3: M is unknown.

Focus on variation 2 for now.  
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Quantum query complexity: 

(counting argument)

(Grover's algorithm)

NB. Quantum is advantageous only when the fraction
      of marked items is vanishing (needle in a haystack).  
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M = # of marked items.
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Proof: With M marked items among N,  
probability not seeing a marked item after t queries

recall

let x = -1, N-t+1
M

unless exponential is far from 0

k = 

queries are needed. 

Claim: classical query complexity: 

i.e., 
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Let 

Blackbox:

Phase kick back: 

1. Initialize state to

2. Apply Grover's iteration k times, 

for k to be determined.

3. Measure 1st register in the computational basis.

4. Check if the measurement outcome is a marked 
    item by using 
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Example: N=4, M=1 (1-out-of-4 search)

1. Initial state: 

Let 3 be the marked item (f(3)=1, f(x)=0 if x=3). 

2a. Apply

2b. Apply to 1st register :

3. Meas 1st register
    outcome=3 !
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1. By symmetry, the algorithm works for any marked 
    item (1, 2, 3, or 4).  
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Proof: 

Observations from the example:

1. By symmetry, the algorithm works for any marked 
    item (1, 2, 3, or 4).  

where



Observations for Grover's algorithm in general:

1. 2nd register stays in the state       throughout.

1st register is evolved by where
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2. 1st register stays in the span of: 

equal superposition of all marked items

equal superposition of all unmarked items

Intuition: symmetry among all marked items, 
and symmetry among all unmarked items.  

Observations for Grover's algorithm in general:
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Since        is in the span of 

Initial state = 

 , so are

Algorithm starts with

k times.  So, 1st register is always 

So, each of V and       preserves the span of 

(in the span of )

and applies 

in the span of 
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What does Grover's iteration         do? 

By linearity, suffices to check its action on 
a spanning set: 

Each marked
angle is 
where sin 

is a rotation of angle    
(anti-clockwise)

in the plane.

2 reflections 
make a rotation!
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Optimal # of Grover's iteration

Each marked
angle is 
where sin 

is a rotation of angle    
(anti-clockwise)

in the plane.

initial 
 state

superposition 
of marked 
states

Goal: rotate to as

close to as possible

After k iterations, state

is from the 

axis.  Want

(meas        in comp 
 basis gives an outcome
 that is a marked item.)
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Recall is very small, so, 



Want 

Recall is very small, so, 

We take k to be the integer closest to 

Solving



Grover's algorithm:

Let 

Blackbox:

Phase kick back: 

1. Initialize state to

2. Apply Grover's iteration k times, 

for k to be determined.

3. Measure 1st register in the computational basis.

4. Check if the measurement outcome is a marked 
    item by using 

Yes with prob close to 1.

Repeat t = O(1) times, prob failure     exp(-t).  



Summary: 

We proved that quantum query complexity of the 
unstructured search problem (variation 2) is 

What is the circuit complexity of the algorithm?  

Further question:

Optimality: part (ii) of topic07-2
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For simplicity, 

State initialization: 
(n+1)        states, apply X to the last qubit, 
and then apply Hadamard gates to all. 

Computational basis measurement: 
n "individual-qubit" measurements along 

Circuit complexity of Grover's algorithm

Remains to implement V
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Implementing V

Lemma: V = 

Proof: 

Since 

So we can implement V by applying n Hadamard gates, 
then     , and n Hadamard gates again.  
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Implementing

This gate takes |0> to |0>, and |x> to -|x> on all other 
computational basis states. 

Same as negating all n bits, 
then mapping |1..1> to -|1...1> & keeping all other 
|x>'s the same (this is a control-control-...-control-Z), 
and finally negating all n bits again. 

Flipping the sign of this gate incurs an overall "-" sign 
to the state in the algorithm, with no effect on meas 
statistics.  

After the sign change, the gate takes |0> to -|0>, and
all other |x> to |x>. 
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Implementing up to a "-" sign:

X

X

X

X

X

X

X

XZ

n-1 
qubits

n-2 
qubits

n qubits

1 c-Z
2(n-2) * 
     (6 CNOTs, 9 T's, 2 H's). 

H

H

H

H

H

H

H

H

total: O(n) 
2n+4(n-2)+2
        = 6n-6 H's
12(n-2)+1 CNOT's
18(n-2) T's
2n X's 
each X: 2H's,4T's



Grover algorithm summary: 

X

X

X

X

X

X

X

XZH

H

H

H

H

H

H

H

H

H

H

H

X H

1 iteration

n

iterations

X

X

X

X

X

X

X

XZH

H

H

H

H

H

H

H

1 iteration

1?

final
check



What if M (the # marked items) is unknown?  (vars 1,3)

Use a quantum algorithm to estimate M using 
queries, with accuracy 

Such algorithms can be Grover like or based on phase 
estimation.  (Reading exercise)

Alternative: trying M=1,2,4,8,... etc works too.  
You see the marked item in the final check 
if and only if M is about right. 
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Differences from factoring algorithm:
- intuitive
- easily visualized
- very little analysis needed

Discussion will be relatively brief.  
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Optimality of Grover's algorithm

Theorem

queries are required to 

Given there is either no marked item or a

unique marked item, 

determine which case holds.

Corollary queries are required to determine 

if there is a marked item, or to find one. 



Proof:  Most general algorithm with T queries

if no mark-
 ed items

if marked
 item = x

The "no marked item case" also corresponds to Uf = I. 
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Recall Holevo-Helstrom Theorem (topic04) that two 
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if                 is too small. 

If              are somewhat distinguishable, it is necessary
that (some constant).
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Let       be the state before the (t+1)-st query, in the
absence of marked items. 

Let        be the state before the (t+1)-st query, if the
marked item is x. 

If t queries enable us to determine if there is a marked 
item, it holds that:

When we say "the algorithm works", it works for any
marked item x, so:

:

(Similar if alg works for 
  average case input.)

How does         change with each query? 
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For one x:

diff induced by 
1 use of       on

bound this 
recursively
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