Syllabus:

When QM meets information theory (wk 1-3)
QM & immediate consequences for info processing
Noiseless Q computation of classical problems (wk 4-7)
Q circuits, universality, Q algorithms
* Q computation in the presence of noise (wk 8-10)
(8) Modelling noise: mixed state QM & Q operations
(9) Quantum error correction
(10) Reliable Q computation using noisy components
Q computation in the presence of adversary (wk 11-12)

Q cryptography



s Modelli <o mixed M & C .
States:

(b) States on composite systems (NC 8.3.1, 2.5, KLM 3.5.2)
(a) Noisy quantum data (NC 2.4, KLM 3.5.1)

Evolution:

(c) Most general (noisy) quantum dynamics
(d) Characterizations (NC 8.2, KLM 3.5.3)
(e) Important examples (NC 8.3)

Measurements (reading exercise):

(f) POVM measurements (NC 2.2.6, KLM A8)

(g) Trace distance, indistinguishability,
Helstrom-Holevo theorem (NC 9.2, KLM A8)
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(b)

Pure state
QM on 2
systems RS

partial trace
of R

Density matrix on S
(revised measurement)
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(c)(d) Most general (noisy) quantum dynamics
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(c)(d) Most general (noisy) quantum dynamics

PR

(o) - ~
Stinesprin
dilation (b) (@) (c)(d)
Pure state Ensemble Kraus
unitary QM on 2 of pure rep of
on RS systems RS ¢«—— statesonS  QOps
purific- .
partial trace ation STa',)c(g;g
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(c)(d) Most general (noisy) quantum dynamics

PR

(C)(d) / known from our 5 postulates \/
Stinespring 5
dilation (b) (@) (0)(d)
Pure state Ensemble Kraus
unitary QM on 2 of pure rep of
on RS systems RS" ¢« statesonS  QOps
purIfic= / mixin
- - 9
partial tc;?CRe ation <tates
onS
could have postulated QM w/ these
quantum Density matrix on S ensemble
operation (revised measurement)’ /of ops
onS 7

either way, once proved, we use all of the above methods
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Given a possibly entangled pure state on systems RS,
but we operate (unitaries and measurements) on S.
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Example: V) =0al\o0o>+ L |11} on RS, a,b real.

For any measurement on S given by projectors {Pg]|
pr(k) = || T&kIY) |I°

TobflV) = aloyeblo) + L1y ®Bll)
[IoPW) IT= A% IBlodI*+ b [Pl ]|®  (exercise)

Lemma: for any column vector v, ||V |° = IR

Proof: 5 = (5 |, UU*: (5 ) [U.* Uf”,m”‘] = (5,57 ERivRivel
S, S, 5,75,

) X
\m / \m/ \mUI mm*/



Example: (V) =al\oo>+ L (1} on RS, a,b real.

For any measurement on S given by projectors {Pg]|

or(k) = || T&P ¥y ||*
Tebkl|¥) = aloyeblo) + L 1Y eB (L)

[ ToPW) IT= A% IBlodI®+ b [ P11} ]|®  (exercise)

Lemma: for any column vectorv, || || = TruwwT.

Proof: 17 = /U. 1, UU*: /U. ) [U.* Uf..,m*] = /U.U.*
5, 5, iyl
& W SR

st =+ -+ = | v |2

1) —U|-2—Y:§*\

QiyRirey
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Example: V) =000+ L (1} on RS, a,b real.

For any measurement on S given by projectors { Pk
pr(k) = || IT&P|y) ||®

TeklV) =aloyeblo) +b 1y @bll)

[Ty IF= o [IBlodI®+ b ([Pl 1} ]I* (exercise)
0 T Pl 0X0|Pe + b T Pel (3<1] P

= o> RloXo] + b - Pl 1)

(cyclic property of trace and P =%)
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Example: V) =000+ L (1} on RS, a,b real.

For any measurement on S given by projectors { Pk
pr(k) = || TeP|v) |I*

TeklV) =aloyeblo) +b 1y @bll)

[Ty IF= o [IBlodI®+ b ([l 1} ]I* (exercise)
0 T+ PeloX0)Pc + b T Bl <1 P

= 0% T PloXo] + b 1+ Pl 1]

(cyclic property of trace and Ps =%)

= f+h (QZ\OXO] + bz\l><l)> (tr linear)

= _{?’PK (750\5’0Jr + \flJr)

where ®T |¥) = <oleT (Alood+L 1)) =Q10)s

<0
CHOTL W) =<ijeT (alooy+h 1)) =b | ()g



Example: V) =0a\o0o>+ L (1} on RS, a,b real.

