7. Quantum algorithms (part 2)

(i) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)



/. Quantum algorithms (part 2)
(1) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

Differences from factoring algorithm:
- Intuitive

- easily visualized

- very little analysis needed

Discussion will be relatively brief.

(11) Optimality of Grover’s algorithm (NC 6.6, KLM 9.3)



Unstructured search: (variation 1)
Given: N € N
black box for a function f:{1,... N} —{0,1}

Problem: determine if there is an x s.t. f(x) = 1.
such an x is called a "marked" item
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f(x) = 1 (x is called a "satisfying assignment").



Unstructured search: (variation 1)
Given: N € N
black box for a function f:{1,...,N} —{0,1}

Problem: determine if there is an x s.t. f(x) = 1.
such an x is called a "marked" item

Motivation I: This models problems in NP.

e.g., 3-SAT. Each instance of size n is a formula of
n binary variables and poly(n) clauses:

(X V%) ALX2VaXs U Xe) Ao =2 4(x)

Goal: determine if there is an X= X{ Xy - Xn with
f(x) = 1 (x i1s called a "satisfying assignment").

For each x, checking if f(x) = 1 takes poly(n)-time,
and is modeled by a query to the blackbox.



Unstructured search: (variation 2)

Given: N € N
black box for a function f:{1,...,N} —{0,1}
M = # of marked items.

Problem: find an x s.t. f(x) = 1. (a "marked" item)

Variation 3: M is unknown.



Unstructured search: (variation 2)

Given: N € N |
black box for a function f:{1,...,N} —{0,1}
M = # of marked items.

Problem: find an x s.t. f(x) = 1. (a "marked" item)

Variation 3: M is unknown.

Motivation ll: This models database search.

e.g., given a phone book sorted by names and a
specific phone number, find whose number it is.
Here, M=1, N = # of entries in the phone book.

Focus on variation 2 for now.
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Unstructured search: (variation 2)_

Given: N € N
black box for a function f:{1,...,N} —{0,1}
M = # of marked items.

Problem: find an x s.t. f(x) = 1. (a "marked" item)

Classical query complexity: Q_(*‘\‘\,‘L) (counting argument)
Quantum query complexity: O( N ) (Grover's algorithm)

‘\./\

NB. Quantum is advantageous only when the fraction
of marked items is vanishing (needle in a haystack).



Claim: classical query complexity: QU (&)

Proof: With M marked items among N,
probability not seeing a marked item after t queries
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Claim: classical query complexity: QU (£r)

Proof: With M marked items among N,
probability not seeing a marked item after t queries

— N=M N-M-I N-M-1 . M_Mﬁtﬂ
N N- N-L N-=-t+]
- (\—%) U_—‘\%T (~%=) - W tﬂ)
t
= (\— N‘\jt+l) recall ¢" = \lm ( XK)K
N~t+/ _™ +
— (\+ N(-:Jlt)ﬂ ) ™ N-t+1 let x = -1, K = NM +1
™M
H—t
~ (¢)"™ =1 unless exponential is far from 0

e, Mt = QN
r tfvﬂ(%]ﬂ queries are needed.



Grover's algorithm:

N

Let I\\/)zj—'“—t X7, V= 2 |¥)y| -

"reflection" about |¥)
V) = (2 190l =T1) %)
= 20¥) = ¥y = vy

VALYAREY,
VY= (V%=1 ) 9 = - \¢)




Grover's algorithm:

Let [¢) = t Xy, V= 2 [¥Ky| -

Blackbox: u,g X214y = \X>\U_\K‘D*f(ﬂ7 T’,i(m—n))

Phase kick back: Ue X 1-> = 0™ (x)1-)



Grover's algorithm:

Let |¢) = t (X7, V=2 |¥)¥l -

Blackbox: u,i X214y = DX ly®fea) L (105-1)

Phase kick back: U¢ (x>1-> = )™ 1x>1-)

1. Initialize state to |¥)(-)



Grover's algorithm:

Let |} = t X7, V= 2 eyl -
Blackbox: \M XYY = X0 ly@ o) L (1o5-1)
Phase kick back: U IX21-> = €™ 1x>1-)

1. Initialize state to |¥)(-)

2. Apply Grover's iteration G =(V® I) U, k times,
for k to be determined.
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for k to be determined.

