
Concluding discussions for quantum algorithms

(k) Highlights on other quantum algorithms

(l) Grand unification of quantum algorithms

All the quantum algorithms we have seen so far are
quite similar. Is there a reason?

The problems turn out very similar if we rephrase
them in a unified way.

Hidden subgroup framework

A group G: a set with
 - an associative binary operation (op)
 - an identity element under the group op
 - closed under the group op and its inversion.

A subgroup H is a subset of G that is also a group.

Hidden subgroup framework

A group G: a set with
 - an associative binary operation (op)
 - an identity element under the group op
 - closed under the group op and its inversion.

A subgroup H is a subset of G that is also a group.

H partitions G into
cosets C0, C1, ...
such that x,y are in
the same coset Ci
iff y-x is in H.
We can take C0 = H.

I h1 h2 ...

a1 a1+h1 a1+h2

a2 a2+h1 a2+h2

coset representatives

e.g. is a group under addition.

For any w, the multiples of w form
a subgroup H. The cosets are labeled
by elements of = {0,1,...,w-1}
which is also a group under + (mod w).

For any n in , dividing n by w gives
- a quotient (which element in H)
- a remainder (which coset).

Hidden subgroup problem:

Given: a group G with operation "+", and
 a black box for a function f: G -> X

Promise (partial information about f):
 there exists a subgroup H of G s.t.
 f(x) = f(y) iff y = x+h for some h in H.

I h1 h2 ...

a1 a1+h1 a1+h2

a2 a2+h1 a2+h2

elements in each row share
a common function value

Hidden subgroup problem:

Given: a group G with operation "+", and
 a black box for a function f: G -> X

Promise (partial information about f):
 there exists a subgroup H of G s.t.
 f(x) = f(y) iff y = x+h for some h in H.

Problem: determine H (provide generators for H)

I h1 h2 ...

a1 a1+h1 a1+h2

a2 a2+h1 a2+h2

elements in each row share
a common function value

Problem G X H f

Deutsch {0,1} {0,1} {0} if balanced
{0,1} if constant

Simon {0,1} any fin-
ite set {0,s}, s {0,1}

Period
finding

any fin-
ite set

Order
finding

Discrete
log

These groups are all Abelian.

Quantum algorithm:

1. Start with Prepare by applying QFT.

These groups are all Abelian.

Quantum algorithm:

1. Start with Prepare by applying QFT.

2. Apply The finite set X should have its own
invertible binary operation "+".

These groups are all Abelian.

Quantum algorithm:

1. Start with Prepare by applying QFT.

2. Apply The finite set X should have its own
invertible binary operation "+".

3. Measure 2nd register. Get "coset" state (such as
 the periodic state) in 1st register.

4. Invert QFT on 1st register.

5. Measure 1st register.

6. Repeat steps 1-5 enough # times, process
 classically to obtain all generators of H.

4. Invert QFT on 1st register.

5. Measure 1st register.

6. Repeat steps 1-5 enough # times, process
 classically to obtain all generators of H.

NB QFT is defined in terms of the group character.
Left as reading assignment.

The HSP for a nonabelian gp has a similar definition.

Example (graph automorphism problem):

G = permutation group S of n items, w/ composition
g = graph with n vertices. as group op.

new graph with vertex set

the automorphism gp

Generalizing the hidden subgroup problem to the
nonabelian will solve the graph automorphism
problem, which is believed not to be in BPP, but not
NP-complete.

Solving the graph automorphism problem solves the
graph isomorphism problem as well (given g1, g2,
is g1 = (g2) for some ?

Elusive for the last 25 years ...

1. Those for Hidden subgroup problems
 (Deutsch-Jozsa, Simon's, Shor's)
 based on quantum fourier transform.

Classes of quantum algorithms "covered":

1. Those for Hidden subgroup problems
 (Deutsch-Jozsa, Simon's, Shor's)
 based on quantum fourier transform.

Classes of quantum algorithms "covered":

2. Those for unstructured search, counting, collisions
 (Grover's + variations)
 based on "amplitude amplification".

A3 Q3

1. Those for Hidden subgroup problems
 (Deutsch-Jozsa, Simon's, Shor's)
 based on quantum fourier transform.

Classes of quantum algorithms "covered":

2. Those for unstructured search, counting, collisions
 (Grover's + variations)
 based on "amplitude amplification".

3. Hamiltonian simulation
 based on approximation formula for matrix
 exponentiation.

A3 Q3

1. Those for Hidden subgroup problems
 (Deutsch-Jozsa, Simon's, Shor's)
 based on quantum fourier transform.

Classes of quantum algorithms "covered":

2. Those for unstructured search, counting, collisions
 (Grover's + variations)
 based on "amplitude amplification".

3. Hamiltonian simulation
 based on approximation formula for matrix
 exponentiation.

The technique "phase estimation" can be used for
both 1 and 2.