For any measurement on S given by projectors {Px]|
pr(k) = || Te®lv) |I°

TR (V) =aloyeblo) +b1yePl)

| Iob(y) |I°
revised
formula revised way to rep
for prob quantum data on S
of meas A \

/

N5 = fen (@floxol + B 1)) e linean)
= fh (v + wv')

where o, = <o) T |W) = <o)eT (Al00)+ (1Y)
Y =<I®L V) =<ijeT (Alooy+ b (1))

A10)s
b 1)



General: [V¥) =2 ai[u)|0> onRS.
AR

real ortho-normal unit vectoronS

(derived in topic03-02.pdf p5-8)
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General: |V) = 2_ ailt)[> onRS.
AR

real ortho-normal unit vectoronS
For any measurement on S given by projectors {F,J

Tefly) = 2. aile) @Bl
prk) = [ T& PV IF = 22 05 (I e lg> II*



eneral: [V¥)=2_ailu)[» onRS.
A

real ortho-normal unit vectoron S

For any measurement on S given by projectors {Px]
Lok |Y) = Z: Qi) ® B (7
pr(k) = | TORIY) [I* = 2 0 || elypd [I*

= 2. 07 T Pl P

=2 A7 1 Pe <l




General: [V¥) = 2. ai[t)|0> onRS.
AR

real ortho-normal unit vectoronS
For any measurement on S given by projectors {Pg]

Lok |VY) = L: Qi L) ® Pk [0
prik) = || T8Rely) " = 2 a [Pl |I?
= 2. O T Pl <nil P
= lf 05 T el <nil
= T B (Lj O l’l‘><'li') where Q;[0>s =il (V).

=

—



General: [Y) =2 ai[u)|0» onRS.
A

real ortho-normal unit vectoron S

For any measurement on S given by projectors {Pg]
TP (V) = L: ai [i) @ B [)
prik) = || TeRl¥) [I* = 2 a7 I %> [1°

= g Q'.Z T P 02 <Nl P
=2 07 1 B Il
revised i 5
formula = Tr Pk (Lj A, (41 ) where ;7?5 =<1l V).

for prob - B
of meas : :
s : density matrix on S

revised rep dxd if d = dim(S)

for guantum  trace 1, positive semidefinite
dataon S




The partial trace




Revised formulation of QM:

Revised description of quantum state:

Y) = Z ol — WX — 2267 14 = {s

1. outer product 2. partial trace

revised description of measurement:

pr(k) = || Tek(y) [|© —> pr(k) = f+ P s



Revised formulation of QM:

Revised description of quantum state:

V) = Zj, i[> — WYXV —) L: 0 i <1 =5)g

1. outer product 2. partial trace

revised description of measurement:

pr(k) = || T&R ¥y I — pr(k) = {r P (s

Define partial trace (describing a state on S from a
state on RS) so postmeasurement states & dynamics
also makes sense.



The partial trace /Cw
Recall the trace of a matrix M is the sum of all the

diagonal elements. In the Dirac notation:

d
=

‘I“r M = “|‘r(1"l fi_lz.)('(l) = Z LTIMITH

insert —l:( tris cyc7|}C |
dentity 150" 2 linear
basis
N\ V-~ ’

- In terms of a basis
- can use any basis

basis independent



The partial trace

/Ach

Recall the trace of a matrix M is the sum of all the
diagonal elements. In the Dirac notation:

d
Tr M = “l'r(T’l 7i_|1><7|) = L <Ml

nsert - tris cyc7l\ic—l:(
identity {l‘)\] _
‘ and linear : .
basis d dim, baSIS{l(.)}

/
Definition: the partial trace of system B, denoted Ty J

IS defined on matrices acting on systems AB as

Trg M = i_((:l[mall) M (I®1)) AA\A:M

A DB

\ClAAX ClAA
g

Y i.e., trace B and
dp X dp do nothing on A




Question: real
S
Suppose [V).o = (loo) + | |1+) and we apply partial

trace to R, what is the density matrix on 57

—

2.

(a) [w i} (b) [azt—*s? £ ] (c) (o> &
X 8] T ah

Please do not scroll down ...
Useful from previous slides:

) = Zailo ) — WXV — Z a7 pal = (s
1. outer product 2. partial trace

trg M = & (I0GI) M (I910)
=
A DB

Ko\AAX dp d



QueStiOn: real
S
Suppose [{).s = 0100y + b [1+) and we apply partial

trace to R, what is the density matrix on S?

O bl _ii).i bl % bl

(a) [al o] (b) [au-:ai R] () [a%"-]

Answer is (b).



Question: real
/ \

Suppose [Y).q = 100y + |1+) and we apply partial
trace to R, what is the density matrix on 57

(a) [az o} (b) [alt%ﬁ i } (c) [a%’-]

P
O b % ’_J@l_\__ig K
Answer is (b).

Exercise: show that, if we apply the partial traceto S
Instead, the density matrix, now on R, is (c)! Hint:
rewrite the joint state on RS using method 2 with the
basis {0y, 11y} fors.



Question: real
PR
Suppose [V).s = 0 loo) + | |1+) and we apply partial

trace to R, what is the density matrix on S?

(a) [al o] (b) [cmi;i g—i:] (c) [qz;%g]

O bl bl % bl

—

2.

Answer is (b).

Exercise: show that, if we apply the partial traceto S
instead, the density matrix, now on R, is (c¢)! Hint:
rewrite the joint state on RS using method 2 with the
basis {0y, |1y} fors.

NB: partial tracing R is different from partial tracing S!
Outcomes even have different dims if dim(R) = dim(S).



