
7. Quantum algorithms

(i) Quantum algorithm for simulating quantum physics

Time evolution of a closed quantum system

Recall the postulate of QM saying that a quantum
system evolves unitarily, or as experimentally
observed, according to Schroedinger's equation:

where
 = Planck's constant (absorbed in H(t))
 = state of the N-dim system at time t
 H(t) = Hamiltonian of the system at time t.

hermitian NxN matrix, in units of energy

Hamiltonian simulation

Problem: Hamiltonian simulation

Given:
Initial state:
Hamiltonian:
Time T

Output: a copy of the state

Hamiltonian simulation

Problem: Hamiltonian simulation

Given:
Initial state:
Hamiltonian:
Time T

Output: a copy of the state

Variation: for a given measurement, obtain a sample
of the outcome of applying the measurement to
or collect statistics of the outcomes.

Motivation:

1. Understand physics

Quantum field theory, quantum chromodynamics,
condensed matter / many body physics.

2. Understand electronic structures in large molecules
 and solid state systems

Quantum chemistry (drugs, protein folding / diseases,
photosynthesis) ??

Small quantum devices (lasers, quantum dots,
mesoscopic physics, fabrications of materials).

Potential applications:

Simulation of quantum dynamics is challenging:

For an N-dim system, Schroedinger's equation is a
coupled system of N differential equations in t, and
N is exponential in the number of "qubits" or
constituent systems, like # atoms in a protein.

Simulation of quantum dynamics is challenging:

For an N-dim system, Schroedinger's equation is a
coupled system of N differential equations in t, and
N is exponential in the number of "qubits" or
constituent systems, like # atoms in a protein.

Feynman raised the possibility in 1985 (clarified
and made precise by others):

Can we efficiently simulate quantum dynamics (no
choice over the given H(t) and initial state) using a
quantum computer (say, a quantum circuit with
standard initial states and manipulated by a
universal set of gates?)

Caution!

Solving Schroedinger's equation gives classical
description of the final state to a certain precision
(which is exponential).

Hamiltonian simulation by a quantum computer
provides only COPIES of the final quantum state or
measurement outcomes. Don't ask for a description
of the final state to avoid exponential complexity!

Caution!

Solving Schroedinger's equation gives classical
description of the final state to a certain precision
(which is exponential).

Hamiltonian simulation by a quantum computer
provides only COPIES of the final quantum state or
measurement outcomes. Don't ask for a description
of the final state to avoid exponential complexity!

We focus on problems where we want to calculate
something specific from the final state that can be
done by measuring the final state, which motivates
how we formulate the problem earlier.

Regime of interest:

1. Hamiltonian is time independent.

Regime of interest:

2. Hamiltonian is "local", where each

only acts on a few systems

and L poly(n).

Example: The Ising model

Here, we have n "spins" (qubits), each
"interacting" only with nearest neighbors.

is hard to evaluate since

Here, [A,B] = AB - BA is the "commutator" of A, B.

Surprisingly, almost all quantum systems of interest
have local Hamiltonians. In fact, most interactions
in nature are 2-body interactions.

Regime of interest:

2. Hamiltonian is "local", where each

only acts on a few systems

and L poly(n).

Main ideas behind an efficient quantum simulation

1. If the commute, then,

Main ideas behind an efficient quantum simulation

1. If the

so we can perform each separately.

e.g.

commute, then,

i.e., the evolution due to is composed of

Main ideas behind an efficient quantum simulation

1. If the

so we can perform each separately.
Each only acts on a few systems (indep of n,
constant-sized quantum circuit).

e.g.

each circuit only has a few CNOTs, H, and T

commute, then,

i.e., the evolution due to is composed of

L~polylog(n)

2. But the interesting Hamiltonians have non-
 commuting summands.

Idea: suppress and bound the effect of non-
commutivity via an appropriate approximation
formula.

Trotter formula

For any Hermitian operator A, B and real number t,

Fixing A, B, t, and m is the variable.