A3 Q3

Other major classes of algorithms:

1. Quantum walks

Other major classes of algorithms:

2. Adiabatic quantum computation

1. Quantum walks

Other major classes of algorithms:

2. Adiabatic quantum computation

1. Quantum walks

3. Quantum annealing
 (for example, used in DWave for optimization,
 unclear how to manage noise)

Other major classes of algorithms:

2. Adiabatic quantum computation

1. Quantum walks

3. Quantum annealing
 (for example, used in DWave for optimization,
 unclear how to manage noise)

4. Sampling hard distributions
 (mostly proof of principle for quantum
 computational advantage over classical)

Other major classes of algorithms:

2. Adiabatic quantum computation

1. Quantum walks

3. Quantum annealing
 (for example, used in DWave for optimization,
 unclear how to manage noise)

5. Speedup for solving linear systems of equations
 (Harrow, Hassidim, Lloyd: output |x> s.t. Ax=b,
 for special A's. App: Q algs for machine learning.)

6. Speedup for semidefinite programming

4. Sampling hard distributions
 (mostly proof of principle for quantum
 computational advantage over classical)

7. Quantum algorithms for "recommendation systems"
 (Kerenidis and Prakash 2016, ++) and dequantization
 (Ewin Tang PhD thesis, ++)

8. Quantum algorithms for learning problems
 concerning quantum systems (Robert Huang,
 Richard Kueng, John Preskill, ++)

An overview for quantum algorithms
(by Ashley Montanaro)
https://arxiv.org/pdf/1511.04206.pdf

Algorithm zoo (by Stephen Jordan)
quantumalgorithmzoo.org

Lecture notes on advanced level quantum algorithms
(by Andrew Childs)
https://www.cs.umd.edu/~amchilds/qa/

IQC grad course by Prof David Gosset:
https://uwaterloo.ca/scholar/dgosset/classes/
co-781qic-823cs-867-quantum-algorithms

Resources for learning more:

An interesting recent development:

A unified framework to understand most of the
existing quantum algorithms!

Main idea:

These transformations can be performed with
some efficient quantum circuits -- most importantly,
WITHOUT performing the singular value decomposition!

Almost all known quantum algorithms can be
viewed as special polynomial transformations to
the singular values of some matrices.

A bit out of scope but I want to share a tiny bit of
this insight! The results are largely due to:

Low, Yoder, Chuang (2016)
Gilyen, Su, Low, Wiebe (2019)

and our discussion is drawn largely from
an IQC colloquium given by Isaac Chuang:
 https://www.youtube.com/watch?v=GFRojXdrVXI
(including 2 slides)

with additional mathematical details from
an invited talk at TQC in QuICS by Andras Gilyen:
 https://www.youtube.com/watch?v=SMdLc36ysJE

Credit: screenshot taken from Chuang's talk

A encodes the problem, embed in efficiently
 implementable unitary U

Singular value trsf w/o SV decomposition:

Q algorithms as singular value transformations:

Credit: above screenshot from Chuang's talk
 right-side screenshot from Gilyen

period finding is related to "eigenvalue (phase) estimation"

Ax = b a (sv of A) a -> 1/a

There are also known limitations on quantum
algorithms. e.g., for unstructured problems,
we cannot beat quadratic speed-up:

Cryptographic consequences of quantum algorithms

1. Public key cryptosystem:

if a reliable large-scale quantum computer can be built.

a. Cryptosystems relying on hardness of factoring
(RSA, Rabin's cryptosystem, etc) will be broken.

Cryptographic consequences of quantum algorithms

1. Public key cryptosystem:

if a reliable large-scale quantum computer can be built.

b. Cryptosystems relying on discrete log in cyclic
abelian groups (digital signature algorithm, Diffie-
Hellman encryption, ElGamal encryption system,
Diffie-Hellman encryption based on elliptic curves)
will be broken.

a. Cryptosystems relying on hardness of factoring
(RSA, Rabin's cryptosystem, etc) will be broken.

Cryptographic consequences of quantum algorithms

if a reliable large-scale quantum computer can be built.

2. Private key (symmetric) cryptosystem:

a. For encryption, an n-bit key can be searched
with Grover's algorithm in O(2) time, twice the
key length needed for the same security.

e.g., a 128-bit AES (Advanced Encryption Standard)
 key is reduced to the strength of a 64-bit key.

Cryptographic consequences of quantum algorithms

if a reliable large-scale quantum computer can be built.