Exercise: show that partial tracing R or S from any of
the 4 Bell states give density matrices equal to I/2 !

E)oe = 1000 {11 B)oe = 100> — [ (1)
RS = RS =
Z20eg= 1010 110y Bpeq= 1010 ~110)

12 12



Exercise: show that partial tracing R or S from any of
the 4 Bell states give density matrices equal to I/2 !

B, = 100 +111Y B = 1000 = [ (1)
KS 12 - 12
). .= 01> +1[10) ). .= lol>—[10)
RS = /RS =

So, the partial trace is a many-to-one mapping, and is
mathematically irreversible.

Crucial in cryptography (later in the course) to learn
when two states have the same partial trace, and if
you see system S, what do you know about RS jointly.



We have defined the partial trace in the dirac notation.

Next we derive how it looks in matrix representation.



The partial trace (example for 2 qubits)

I®<ol =[1o0)@ 1ol =[[1o]lool)=[1000)
» [0 o] LI o], 0o | 0
Tl =(1tol®@ o1l =([[oj1lool)=[0100
) ([0 o] [0 1]) (00 O ||

\

\1




The partial trace (example for 2 qubits)

To<ol =[10)® [I o] =
L0 1

Tl =1 0)l® [0]] =
(0 |

(To<l) M (Io10)

|

(1 o]J[ool])=[1000)
([0 o] [l 0]) Loo | 0]
‘0o (Jlool)=[0o1 00)
[o o7 [o 1]) oo 0 | J
| 00 0 J{mymy my M, ) [0
6ol D My My Myy Moy OO0
My, M3y My Mg, 0 |

My, Myy Mgy qu-, 00

\

N

/

My MIB

M&'I W\”

|



The partial trace (example for 2 qubits)

T@] =(1ol® 1ol =[[1o]llool)=[1000)
0 1) [0 o] LI o], 0o | 0
Tl =[1ol® lo11=1[[o (][00l =[0100)
L0 1) [o o] Lo 1], 00 D ||

(I®<o|) M (I®|o>) — [I 0 00O J’m“ M, My M, ‘1 0) = [m“ M,y

O D I 0 W\'}_\ M'L}_ M7_3 Mlﬂf D O Msl YY\”
My Mgy gy My 0 |

(M, M My My, ) (00

(I@(Il) M (I@“)) = [0 ) DJ’m“ M, Mgy M'q-\ /OO\ _ [Mumlq
0 00 | My Ma My My | D My, Meg

My My myy W 00

My, My Mgy My ] | O[]



The partial trace (example for 2 qubits)

Io<ol =[1o]® [Iol=([1o]llool)=[1000]
0 1) [0 o] LI o], 00 | D)

Tocll =[1o)l® lo11=(lo(1loolY=[0o1 00
L0 1) [o o] Lo 1], 00D | )

(To<l) M (T@loy) = [100 0 ) mume my m,) ()
00| © My My My Moy 00

Msl Mh. mﬂ m“ OI
My, My Mgy My ) \OD,
Tei] 1 (Loin] = [o150](mme ) (00
00 o0 | My My Myy Moy | O

My Mgy Mgy Wy, 00
My, My Mgy My ) (D | )

d

—1—WB M = Z(I@(il) ™ (I@ll?) = [m“-i-M,_,_ My + My
e Mut My Myt My

N
D = {



(

/mll W‘n_
™ h .ng "
14 G I 1
— 4 ’rY\“ m()_\ __I_,rr 3 J trac bIOCk . l
LG T M My each

B N Muj \ ) \L My, Mg,

\ .
+ (W‘m M3 —I"frm;s ) J R

™ 4

r U m‘n_’ | My )
\ \




_I*WBM =

+
+

tracing

each block

My My

M My

\

consistent with the idea entries in each block
rep states in B while the block labels corr to

states in A

00
01

10
11

7/

00 01
My My

M)_\ Mu

10 11

My My,

(



/

_-|—me =

Exercise:

Tr
Tr

mll Vvln_\ -1 rMIB Mlq,
Vv
\M}_B mlq
4
™ )
33 3%
f
My Mgy Mg
/ \
/ N
mll W‘n. MIB Mlq,
My My May Myy
My My gy Wy
My, My My, mqu-,

each block

tracing

\

(

My My
M Mo,

My My |my, M, | =
Mu Mo [ My My
LMy, My | May My )

summing dia-
gonal blocks

|+

™My Wy

May ™My

]



Example: A, B are 3- and 2-dim respectively. (M: 6x0)

/ N

M = | Mo | M | Me Each T’\\j IS @ 2X2 matrix.
{\/\11 Mn MZB
[\/\31 Mh_ M'SS

\ /



Example: A, B are 3- and 2-dim respectively. (M: 6x06)

/ N

M= ™M, | M. | M Each ™. Is a 2x2 matrix.
(\/\7_) H'J_l M25
(\/\31 Mh_ MB
\ /

TraM = ™M, + M, + ™, (note, the reduced matrix
on B is 2x2)



Example: A, B are 3- and 2-dim respectively. (M: 6x0)

M =

{\/\() M I Ml3
{\/\11 Mn MZB
lv\31 Mn MB

—I'rAT’l = M, + M, + M,

—I—‘WBH

/

—l—f Mn

+fMlz

N

Tr M

Tr M,

_I—;/ Mn

Tr My

—I—;/ Mg,

\

+f Mn

T My

Each M-\S IS @ 2X2 matrix.