Trotter formula

For any Hermitian operator A, B and real number t,

Proof:

power series expansion, test

Trotter formula

For any Hermitian operator A, B and real number t,

Proof:

Trotter formula

For any Hermitian operator A, B and real number t,

Proof:

Trotter formula

For any Hermitian operator A, B and real number t,

Proof:

binomial
expansion

Exercise:

Algorithm for simulating on the initial state

for time T with error where

Algorithm for simulating on the initial state

for time T with error

1. Prepare (or an approximation)

where

Algorithm for simulating on the initial state

for time T with error

1. Prepare (or an approximation)

2. For j = 1 to L, apply

where

3. Repeat "step 2" m times.

By the Trotter approximation, we simulated
within error O(1/m).

Algorithm for simulating on the initial state

for time T with error

1. Prepare (or an approximation)

2. For j = 1 to L, apply

where

3. Repeat "step 2" m times.

Choose m = gives with error

This takes care of approx due to non-commuting H 's. k

Algorithm for simulating on the initial state

for time T with error

1. Prepare (or an approximation)

2. For j = 1 to L, apply

where

3. Repeat "step 2" m times.

Choose m = gives

Cost: type of evolution are applied mL times.

with error

This takes care of approx due to non-commuting H 's. k

Next: the cost due to discrete universal set of gates.

Cost: type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each should be O(/mL).
Since each acts only on a few systems with
constant dim, a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement .

Cost: type of evolution are applied mL times.

Cost due to discrete universal set of gates:

Error for each should be O(/mL).
Since each acts only on a few systems with
constant dim, a circuit of constant #CNOTs and
single-qubit gates is sufficient to implement .
The Solovay-Kitaev Thm states that those single
qubit gates, with accuracy O(/mL), requires
polylog(mL/) gates from the set {H,T}.

takes polylog(mL/) gates. So each

Overall circuit has mL polylog(mL/) gates.

Cost: type of evolution are applied mL times.

takes polylog(mL/) gates. So each

Overall circuit has mL polylog(mL/) gates.

Finally m = O(L/), so, a circuit of

gate suffices. (L = poly(n), n = # of subsystems.)

Cost: type of evolution are applied mL times.

takes polylog(mL/) gates. So each

The cost can be much reduced. First, higher order
approximation formulae are useful, e.g.,

Baker-Campbell-Hausdorf formula

which implies

Proof: exercise

The cost can be much reduced. First, higher order
approximation formulae are useful, e.g.,

Baker-Campbell-Hausdorf formula

which implies

NC Ex 4.49

Proof: exercise

Many extensions are known. For example, the
need not be local, as long as can be efficiently
implemented (e.g., sparse Hamiltonians)

Some has much simpler circuits than a
decomposition into CNOTs, H, and Ts.

Example:

On the RHS, is diagonal, and takes

to

e.g., for n=3,

On the RHS, is diagonal, and takes

to

e.g., for n=3,

totakes

Thus

Example:

Proof: On the LHS, the input evolves as

CNOTs

Example:

Proof: On the LHS, the input evolves as

CNOTs

Example:

Proof: On the LHS, the input evolves as

CNOTs

CNOTs

Example:

Proof: On the LHS, the input evolves as

CNOTs

CNOTs

So, LHS = RHS.

Exercise: Show that

 H
 H
 H

 H

 H
 H
 H

 H

and

 K

 K

 K

 K
 K
 K

 K

 K

For the Ising model,

 H

 H

 H

 H

 K

 K

 K

 K

To simulate the Hamiltonian

Interestingly, the possibility to simulate quantum
dynamics using a quantum computer also inspires
many new efficient classical algorithms to simulate
quantum dynamics wherein interesting structures
enable such simulations.

e.g., DMRG (density matrix renormalization group)
e.g., MPS (matrix product states)

Even more interestingly, similar inspirations happen
in many other areas. e.g., some problems are solved
by fast quantum machine learning algorithms, which
inspire a similarly efficient classical algorithm.
Reference: google Ewin Tang PhD thesis