2. Private key (symmetric) cryptosystem:

a. For encryption, an n-bit key can be searched
with Grover's algorithm in O(2) time, twice the
key length needed for the same security.

e.g., a 128-bit AES (Advanced Encryption Standard)
 key is reduced to the strength of a 64-bit key.

b. Hash functions (used in authentication etc) with
an n-bit output will have reduced security,
equivalent to n/2-bit output against preimage
attacks and 2n/3-bit output against collisions.

Do we have to worry about an attack that may happen
in the future?

Do we have to worry about an attack that may happen
in the future?

Absolutely! Encrypted ciphertext today can be archived
(think FB or google) and decrypted late (by quantum
computation, or other advances such as a BPP algorithm
for NP-complete problems).

Do we have to worry about an attack that may happen
in the future?

Absolutely! Encrypted ciphertext today can be archived
(think FB or google) and decrypted late (by quantum
computation, or other advances such as a BPP algorithm
for NP-complete problems).

Need to protect against potential attack in the next 50
years ... so won't live to be embarrassed by exposed
secrets.

Do we have to worry about an attack that may happen
in the future?

Absolutely! Encrypted ciphertext today can be archived
(think FB or google) and decrypted late (by quantum
computation, or other advances such as a BPP algorithm
for NP-complete problems).

Need to protect against potential attack in the next 50
years ... so won't live to be embarrassed by exposed
secrets.

Even if I have nothing to hide, privacy is a basic human
right ... and I benefit from an open in which others can
speak with protection.

The NSA (National security agency, US) issued an
information assurance directorate in August 2015
with plans to replace schemes like RSA to those
resistant to quantum attacks, such as lattice-based
cryptography.

The key length for private key cryptosystems will be
increased accordingly.

Part (j): quantum advantage and verification

BPP

BQP

BPP: class of problems solvable in poly time by classical computers.

Widely held belief:

factoring

BQP BPP

BQP: class of problems solvable in poly time by quantum computers.

BPP

BQP

BPP: class of problems solvable in poly time by classical computers.

Widely held belief:

factoring

BQP BPP

BQP: class of problems solvable in poly time by quantum computers.

Q1. Expts testing QM are
compared to BPP-computed
predictions.

Can we test QM beyond what's
predictable by BPP?

Open ...

BPP

BQP

BPP: class of problems solvable in poly time by classical computers.

Widely held belief:

factoring

BQP BPP

BQP: class of problems solvable in poly time by quantum computers.

Q2. A quantum advantage is
a BQP computation outside
the capability of BPP. How can
we verify the correctness of
such quantum computation?

BPP

BQP

BPP: class of problems solvable in poly time by classical computers.

Widely held belief:

factoring

BQP BPP

BQP: class of problems solvable in poly time by quantum computers.

Q2. A quantum advantage is
a BQP computation outside
the capability of BPP. How can
we verify the correctness of
such quantum computation?

e.g., if we simulate physics (say,
Ising model with 3000 qubits)
by Hamiltonian simulation and
measuring properties of the sys,
how to tell if we actually get the
right answer?

Q2 is partially addressed by Aharonov, Ben-Or, Eban,
Mahadev https://arxiv.org/abs/1704.04487 :

Result: a verifier Victor, who wants to verify that a
Prover Paul performs a quantum circuit in BQP correctly,
can engage Paul in an "interactive protocol" in which
Victor only runs BPP computations, transmits and stores
a constant # of qubits and poly many classical bits.

Relies on
(1) quantum error correcting codes
(2) the power of interaction

Example how interaction can be useful:

Paul claims to have an algorithm to count the leaves on
any tree in 1 second.
Victor can only count up to 100 leaves in 10 mins.

Example how interaction can be useful:

Paul claims to have an algorithm to count the leaves on
any tree in 1 second.
Victor can only count up to 100 leaves in 10 mins.

To test Paul's claim, Victor asks Paul to count the leaves
of a big tree, receives the answer, pulls off 0 x 100
leaves from the same tree, and asks Paul to count the
leaves again.

Example how interaction can be useful:

e.g. PSPACE = IP (Interactive polynomial time).

Paul claims to have an algorithm to count the leaves on
any tree in 1 second.
Victor can only count up to 100 leaves in 10 mins.

To test Paul's claim, Victor asks Paul to count the leaves
of a big tree, receives the answer, pulls off 0 x 100
leaves from the same tree, and asks Paul to count the
leaves again.

Paul knows what Victor is doing between the 2 questions,
but does not know x. Victor believes Paul if the two
counts differ by x. Here interaction allows Victor to verify
a computation too hard for him.

Students interested can view Dorit Aharonov's talk
at KITP in 2017:
 https://online.kitp.ucsb.edu/online/qinfo_c17/aharonov/