(note, the reduced matrix
on B is 2x2)

(note, the reduced matrix
on A is 3x3)



Remark:

The trace of an r-dim system is a linear map from
r X r matrices to real numbers.



Remark:

The trace of an r-dim system is a linear map from
r X r matrices to real numbers.

The partial trace of an r-dim system is a linear
map from rs x rs matrices to s x s matrices where
the trace is applied to R, and the identity map on S.



Remark:

The trace of an r-dim system is a linear map from
r X r matrices to real numbers.

The partial trace of an r-dim system is a linear
map from rs x rs matrices to s x s matrices where
the trace is applied to R, and the identity map on S.

It acts on tensor product matrices as:

fer Meo s = (fe Me) ; Ms

scalar scalar product
and extends to any rs x rs matrix (by linearity).



Revised formulation of QM:

Revised description of quantum state:

Y) = Z ol — WX — 22 G5 14l = {s

1. outer product 2. partial trace

Checking the new definition of partial trace on |V ){V] -
Trg WOV :A?_R (Glo I )WV (IkveT)

|



Revised formulation of QM:

Revised description of quantum state:

V)= Zaillpy — WXYE — Z a7 Il = {s

1. outer product 2. partial trace

Checking the new definition of partial trace on [V ){V]-
Trp WY = (< 1)WY (oo 1)

(GleI ) V) = (< |®1)Zoul >[5



Revised formulation of QM:

Revised description of quantum state:

V)= Z alvi — WKW —) 2207 gl = fs

1. outer product 2. partial trace

Checking the new definition of partial trace on |V){V] -

)

tre WHY] =T ([GlOT) WXV (fo8T1)

(I

(GIOT)IYY = (GiloI) 2 ali) [0
= 205 ® ) = Qi [ni)



Revised formulation of QM:

Revised description of quantum state:

W) =2 ol — WXY] —) Z a7 [yl =fs

1. outer product 2. partial trace

Checking the new definition of partial trace on [V ){V] -

)

Trg (WY (e T) WY (e 1)

1=

[GlOT)IYV) = (GloT) 2 azliy [
= 205G e )y = Qi)

So Trg WXV = A}Q_R ai”[i)<nil same as wanted above.



Revised formulation of QM:

Revised description of quantum state:

V) = Lj ai [y — YY) — Lt O [0 <1 =fg

1. outer product 2. partial trace

revised description of measurement:

pr(k) = || T&P (V) || — JrrFKfs



Revised formulation of QM:

Revised description of quantum state:

V) = Z; Qi ll)lVli> — YV — ZJ Q-,z i <1 =fg

1. outer product 2. partial trace

revised description of measurement:
pr(k) = || Te®l¥) I — T kag
Iobly) _ F%lwefkip

t- tate: = —
post-meas state: (Vi) TTeP (V) | [ TeP(v) |



Revised formulation of QM:

Revised description of quantum state:

YD) = Z ol — WX — 2267 Il = {s

1. outer product 2. partial trace

revised description of measurement:
pr(k) = || T&x(Y) I©  — 1+ P fs

TP lyy _ EZNlveRk(m
| TeP|V) | | TeP|V) |

trg MW =T (lo1) [l (1701)

post-meas state: |V.) =



Revised formulation of QM:

Revised description of quantum state:

Y)=Z ol — WXYE — 207 il = {s

1. outer product 2. partial trace

revised description of measurement:

pr(k) = || T&P(¥) || — Jw—ws

I®Fklw> §Q1l1>® Pklvl'>
t- tate: = -
post-meas state: Vi) (T |v) | [ TeP(v) |
dimR

Trg WVl = & (Glo ] YWl (e 1)

v=

i1eI) Ve = (Glo1) FulVekw = 6 B
| TehlV) | | Teflv) |




dimR

_ Qi P (37 Qi <Nl B
—I?R e ‘Z_' | Toflv) | || ToFlv) |



dimR

_ i Pi (7 ai <l Pe
T M - | ToRlv) || || ToF(v) |

_ R B Il B




‘|’rg (W (W]

AI;_R Qi Pe [V Qi <V[u| Pe

=l TRV || || TRV ||

JER o Fklvli><71i Pe

121 - kas

?‘ji( Q-ll lVl|><q|l Fk
T kas

P



—l?R W|<><\VK] = J%R Qs Pk \V[i> Qs <V[i, Pe
ol IeRv) [l || Tehlv) |

_ dmR o, B l%)('{: Pk

e ls B revised description of
T P fs post-measurement state




Revised formulation of QM:

Revised description of evolution by unitary U on S:
W) =22 ai iyl
TeUlY) =2 Qi) W)



Revised formulation of QM:

Revised description of evolution by unitary U on S:
V) = 2 i [Ty i
ToUIY) =22 Qilt) W)
(<WI®I) I® U\bl\v> = iU lq:) similar to applying ?