3. Measure 1st reqgister in the computational basis.



Grover's algorithm:

Let |¥) = t (X7, V= 2 |¥)v| -

Blackbox: Uk,§ X21YY = X ly@fea) L (1o>-19)

Phase kick back: Ug X21-y = ™ 1x>1-)

1. Initialize state to |¥)(-)

2. Apply Grover's iteration & =(V® I) U, k times,
for k to be determined.

3. Measure 1st reqgister in the computational basis.

4. Check if the measurement outcome is a marked
item by using U, .



Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x#£3).
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Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x=+£3).
1. Initial state: [¥)|-) =5 (1D A1) £13>414)) ()
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Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x+£3).

1. Initial state: |YH|=) ==~ (1A 13> 14Y) 1)
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2b. Apply \/ = 2 |¥){¥|— T to 1lstregister:
(VOT)U )1 = (VOI) (1h=-13)) 15



Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x=+£3).
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Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x=#£3).
1. Initial state: |Y)|-) = "{, (T A1) 13D+ \LH) =)

2a. Apply Us: U\ 1) = 3 (m+ 12) = 13) 4 (1) 19
= ([N =-1D) 1
2b. Apply \ = 2 [¥){¥|—T1 to 1stregister:

(VOL)Ur 1= = (VOI)(1h-13)) 1)

= V(¥-13)) 017
= (21l =1 (N -13)) © 1=

V—f—
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Example: N=4, M=1 (1-out-of-4 search)

Let 3 be the marked item (f(3)=1, f(x)=0 if x=+£3).
1. Initial state: |Y)|-) = "{, (DAY +13)+ \LH) =)

2a. Apply Uz : U\ =+ (m+ )= 13)+ 4)) 1)
= ([N =13)) 19
2b. Apply \V = 2 |¥){(¥|— 1 to 1lstregister:

(VOL)Up 1)1 = (VOI)(1h-13)) 1)

= V(N-13)) © 19
= (21 -1) (N -13)) © 1=
3. Meas 1st register z_m—\“rgﬂ £13) =137 |

outcome=3 !
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1. By symmetry, the algorithm works for any marked
item (1, 2, 3, or 4).
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Observations from the example:

1. By symmetry, the algorithm works for any marked
item (1, 2, 3, or4).

2. Due to phase-kick back, 2nd register is always in the
state |-) . Grover's iteration acts on 1st register as

\/ (g where {lg1x) = SO RRAESY

3. Throughout, the linear combination “{ ) () + (4)"”

Is left "as a piece". The state in the 1st reqgister is
a linear combination of “{ ) ¢ ()+ (4)" & |2)

orof [¥)&l3).
Proof: Ue (In+125+11)) = 1D+ 1)+ 1), Uzr=-13),

VIEY = (219X -T) 1% = 219) - 1%) = 1¥),
VI3) = (219H%1-1) 13) = I¥)-13).



I one for G < algorithm in general:

1. 2nd register stays in the state |-) throughout.
1st register is evolved by a: \/ U\f - Where

ety = &)™ 1y



S ons for C < algorithm i |

2. 1st register stays in the span of:

1) = = e
m X%x)tl
|27
‘F» N ™M X%m 0

|d ) © equal superposition of all marked items
\(5\) . equal superposition of all unmarked items



o) fions for G < alaorithm !

2. 1st register stays in the span of:

(1) = —J—,’——_ S 1% (=13 W examble)

™M 2 E00= |
ISE 2 1O (py=E (ID++ 1)
r) I\\ M 2 fto=o i - QMW\\O‘Q)

|d 7 © equal superposition of all marked items
\[57 . equal superposition of all unmarked items



ones for G < algorithm in general:

2. 1st register stays in the span of:

Q) = —f'——_ S 1% [ =13) W examble)

M s £
B = 2 1 [1py=1 (141> +16)
(5 N M &(x)* > i QXa«w\\ole)

|d ) © equal superposition of all marked items
\(57 . equal superposition of all unmarked items

Intuition: symmetry among all marked items,
and symmetry among all unmarked items.



ons for G < algorithm in general:

2. 1st reqgister stays in the span of:

7 ™M X%}dtl 7 1{57 N M fea=o
Proof:

i+ =
Initial state = |V) = WE\BQ



I one for G < algorithm in general:

2. 1st register stays in the span of:

