7. Quantum algorithms

(1) Quantum algorithm for simulating quantum physics



Time evolution of a closed quantum system

Recall the postulate of QM saying that a quantum
system evolves unitarily, or as experimentally
observed, according to Schroedinger's equation:

-y d
2 YY) = H(t) Yt
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where
i = Planck's constant (absorbed in H(t))
|¢(t)) = state of the N-dim system at time t
H(t) = Hamiltonian of the system at time t.
hermitian NxN matrix, in units of energy



Hamiltonian simulation

Problem: Hamiltonian simulation

Given:

Initial state: (Y0
Hamiltonian: y{(t) for 0¢62¢T
Time T

Output: a copy of the state Y (T)7,



Hamiltonian simulation

Problem: Hamiltonian simulation

Given:
Initial state: (Y}

Hamiltonian: {((t) fov 0<t¢ T
Time T

Output: a copy of the state % (T)7,

Variation: for a given measurement, obtain a sample

of the outcome of applying the measurement to |4 (1)7
or collect statistics of the outcomes.



Motivation:

1. Understand physics

2. Understand electronic structures in large molecules
and solid state systems

Potential applications:

Quantum field theory, quantum chromodynamics,
condensed matter / many body physics.

Quantum chemistry (drugs, protein folding / diseases,
photosynthesis) ??

Small quantum devices (lasers, qguantum dots,
mesoscopic physics, fabrications of materials).



Simulation of guantum dynamics is challenging:

For an N-dim system, Schroedinger's equation is a
coupled system of N differential equations in t, and
N is exponential in the number of "qubits" or
constituent systems, like # atoms in a protein.



Simulation of quantum dynamics is challenging:

For an N-dim system, Schroedinger's equation is a
coupled system of N differential equations in t, and
N is exponential in the number of "qubits" or
constituent systems, like # atoms in a protein.

Feynman raised the possibility in 1985 (clarified
and made precise by others):

Can we efficiently simulate quantum dynamics (no
choice over the given H(t) and initial state) using a
gquantum computer (say, a quantum circuit with
standard initial states and manipulated by a
universal set of gates?)



Caution!

Solving Schroedinger's equation gives classical
description of the final state to a certain precision
(which is exponential).

Hamiltonian simulation by a quantum computer
provides only COPIES of the final guantum state or
measurement outcomes. Don't ask for a description
of the final state to avoid exponential complexity!



Caution!

Solving Schroedinger's equation gives classical
description of the final state to a certain precision
(which is exponential).

Hamiltonian simulation by a qguantum computer
provides only COPIES of the final quantum state or
measurement outcomes. Don't ask for a description
of the final state to avoid exponential complexity!

We focus on problems where we want to calculate
something specific from the final state that can be
done by measuring the final state, which motivates
how we formulate the problem earlier.



Regime of interest:

1. Hamiltonian is time independent.
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Regime of interest:

L
2. Hamiltonian is "local", H=2_H, where each Hy

k=1
ﬁ- 0 e only acts on a few systems
@
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Example: The Ising model

©909 © 009

Here, we have n "spins" (qubits), each
"Interacting” only with nearest neighbors.

Nl /
H=7T X® X, + Yeo Tear T 2¢® 2.0, (9T

K=1 o D omifted )
Hk
ej\‘Ht is hard to evaluate since [ Hk, Hew | £ 0

Here, [A,B] = AB - BA is the "commutator" of A, B.



Regime of interest:

L
2. Hamiltonian is "local", H=7_ H, where each Hy

K=1
o 9@% only acts on a few systems
O
O % o) O (Q_S HK :l@ I@@ A@I_Q@ BQ@I_@@I)
o (O©° and L < poly(n).

N sustems, of hw diyda, i dn, Nadida o dn.
Surprisingly, almost all quantum systems of interest

have local Hamiltonians. In fact, most interactions
In nature are 2-body interactions.
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i.e., the evolution due to Z Hkis composed of

STHE -THLt
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SO we can perform each e separately.
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Main ideas behind an efficient guantum simulation

1. If the H¢'s commute, then, Q_TE et =TI {THKt .
K

i.e., the evolution due to Z Hkis composed of

STHE <THuE

e e
“THy

SO we can perform each e
Each only acts on a few systems (indep of n,

t
separately.

constant-sized quantum circuit).
L~polylog(n)
HLt /
€9. _le [ “THyt ,/
e. STHL —
o, I

B each circuit only has a few CNOTs, H, and T

THst




2. But the interesting Hamiltonians have non-
commuting summands.

ldea: suppress and bound the effect of non-
commutivity via an appropriate approximation
formula.