Revised formulation of QM:

Revised description of evolution by unitary U on S:
Wy = 3 o led g
TeUlY) =22 ailt) W)

(G1®I) Teuly) = aiulyy similar to applying Py

Trg I6U [WXY] To U
dim R +
= ¢ (GleI) Teu [¥yXyl Ieu (weI)

|



Revised formulation of QM:

Revised description of evolution by unitary U on S:
Yo =2 aleyin
ToUIY) =22 ailt) W)
(Cil®I) Ie U\bl\v> = Qi Ulni» similar to applying i

Trp I&U [YXY) Ieu

dimR +
= ¥ (GloI) Teu [¥yXyl Ieu (weI)

1=
dimR 2

= Z Qi MlVli><Qi|U\T = UfsUT

So, s — U\fsu*.



Revised formulation of QM:

Revised description of quantum state:

V)= Z ol — WX — 2207 Il = {s



Revised formulation of QM:

Revised description of quantum state:
W) =2 il — WY —) 2 a7 [yl =fs

Revised description of measurement:
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post-meas state: (V) =



Revised formulation of QM:

Revised description of quantum state:
W) =Z alol) — WY — §aiwwm=fs

Revised description of measurement:

pr(k) = || &R W) I — pr(k) = {r P (s

e (V) \ FKJ()S Px
| T&PY) | / B

Revised description of evolution by unitary U on S:

vy — Teuly) @ — fs—»nyﬁu*

post-meas state: |V¢) =



Revised formulation of QM:

Revised description of quantum state:

V) =2Z alvyly — YV — gaimmm=fs
Revised description of measurement:

pr(k) = || Iekly) I —> pr(k) = T+ kas

Lo R V) \ FKJ()S Pk
| TeR (V) || / T kas

Revised description of evolution by unitary U on S:

Wy — Teuly) — fs—%LN&uT

post-meas state: |V.) =

Revised rules coincide with alternative interpretation of
density matrix as ensemble of quantum states (later).



We took our 5 postulates, applied to composite
system RS and derived QM as viewed from S.

We now deduce some properties for the states
and evolution/measurement.

We can instead start with these properties and
formulate all QM from scratch based on them ...



Properties of the density matrix and partial trace:

1. For any |¥) on RS, for any unitary U on R,
"'rR Ug® I |WXV| ME@) I = TrR WV |



Properties of the density matrix and partial trace:

1. For any |¥) on RS, for any unitary U on R,
TFR u({® IS l\v><\~vl ME@ IS = ‘,’FR N/><\'Vl

Remarks:

(a) This restates the non-signalling principle in the
oresence of entanglement: if 1 doesn't hold, a
party holding R can affect the density matrix of S
and it measurement statistics, thereby partially
communicating whether U is applied or not.




Properties of the density matrix and partial trace:

1. For any |¥) on RS, for any unitary U on R,
frg Uge Is [WXY| Uge Is = Teg YNV

Remarks:

(a) This restates the non-signalling principle in the
oresence of entanglement: if 1 doesn't hold, a
party holding R can affect the density matrix of S
and it measurement statistics, thereby partially
communicating whether U is applied or not.

(b) Or, the above can be proved directly as an
alternative proof to the non-signalling principle.



Properties of the density matrix and partial trace:
1. For any |¥) on RS, for any unitary U on R,

Trg Ug® Is (WXW| Uge Is = Trg YNV

Proof: Letr, s be dim of R, S. Is® Ug = [U[2]0

note the switch

of the ordering | W)
& S blocks —

7



Properties of the density matrix an

tial trace:

1. For any |¥) on RS, for any unitary U on R,

Trg Uge Is [YXY| Uge Is = Trg WXV

Proof: Letr, s be dim of R, S. Is& Ug =

M = [M|Maftia-| |, My @ r-by-r
My | Mu matrices.
M

U

\ /

& S blocks —



Properties of the density matri

1. For any |V) on RS, for any unitary U on R,

Trg Uge Is [WXY| Uge Is = Trg WXV

Proof: Letr, s be dim of R, S. Is& Ug =

M = (Mi|[Ma[Ma]| ), Mij : r-by-r
My | Mu matrices.
Ma
- Mss/ s N
U|lD|D
o|u

™My

Mo

Moy -

N

O

U

Ve

M;(

Mu

s




Properties of the density matrix and partial trace:
1. For any |¥) on RS, for any unitary U on R,

frg Uge Is [WXY| Uge Is = Trg WXV

<y
Proof: Letr, s bedimof R, S. Ig® Ug = (U] 0|0
o |U
M = (M|Ma|tae] ], M : r-by-r D
P [ M matrices.
Msi L u/
& S blocks —
\ Mss /\A 5 1o N /M“ M| M o N /\AT 51 N
; o|u My | Mu o |uf
(IS ® uR) M (IS® MR) = |p Mt 0
—1—
\ u/ \ ' MSS/ \ u/
/uMII \AT \AMII.\AT un.; \AT v
1 t 7
Ml Mll Hl vt .
- | U (exercise)
UMa U
\ : \AMSS\AT/