- _L S DI '
\47 f‘\j\- x%m:;\c>) \[55 N ™M 2 £(0)= 0
Proof:
Initial state = |V) = ]%Euv
LT o+ T >>
ﬁ\_‘ (Xi{-(xhl x%m oDC



ons for G < algorithm in general:

2. 1st reqgister stays in the span of:

- 1 2 O

Ny = x%m.bo’ \p N S oo
Proof:
" Ny —
Initial state = |¥) = mz\lﬁ

LY o+ 5 >>

m (DC'-%(I\ I X:&(x)tox
= A9y ¢ AN-M
~HR i il i



one for G < algorithm in general:

2. 1st reqgister stays in the span of:

1) = = 1) 2 1
\ > J/PX X%}dtl . / ‘Fv N ™M (0= 0
Proof:
" N —
Initial state = |V) = NE\IB

— L[S o+ > ) ))

m (DC'-&(I\tl DC'-&(!) OX
— _"ri\o) + N-M ,
~Hat i il i



Initial state = |¥) = _@\&) £ IN-M |/47 ,
N N

Up # 1y =1, Radl2



Initia = = ,SH o) j
| sta
te
AL N
\ )
+ N
_M
~ |/4>

¥
g1
>
\/ = LS o :
|
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SN/
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Tl
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— (&)



Initial state = |Y) =

“WIET

o))qth —M |/;7

\J= 21 =T, V)= 247D [9) = ()
\/\p: 2<w>> ¢ — (f)



[

Initial state = |V) _@\&) + AN-M |/47 ,
N N

U\,F: (L > —(d ) l[a>~% [{s>

\/= LRy =T, V= 24400 [$) = (3)
\/\/ﬂ: zmp ¥ - (f)
Since [¢) is in the span of

\oO,([J) , SO are \/{L), \/\P



Initial state = |¥) = A1 |Q) + IN-M |/47 ,
N N

M{’: [ > — (o) l[ﬁ% [{5)

V= LUy =T, ViD= 24400 1) — )
\/\[ﬂ: 2<%lf> () - W
Since [Y) is in the span of

\@,(f*) , SO are \/{L), \/\P.

So, each of V and O\qC preserves the span of \oO,[f).



Initial state = |V) = _ﬁ\&) + AN-M |/47 .
I~

IN
U 2 1l S =1y, 1> [(pd
Ue 7 f lf>
Vo= L - T, ViD= 2440 [9) = [4)

\/\p: 1<%|f> ) - l()
Since [Y) is in the span of

\oO,lf) , SO are \/{L), \/\/‘7.

So, each of V and C\qc preserves the span of \oO,{(ﬁ),

Algorithm starts with \'Y) (in the span of \47){())

and applies \/((/T% k times. So, 1st register is always

in the span of \OO,[[J),



Analysis of Grover's algorithm:

We can restrict the analysis to the span of \oO,[/S),

Initial state = |V = A™ 1 JNMI
nitial state = )+ /47

What does Grover's iteration \/ i, do?



Analysis of Grover's algorithm:

We can restrict the analysis to the span of \oO,[()),

Initial state = |V = AT |9y 4 SN=M [,
nitial state = )+ = /47

What does Grover's iteration \/ i, do?

() e 212 — =)

N | /47 — | /%7
U\}is a reflection

about the [/;)axis

>\(%7




Analysis of Grover's algorithm:

We can restrict the analysis to the span of \OO)([:),

Initial state = |¥) = AT 19 4 IN-M [ o5
iti ) = /47

N
What does Grover's iteration \/ i, do?
() 1) — =) (&) V=2w0sH-T
N [/;7 —5 A A~ V=TI =210 -0 = 1
/% V) L\%Y
V ey = (LK% =T ) \¢) = -4y

U¢is a reflection V is a reflection about the [¥)axis.

about the [/47axis

Y7
>\F> % >\[5)




What does Grover's iteration \/ U do?

By linearity, suffices to check its action on
a spanning set: \(5)} WY

Each marked
(L) angle is 92

/\
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By linearity, suffices to check its action on
a spanning set: \fg)} VY

Each marked
[oL) angle is 9/2
/N

where sin & = |1 .
> =5

VU £18)
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For the initial state \@
rotation of angle 6




What does Grover's iteration \/ U do?

