
7. Quantum algorithms

(i) Quantum algorithm for simulating quantum physics



Time evolution of a closed quantum system

Recall the postulate of QM saying that a quantum 
system evolves unitarily, or as experimentally 
observed, according to Schroedinger's equation:

where
      = Planck's constant (absorbed in H(t)) 
             = state of the N-dim system at time t
  H(t) = Hamiltonian of the system at time t.  

hermitian NxN matrix, in units of energy  



Hamiltonian simulation

Problem: Hamiltonian simulation

Given: 
Initial state:
Hamiltonian: 
Time T

Output: a copy of the state 



Hamiltonian simulation

Problem: Hamiltonian simulation

Given: 
Initial state:
Hamiltonian: 
Time T

Output: a copy of the state 

Variation: for a given measurement, obtain a sample 
of the outcome of applying the measurement to 
or collect statistics of the outcomes.  



Motivation:

1. Understand physics 

Quantum field theory, quantum chromodynamics, 
condensed matter / many body physics.  

2. Understand electronic structures in large molecules
    and solid state systems

Quantum chemistry (drugs, protein folding / diseases,  
photosynthesis) ??  

Small quantum devices (lasers, quantum dots, 
mesoscopic physics, fabrications of materials).  

Potential applications:



Simulation of quantum dynamics is challenging: 

For an N-dim system, Schroedinger's equation is a 
coupled system of N differential equations in t, and 
N is exponential in the number of "qubits" or 
constituent systems, like # atoms in a protein.



Simulation of quantum dynamics is challenging: 

For an N-dim system, Schroedinger's equation is a 
coupled system of N differential equations in t, and 
N is exponential in the number of "qubits" or 
constituent systems, like # atoms in a protein.

Feynman raised the possibility in 1985 (clarified 
and made precise by others): 

Can we efficiently simulate quantum dynamics (no 
choice over the given H(t) and initial state) using a 
quantum computer (say, a quantum circuit with 
standard initial states and manipulated by a 
universal set of gates?) 



Caution!

Solving Schroedinger's equation gives classical 
description of the final state to a certain precision
(which is exponential).  

Hamiltonian simulation by a quantum computer 
provides only COPIES of the final quantum state or 
measurement outcomes.  Don't ask for a description 
of the final state to avoid exponential complexity!



Caution!

Solving Schroedinger's equation gives classical 
description of the final state to a certain precision
(which is exponential).  

Hamiltonian simulation by a quantum computer 
provides only COPIES of the final quantum state or 
measurement outcomes.  Don't ask for a description 
of the final state to avoid exponential complexity!

We focus on problems where we want to calculate 
something specific from the final state that can be 
done by measuring the final state, which motivates 
how we formulate the problem earlier.  



Regime of interest: 

1. Hamiltonian is time independent.  



Regime of interest: 

2. Hamiltonian is "local", where each

only acts on a few systems

and L    poly(n).



Example: The Ising model

Here, we have n "spins" (qubits), each 
"interacting" only with nearest neighbors.  

is hard to evaluate since 

Here, [A,B] = AB - BA is the "commutator" of A, B.  



Surprisingly, almost all quantum systems of interest
have local Hamiltonians.  In fact, most interactions 
in nature are 2-body interactions.  

Regime of interest: 

2. Hamiltonian is "local", where each

only acts on a few systems

and L    poly(n).
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Main ideas behind an efficient quantum simulation

1. If the

so we can perform each separately. 
Each only acts on a few systems (indep of n,  
constant-sized quantum circuit).  

e.g. 

each circuit only has a few CNOTs, H, and T

commute, then, 

i.e., the evolution due to         is composed of 

L~polylog(n)



2. But the interesting Hamiltonians have non-
    commuting summands.   

Idea: suppress and bound the effect of non-
commutivity via an appropriate approximation  
formula.  



Trotter formula

For any Hermitian operator A, B and real number t, 

Fixing A, B, t, and m is the variable. 



Trotter formula

For any Hermitian operator A, B and real number t, 

Proof:

power series expansion, test
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Trotter formula

For any Hermitian operator A, B and real number t, 

Proof:



Trotter formula

For any Hermitian operator A, B and real number t, 

Proof:

binomial 
expansion









Exercise:
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Algorithm for simulating on the initial state 

for time T with error 

1. Prepare (or an         approximation)

2. For j = 1 to L, apply 

where 

3. Repeat "step 2" m times. 

By the Trotter approximation, we simulated 
within error O(1/m).  
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Algorithm for simulating on the initial state 

for time T with error 

1. Prepare (or an         approximation)

2. For j = 1 to L, apply 

where 

3. Repeat "step 2" m times. 

Choose m = gives  

Cost: type of evolution are applied mL times.

with error 

This takes care of approx due to non-commuting H  's. k

Next: the cost due to discrete universal set of gates. 



Cost: type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each            should be    O(   /mL).  
Since each      acts only on a few systems with
constant dim, a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement           .  

  

  



Cost: type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each            should be     O(   /mL).  
Since each      acts only on a few systems with
constant dim, a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement           .  
The Solovay-Kitaev Thm states that those single 
qubit gates, with accuracy O(   /mL),  requires 
polylog(mL/   ) gates from the set {H,T}.  

  

  

takes polylog(mL/   ) gates. So each 



Overall circuit has mL polylog(mL/   ) gates.  

Cost: type of evolution are applied mL times.

takes polylog(mL/   ) gates. So each 



Overall circuit has mL polylog(mL/   ) gates.  

Finally m = O(L/   ), so, a circuit of 

gate suffices.  (L = poly(n), n = # of subsystems.) 

Cost: type of evolution are applied mL times.

takes polylog(mL/   ) gates. So each 



The cost can be much reduced.  First, higher order
approximation formulae are useful, e.g., 

Baker-Campbell-Hausdorf formula

which implies

Proof: exercise 



The cost can be much reduced.  First, higher order
approximation formulae are useful, e.g., 

Baker-Campbell-Hausdorf formula

which implies

NC Ex 4.49

Proof: exercise 



Many extensions are known.  For example, the 
need not be local, as long as          can be efficiently
implemented (e.g., sparse Hamiltonians)

Some           has much simpler circuits than a 
decomposition into CNOTs, H, and Ts.  



Example:



On the RHS, is diagonal, and takes

to

e.g., for n=3, 



On the RHS, is diagonal, and takes

to

e.g., for n=3, 

totakes

Thus
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Example:

Proof: On the LHS, the input evolves as

CNOTs

CNOTs

So, LHS = RHS. 



Exercise: Show that 
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For the Ising model, 
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To simulate the Hamiltonian



Interestingly, the possibility to simulate quantum 
dynamics using a quantum computer also inspires 
many new efficient classical algorithms to simulate 
quantum dynamics wherein interesting structures 
enable such simulations.  

e.g., DMRG (density matrix renormalization group)
e.g., MPS (matrix product states)

Even more interestingly, similar inspirations happen
in many other areas.  e.g., some problems are solved 
by fast quantum machine learning algorithms, which 
inspire a similarly efficient classical algorithm.  
Reference: google Ewin Tang PhD thesis