”’rR (Is®u&) M (IS®\A;) = "’rR

/\A My \AT

U Mn.\AT

u Hl'!. uT

U My \AT

U Mu\U

UMl

UMa \AT




fep (IsoUg) M (Ise ug)

I

(l

‘,'r R /UMH \AT \AMn.\AT

u Hﬂ uT

UMy UT [ UM T

\AHnuT '

Ctr Ut U

UMaiuT

tr U Mn.uT

tr u Hl'& uT

U Mss \AT )

tru My U

tr u Myl

tr UM U

tr UM \AT

tr U Mss \Xf/



T(R (IS@ u&) M (IS®U[){) - T(R /\AHu\AT \AMn.uT \AHn\AT v
\AMM\AT \AMu\AT \AH,_‘UT .
\AMM\AT

\U Mss \AT )

(l

/tr\AHu\AT tr\AM.l\AT trumu‘r Cr
trume Ut | tr uMe Ut | tr uMa Ul | -

tr UM \AT
£t \U Mss \AT
\ /
— /trMu trMn_ tr Ma | ¥ ) — _,—rR M
tr My [ tr Mu | tr My | v 0 ‘
tr M
tr Mss
/




Properties of the density matri tial trace:
1. For any |¥) on RS, for any unitary U on R,

frg Uge Is [WXY| Uge Is = Teg WXV

2. Corollary: the partial trace of R can be taken along
any basis of R (just as the trace is basis indep).

Proof (reading exercise for W25):



Properties of the density matrix tial trace:
1. For any |¥) on RS, for any unitary U on R,

frg Ug® I [WXY| Uge Is = Trg ¥ XV

2. Corollary: the partial trace of R can be taken along
any basis of R (just as the trace is basis indep).

Proof: ‘I}RM = Trg Uge Is ™ Ur ® Is

= ¥ (GlUg®TI) M (Uglo®T)

1=



Properties of the density matrix an lal trace:
1. For any |¥) on RS, for any unitary U on R,

frg Uge Is IWXY| Uge Is = Tfeg WXV

2. Corollary: the partial trace of R can be taken along
any basis of R (just as the trace is basis indep).

Proof: fi- M = frg Uge Is M U ® Is
= ¢ [GilUg®T) M (ukioeT)

|

and any basis of R can be written as {u’f&m}
for some g .

L



Properties of the density matrix tial trace:
1. For any |¥) on RS, for any unitary U on R,

"’rR Ug® I WXV ME@ I = "'rR 2244

2. Corollary: the partial trace of R can be taken along
any basis of R (just as the trace is basis indep).

3. Partial tracing a system R has physical meaning of
not accessing R. One example is losing access to R
irreversibly (disgarded or corrupted by noise).



Properties of the density matri tial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices) \

hermitian with non-negative eigenvalues
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4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (a) immediate from definition



Properties of the density matri tial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (a) immediate from definition

(b) iyt = §(1®<a|) Mer (I@12))

T (g M) = Z GltrgM i



Properties of the density matri tial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (a) immediate from definition

(b) frgM = L (To<il) Mg (I®1))

T (—I?Rl“ﬂ = Jlﬂ?kl"l 137

—
—

L
t Gl (Tedl) Mg (Ie) 15

J°



Properties of the density matri tial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (a) immediate from definition

(b) frgM = L (To<il) Mg (I®1))
matrices on S

T (‘I”rkl“ﬂ = ngl I—I”rkl"l%

=+ Gl & (IeG]) Mg (I®1W)) 137

J°
- _\

matrix on S vectoron S




Properties of the density matri tial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (a) immediate from definition

(b) frgM = L (Te<il) Mg (I®12)
matrices on S

T (—lﬂrk T’l) = ;Z' H?RHV/
T

1 z(T®< ) Mep (I®122) 13>
S PR

matrix on S vectoron S
- ii‘ (<:J|S®<—((|{) MSR (|:|> ®|1>) :+fM

d - =

—
—




Properties of the density matrix and partial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (c) if Mis PSD, M = Z %;|¥5)<Y;] where ;>0
3

\

on RS



Properties of the density matrix and partial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (c) if Mis PSD, M = Z %; 14:3<Y;]  where »;>o0
For each j, Trp 1459¢t] = Z (To i) 145 | s (T912))
= L Wsa where 2 = (I19G1) %)



Properties of the density matrix and partial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

Proof: (c) if M is PSD, M = % N 1453<Y51 where 23>0
For each j, Trp [153<;] = é(l@«l) 11595 | sp (T®127)

= L YsWg where Yo = (I9G) 1)
ZL 2\ WsYs 20

N

PSD

(l



Properties of the density matrix and partial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

5. Corollary: /JS = -I*rR\\vxw is trace 1 and PSD.



Properties of the density matrix and partial trace:

4. The partial trace is:
(a) linear
(b) trace preserving
(c) completely positive (i.e., applied to 1 out of 2
systems, it takes positive semidefinite (PSD)
matrices to PSD matrices)

5. Corollary: [JS = "f‘rRl\VX\Vl is trace 1 and PSD.

6. Corollary: /3 = T M WXl where >0, 3 = |

\
eigenvector of ()s



Properties of the density matri tial trace:
7. For [35 = ZKJ Me WX Y| Where mg2o0, % Mg = |

a measurement on S has same statistics as drawing
k with prob M« , preparing |¥), and measuring.