By linearity, suffices to check its action on
a spanning set: \(g)} VY

Each marked

() () angle is 8/»
T T where sin % :J%.
\/U;c\ﬁ)
%l‘\’) V)
—e——>|R) > 18)
U\g\ﬁ) {S '6

For the initial state \r%) For the initial state |Y)
rotation of angle 6



What does Grover's iteration \/UL.- do?

By linearity, suffices to check its action on
a spanning set: \fg)) WY

Each marked

(L) () angle is 8/2
where sin % :J—%.
\/LAA;C\@
%N’) Y
—e >\[57 (H@

eI Ue 1)
For the initial state \rg) For the initial state 1Y)
rotation of angle 6



What does Grover's iteration \/Ul} do?

By linearity, suffices to check its action on
a spanning set: \fg)} VY

Each marked

(L) () angle is 8/»
where sin % :I%.
\/O\;c\fgv \/Mf\‘h
% VY VY

For the initial state \f%) For the initial state |¥)
rotation of angle § rotation of angle §



What does Grover's iteration \/ U do?

By linearity, suffices to check its action on
a spanning set: \,5)} VY

Each marked

() () angle is 8/2
where sin % :f%.
\/U\;c\f%) \/MXCW)
%W? IV

— /\@ >\f%)
el Ue 19y

v \/Ul%: IS a rotation of angle § in the [(s>,[4> plane.

2 reflections (anti-clockwise)
make a rotation!




Optimal # of Grover's iteration

Each marked
(L) angle is 9/2

T where sin % :J%.
VU 1Y
1Y
N >18)
Ue 1Y)

v \/Ug is a rotation of angle 9 in the [#), () plane.
(anti-clockwise)



Optimal # of Grover's iteration

Goal: rotate |Y) to as superposition

close to [&) as possible of marked
states

Each marked
(o) angle is 8>

.o _
where sin . _J%.
VM?ND initial

IY) state

>\f%>

URCWJ)
v \/U\;c is a rotation of angle 9 in the [#), [ plane.
(anti-clockwise)




Optimal # of Grover's iteration

Goal: rotate |Y) to as superposition
close to (&) as possible of marked

| states
(meas [4) Incomp

Each marked

basis gives an outcome (/°\0 angle is 92
that is a marked item.) where sin & :JE.
> TN
Ue |
VU
¥) state
> \ﬁ)
Ue 1t

v \/(U\(;c is a rotation of angle 9 in the [#), [ plane.
(anti-clockwise)



Optimal # of Grover's iteration

Goal: rotate 1Y) to as superposition
close to (&) as possible of marked

states

(meas (&) in comp Each marked
basis gives an outcome (/%) angle is &2
that is a marked item.) where sin & :JE.

2 N
After k iterations, state \/U{\‘b .
s (Ke5)® from the I I¥) state

. Ne T

axis. Want (kt4)o = T >‘F7

D\;d\h

v \/U({ is a rotation of angle 9 in the [#), [ plane.
(anti-clockwise)



Want (Kfé)e =T

Recall $:.8 = (M isverysmall, so, & - fi |
2 N L N



Want (k+1)0 = Ly

Recall ,,,\_

s very small, so, © :J%_

I L
Solving (K++4) J: T,

p——

<= B4

+ |2

—

We take k to be the integer closest to 1~ [t — 3 -



Grover's algorithm:

Let |¥) = t (X7, V= 2 ]¥)y| -

Blackbox: U\.g X21yY = XD ly@fe) L (105-1)

Phase kick back: Ug x> = ()™ (x)1-)

1. Initialize state to |¥)(-)

2. Apply Grover's iteration & =(V® I) WU, k times,
for k to be determined.

3. Measure 1st reqgister in the computational basis.

4. Check iIf the measurement outcome is a marked

item by using U,
Y I Vs Yes with prob close to 1.

Repeat t = O(1) times, prob failure ~ exp(-t).



Summary:

We proved that quantum query complexity of the
unstructured search problem (variation 2) is (D ().

Optimality: part (ii) of topic07-2

Further question:
What is the circuit complexity of the algorithm?




Circuit complexity of Grover's algorithm

For simplicity, N =2"

State initialization:
(n+1) \vd states, apply X to the last qubit,
and then apply Hadamard gates to all.



Circuit complexity of Grover's algorithm

For simplicity, N =2"

State initialization:

(n+1) \od states, apply X to the last qubit,
and then apply Hadamard gates to all.