Trotter formula

For any Hermitian operator A, B and real number t,
TAt Bt/ ™M _ AR T

M

Fixing A, B, t, and m is the variable.



Trotter formula

For any Hermitian operator A, B and real number t,
TAt Bt/ ™ _ AR T

M

Proof:

1A, 1B Y,

0 =T+LAt+0(w) € =T+ Lot +(0(&

power series expansion, test



Trotter formula
For any Hermitian operator A, B and real number t,

[ L L T A+R)
(o"m )T = MM 4 ok
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Proof:
1A, 1B Y,

€ =T+ LAt +0(m), € =T+ Lot +0(w)

1At Bt s -
o Mo = Tr L r Dbt r (0(&)



Trotter formula
For any Hermitian operator A, B and real number t,
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Proof:
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Trotter formula
For any Hermitian operator A, B and real number t,
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Algorithm for simulating e """ on the initial state 1¥(0)
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Algorithm for simulating e """ on the initial state 1Y (0))

for time T with error (J)(&), where H = z’; He , IHel ST,

1. Prepare |¥(0)y (or an (€) approximation)

IHT/
2.Forj=1tolL, apply &

3. Repeat "step 2" m times.

By the Trotter approximation, we simulated & '

within error O(1/m).
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1. Prepare |¥(0)y (or an (€) approximation)
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2.Forj=1tolL, apply &

3. Repeat "step 2" m times.

Choose m = () %> gives ATTON with error < €

This takes care of approx due to non-commuting H 's.



Algorithm for simulating e """ on the initial state 1¥(0)}

for time T with error (J)(¢) , where | = zé He , THelIS T,

1. Prepare |¥(0)y (or an (J(€) approximation)
“THs T/

2.Forj=1toL, apply &

3. Repeat "step 2" m times.

Choose m = () %) gives e T 1y (o)) with error < € |

This takes care of approx due to non-commuting H 's.

Cost: ¢ s type of evolution are applied mL times.

Next: the cost due to discrete universal set of gates.



Cost: ¢ s type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each ¢4 should be < O( €/mL).

Since each Hj acts only on a few systems with
constant dim, a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement ",



Cost: ¢ 5w type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each ¢/ should be < O( €/mL).

Since each Yj acts only on a few systems with
constant d|m a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement o7,
The Solovay-Kitaev Thm states that those smgle
qubit gates, with accuracy O( ¢/mL), requires
polylog(mL/ ¢) gates from the set {H,T}.

So each Q"‘HJT/""‘ takes polylog(mL/¢ ) gates.



Cost: ¢ s type of evolution are applied mL times.

So each ej‘HJT/m takes polylog(mL/¢ ) gates.

Overall circuit has mL polylog(mL/ €) gates.



Cost: ¢ s type of evolution are applied mL times.

So each ef‘HJT/""‘ takes polylog(mL/¢ ) gates.

Overall circuit has mL polylog(mL/ €) gates.

. —_— . . L'L ® NS -
Finally m = O(L/ ¢), so, a circuit of () (—é~\> \3f 3_2‘)
gate suffices. (L = poly(n), n = # of subsystems.)



The cost can be much reduced. First, higher order
approximation formulae are useful, e.q.,

Baker-Campbell-Hausdorf formula Proof: exercise
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The cost can be much reduced. First, higher order
approximation formulae are useful, e.q.,

Baker-Campbell-Hausdorf formula Proof: exercise
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Many extensions are known. For example, the Hg
need not be local, as long as ¢ ™<tcan be efficiently
Implemented (e.qg., sparse Hamiltonians)

Some ¢ ™t has much simpler circuits than a
decomposition into CNOTs, H, and Ts.
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On the RH '
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Onthe RHS, Z2QZ ¥ -~ ®Z is diagonal, and takes

XY 1% - 1% to Q\)\('ML@ SO 1D - 1KY
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Exercise: Show that
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For the Ising model, He = %@ X o t @ T + 26 i .
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Interestingly, the possibility to simulate quantum
dynamics using a quantum computer also inspires
many new efficient classical algorithms to simulate
quantum dynamics wherein interesting structures
enable such simulations.

e.g., DMRG (density matrix renormalization group)
e.g., MPS (matrix product states)

Even more interestingly, similar inspirations happen
In many other areas. e.g., some problems are solved
by fast quantum machine learning algorithms, which
Inspire a similarly efficient classical algorithm.
Reference: google Ewin Tang PhD thesis