Proof:



Properties of the density matri tial trace:
7. For {)s——: % Me WX ¥l Where m >0, % Mg = |

a measurement on S has same statistics as drawing
k with prob M« , preparing |¥c), and measuring.

Proof: if measurement is given by projectors {Pyj
{)(‘OLA('L> = '{-r Fy_fs

— _‘_‘r’ F]_ % /‘/\K \\'VKX\'VKl



Properties of the density matrix and partial trace:
/. For [)s = Z\(‘ /‘/\K ‘\VKX\'VKl where /\/\|<>, O, % /‘/\K = |

a measurement on S has same statistics as drawing
k with prob M« , preparing |¥), and measuring.

Proof: if measurement is given by projectors 1Py}
{)ro\rz(t) = "dr‘ Py_fs

= T+ P % e [

= Z\(’ /\AK _‘T‘ Fﬂ- l%)(%l
= % /\/\K .‘)(‘OL)(LIS'\'N\'Q: l\'VK>>




Properties of the density matri tial trace:
7. For {)s= % Me WX ¥l Where M 20, % Mg = |

a measurement on S has same statistics as drawing
k with prob M« , preparing |¥:), and measuring.

Proof: if measurement is given by projectors {Pyj
{)rok(PJ = '{-r Fy_fs

— _‘_‘r’ Fg_ % /‘/\K l\'vl<><\\jl<l

= 7 M T Po W)Wl
— % /\/\K {)(‘o‘rz ( L | state = l‘V;O)

Property 7 gives a second interpretation of density
matrix as a probabilistic mixture (or ensemble) of
quantum states (later).



We took our 5 postulates, applied to composite
system RS and derived QM as viewed from S.

We now deduce some properties for the states
V' and evolution/measurement.

We can instead start with these properties and
formulate all QM from scratch based on them ...



Alternative approach to
deriving the density matrix

(b) (a)

Pure state Ensemble
QM on 2 of pure
systems RS states on S
. mixing
partial tor?;e ctates
onS

Density matrix on S
(revised measurement)



Mixed state quantum mechanics




From vectors to density matrices

The density matrix of a pure state |¥) is ﬁ: |¥<Y|

Definition: if a system is in the state [Y,)with prob P-
and [*) with prob p., po+tpi =1, then the state of
the system is given by the density matrix

/)‘: ?o (q\/'a><+a\ T F\ \k(t><¥(ll\ .



From vectors to density matrices

The density matrix of a pure state |¥) is f: [¥<Y|

Definition: if a system is in the state [Y,)with prob P

and [%,) with prob p., po+p:=1, then the state of
the system is given by the density matrix

/)‘: YD {*9><+a\ T ?\ \L(‘><&(ll :

Terminology: this is called a mixed state.



From vectors to density matrices

The density matrix of a pure state |¥) is ﬁ: [¥<Y|

Definition: if a system is in the state |Y,)with prob pP.

and [*,) with prob p., po+p.=1, then the state of
the system is given by the density matrix
/): Yo (*9><+a\ T F\ \k(‘><g(nl :

Terminology: this is called a mixed state.

The definition extends to arbitrary mixtures, over
any number of states, which can also be mixed.



From vectors to density matrices

The density matrix of a pure state |¥) is /J: ¥ <Y|

Definition: if a system is in the state [Y,)with prob P

and [%) with prob p., po+ P =1, then the state of
the system is given by the density matrix

/.)‘: Yo (“’(ﬂ(%\ T ?\ \&(t><\'(n‘ :

Terminology: this is called a mixed state.

The definition extends to arbitrary mixtures, over
any number of states, which can also be mixed.

The prescription: "with probability ?i the state is fi" is
called an ensemble, or a probabilistic mixture, of states.




Example 1

If the state is |o) with prob 2/3, {+)with prob 1/3,
what is the density matrix ?



Example 1

If the state is |o) with prob 2/3, |+)with prob 1/3,
what is the density matrix ?

Answer: |o%o| :—-[\ oJ

0 O

] = & D T =[]



Example 1

If the state is |o) with prob 2/3, |+, with prob 1/3,
what is the density matrix 7

Answer: |o%o] :{‘ OJ

0O O

] = & el T = [0

.

So the density matrix of interest is

_ 2|10 I E R
/) {00J+31[1l]_[fi‘J

W



Example 1 (continued)

Applying spectral decomposition to f
ﬁz F_ GLJ = {023 07| forn o] [ 0.23 047
T 1 -0:47 003 ] [0 081) [-0.47 023

= 0.R [o.zaJ [023 -pa7 ] + OF [M? J (047 023 ]

~0.97 0-L3



Example 1 (continued)

Applying spectral decomposition to /’
/;: [ J = [ 0.23 of'ﬂJ [o.ls oJ 0.23 047
~0.47 023 ) [0 0.87) [-097 023

= 0B [o.zaJ [023 -0a7) + 041 [M?J[nm 023 ]

~0.97 013

{»n

~F o

It means that, for a different mixture, where the

state is [o.sz with prob 0.13, [WJ with prob 0.87,
~0.97 013

the density matrix is also/a ,



Example 1 (continued)

Applying spectral decomposition to /’
/Dz s gJ = [0 01| fono] [ 023 047
T T -0:47 003 | [0 091) [-0.47 023

= 0.1 [o.sz [023 -oa7) + 041 {oﬂJ[nm 013 ]

~0.97 013

It means that, for a different mixture, where the
state is [o.sz with prob 0.13, [omJ with prob 0.87,

~0.9 7 013
the density matrix is also/g ,

So, two different mixtures can give rise to the same
density matrix.