Computational basis measurement:
n "individual-qubit" measurements along {o), \1})

Remains to implement V. = 2 (¥ X«¢|- L.



Implementing V
Lemma: V= 2 1¥X%[-T = B°" (LloXo[-T ) H
/

00 0
Proof: LN —

o



Implementing V

Lemma: V = 2 (X%~ T = H°" (210 -T ) r®",
/
O
Proof: S_m—os

Since W™ (o) = (49,
R %o | B = ¥



Implementing V
Lemma: V= 2 1¥X%[~T = H°7 (210 -T ) r®"
/

00 0
PrOOf. é V\_B

Since k Tl = 4y,
T BB = XY

S\ = 2 ‘k><‘r[ —~
= 2K o><o(+®‘” T



Implementing V
Lemma: V = 2 (X% - T = H°" (21X~ T ) r®",
/

00 0

Since K" oY = (¢9,
R 150 | 1O = 1¥XY] |
NAVERAN S d
= L oo [H®” - T
= B (2o~ T) W N



Implementing V
Lemma: V = 2 (X%~ T = H°" (21X -T ) r®",
/

Proof: S_OV\_OB
Since k T = Y7,
T1oNo | KT = ey
Do\ = 2 EXY -
= L H M X[ - T
= W7 (2o -T) W (e

So we can implement V by applying n Hadamard gates,
then 7 \oXo|-T_ , and n Hadamard gates again.



Implementing 2 1o)X~ T

This gate takes |[0> to |0>, and |[x> to -|x> on all other
computational basis states.



Implementing 2 \oXo[- T

This gate takes |[0> to |0>, and |[x> to -|x> on all other
computational basis states.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas
statistics.



Implementing 2 \o)o| - T

This gate takes |0> to |0>, and |x> to -|x> on all other
computational basis states.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas
statistics.

After the sign change, the gate takes |0> to -|0>, and
all other |x> to |x>.



Implementing 2 \oXo| - T

This gate takes |[0> to |0>, and [x> to -|x> on all other
computational basis states.

Flipping the sign of this gate incurs an overall "-" sign
to the state in the algorithm, with no effect on meas

statistics.

After the sign change, the gate takes |0> to -|0>, and
all other [x> to |x>.

Same as negating all n bits,

then mapping |1..1> to -|1...1> & keeping all other
|IXx>'s the same (this is a control-control-...-control-Z),
and finally negating all n bits again.



Implementing 2 \o)o| - T up to a "-" sign:

— IX *— X
| — X ¢ X
n qubits _ -




Implementing 2 \o)o|[ - T up to a "-" sign:

X ¢ X[

n qubits _

XX
X HZHX—
— —

n-l - 1c-Z

QUOILS | ey p———— 2(n-2) Toffoli's

control qubits { |[e3) . *

|('l> L 2 L 2

,
-~

o

S~
L ]
9

n_2 . ' 1 A
qubits [ 1V 1 !

0 1 I
work qubits :(); T T

target qubit U

Figure 4.10. Network implementing the C'™(U) operation, for the case n = 5.

from NC



Implementing 2 \o)o| - T up to a "-" sign:

XX
n qubits ; ]

XML/ X[

- - ‘JH
n-1 o) 1c-Z
qubits | |&) — I: 2(n-2) *

control qubits{ |ec3) L *

ea) . . (6 CNOTs, 9 T's, 2 H's).
n-2

. ( |()) — 4
qubits i )
work qubits { 0) ) I I h . . E_

v i I ]

L [0) = -+ = T et s
target qubit (_ - ﬁ{ﬁHﬁi@{B{ﬂ—_

Figure 4.10. Network implementing the C™(U) operation, for the case n = 5. Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled-NoT and 7/8 gates.

from NC

~
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~
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Implementing V=2 \¢>4%([~- T up to a"-" sign:

n qubits

—
n-1
qubits

control qubits

n-2
qubits

work qubits

target qubit

H

X ¢

X

T
|

X—

X

TL||L
|

>

T Tl .
I

X

I I 110
|

(

t
(

L

lc1)

o) —
|c3)

|ca)

|e5)

10) —a-
0)

0)
0) —

Figure 4.10. Network implementing the C™(U) operation, for the case n = 5.

1 c-Z
2(n-2) *
(6 CNOQOTs, 9 T's, 2 H's).

——

——

—b~

total: O(n)

2Nn+4(n-2)+2

= 6Nn-6 H's
12(n-2)+1 CNOT's
18(n-2) T's
2n X's
each X: 2H's,4T's

T —
L e
gt R T e Tt e H
—[H[HT! T

Figure 4.9. Implementation of the Toffoli gate using Hadamard, phase, controlled-NoT and 7/8 gates.



Grover algorithm summary:
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What if M (the # marked items) is unknown? (vars 1,3)

Use a quantum algorithm to estimate M using ()(UN)
gueries, with accuracy () (I™).

Such algorithms can be Grover like or based on phase
estimation. (Reading exercise)

Alternative: trying M=1,2,4,8,... etc works too.
You see the marked item in the final check
If and only if M is about right.



7. Quantum algorithms (part 2)

/ (1) Grover’s search algorithm (NC 6.1, KLM 8.1-8.2, M 4)

Differences from factoring algorithm:
- Intuitive

- easily visualized

- very little analysis needed

Discussion will be relatively brief.

— (i1) Optimality of Grover’s algorithm (NC 6.6, KLM 9.3)



Optimality of Grover's algorithm

Theorem Given there is either no marked item or a
unigue marked item, Q.([N) queries are required to

determine which case holds.

Corollary Q ([N) queries are required to determine
If there is a marked item, or to find one.




Proof: Most general algorithm with T queries

= = = —

1 tue [ Tus Us T

T \/o \/l - — \/T —

1 T
If no mark-

ed items \|T°> ) e (1)

If marked 9 o Y .

item = X o) e H’T—I> \7 )

The "no marked item case" also corresponds to Uf = I,



Let |'fy) be the state before the (t+1)-st query, in the
absence of marked items.

Let \Y3) be the state before the (t+1)-st query, if the
marked item is X.



Let |'fy) be the state before the (t+1)-st query, in the
absence of marked items.

Let \Y3) be the state before the (t+1)-st query, if the
marked item is X.

Recall Holevo-Helstrom Theorem (topic04) that two
non-orthogonal states (4, |:) are hard to distinguish
If ||laY-1b)]| IS too small.

If (a7,1b> are somewhat distinguishable, it is necessary
that ||lay-1by| > ¢ (some constant).



Let |'fy) be the state before the (t+1)-st query, in the
absence of marked items.

Let %) be the state before the (t+1)-st query, if the
marked item is X.

If t queries enable us to determine if there is a marked
item, it holds that: I -1 | > ¢



Let \Y;) be the state before the (t+1)-st query, in the
absence of marked items.

Let \Y3) be the state before the (t+1)-st query, if the
marked item is X.

If t queries enable us to determine if there is a marked
item, it holds that: I -1 | > ¢

When we say "the algorithm works", it works for any
marked item X, so:

N
P =L | M-Il > eN.
> (Similar if alg works for
average case input.)

How does N« change with each query?



For one Xx:
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For one Xx:
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For one Xx:

\\ H’tﬂ> - \ﬁ»ﬁ H

= | Vel - Ve U 039 | [t -l
. = [(ard= (L) (Wiay-wie)
= - U
| ) 10 ] = (Cal=<bl) (1) =1b))
= [l 1ay —1by]|°

(]

| ey = 115 + 113 - W Y )

(1

[0 = M 1 110D = Vg E 1y & ety

bound this diff induced by
recursively

1 use of \A+ on \t%)




x t Use method 2 to express
Let H/’f) Z dj 't (j | q) ' bipartite state, topic03-02, p7.
1 N

computational basis on input to Uf register not acted on by Uf



N
pLa
— ol t Use method 2 to express
Let [Ye) %l yit (j | q>Lj ) bipartite state, topic03-02, p7.

1 N

computational basis on input to Uf register not acted on by Uf
> pl& P& pl& .
_ WLOG, Uf used with phase
Wy ) =14 = (Faoer T) W) =11 docbeck (use blackboard).
pl&
= ol |y
t
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(C
— ol t Use method 2 to express
Let [Ye) l:l §t (5 d th ). bipartite state, topic03-02, p7.

\ N

computational basis on input to Uf register not acted on by Uf

% . - - WLOG, Uf used with ph
Uy ) =) = (- TN =1Me)  ciback (wee blackboord),
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Combining all possible x's:
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