Example 1 (continued)
If the state is |o) with prob 2/3, |+)with prob 1/3,
is the state same as [& o) + [§ |4) 2

Vote: (a) yes, (b) no.



Example 1 (continued)
If the state is |o) with prob 2/3, |+)with prob 1/3,
is the state same as [% |0 + [& [+ 2

Vote: (a) yes,

Renormalizing [% |0y + [T |4) gives 0.4Ste) t 0321 =2 |t

Lt Xt | —-—[M o-zJ F P = [

03 0.

v

~ o
o~} o~



Example 1 (continued)

If the state is |o) with prob 2/3, |+)with prob 1/3,
is the state same as [% o) + [£ |4 2

Vote: (a) yes,

Renormalizing [% |0y + [T [+) gives 0.4Ste) t 0320 =2 \¥

l¢X¢| =109 037 =
B n] TP Y
Note: |¥) « J—'\_’;NQ 1_\[—(‘“,& and
=t ¥y 7<% | + P [1)<¥| are very different!

- c~‘U‘l
o~ o~

A superposition is a sum over vectors that exhibit
Interference. A mixture is a sum over density matrices,
and the summands do not exhibit interference.



Alternative state postulate:

For a d-dim system, states are
(a) trace 1
(b) positive semidefinite
(c) dxd

matrices.

By spectral decomp, states are ensembles of
pure states.



Evolution of density matrices by unitaries and meas:

1. For an initial mixture:
%) with prob p. , |'{,) with prob p,
a unitary U evolves it to a new mixture:
UIYs) with prob p. , W),) with prob p,




Evolution of density matrices by unitaries and meas:

1. For an initial mixture:
|¥s) with prob p. , |'{,) with prob p,
a unitary U evolves it to a new mixture:
WIYs) with prob p. , W)¥,) with prob p,

The initial density matrix p = % [ £ P
becomes Po U1 )<tel U T P UIY, XY = = ueu',



2. For a measurement given by projectors { ¥ },
the probability to get outcome j is
T 05 14Xt [ for the initial state [¥,)
Tr b5 (WXt | for the initial state [¥,)



2. For a measurement given by projectors { ¥; },
the probability to get outcome j is
T b5 1% | for the initial state I,)
T 05 14 [ for the initial state [¥,)

so, for the mixture,
the probability to get outcome j is

Po _rr- PS l‘ﬁ’ﬁ(“ﬁ,[ + P T-r‘ PS W\X\h[



2. For a measurement given by projectors {?; },
the probability to get outcome j is
T 05 14Xt [ for the initial state [¥.)
T by WXt [ for the initial state [¥,)

so, for the mixture,
the probability to get outcome j is

?o T} P.S W\,Xk(lo[ + P\ T—r PS H/\th[
which is equal to T {?; for p=1 SCARRNES AN



The postmeasurement state given outcome j is

LA AN
Tr PS 1Y, XY, |
TSI
T b5 1Yo

for the initial state ¥,

for the initial state [¥))



The postmeasurement state given outcome j is

LA NN
Tr PS 1Y, XY, |
AR ARE
T P 1Yt

The postmeas state given outcome j for the mixture is

MRS s 1450 1
| X cl \ N/] X
1 ot rx petstian o s 11,54 |

for the initial state ¥,

for the initial state [¥))

Do * Prlilite))

Do * Deljli%s)) + Dy x Pelyliv)



The postmeasurement state given outcome j is

LA ARE
Tr PS 1Y, Y, |
A ANE
Te b5 114

The postmeas state given outcome j for the mixture is

ARSI SRS ARk
s s + Dx Pelilien)) s s

for the initial state ¥,

for the initial state [Y))

Do * Prlilite)) -

Tr Py 11X | Te b5 1Yot
'\>o x DelJ11%5)) + p| x Peljli4)))
A S Al N T RS T N Ny °
‘ -" (

Do x Te Ps TOCH [+ B, Te By (YK Tr s



Remarks:

1. A density matrix corresponds to a pure state if and
only if it is rank-1 (in which case also a projector).

2. The overall phase of a vector disappears when
we calculate its density matrix, another way to see
why it is irrelevant.



Example 1 (continued)

Can the two mixtures:
o) with prob 2/3, |+ with prob 1/3

03] with prob 0.13, [M?Jwith prob 0.87

[ ~0:77 0:03

oe distinguished by operating and measuring the
given 2-dim system?

Vote: (a) yes, (b) no.



Example 1 (continued)

Can the two mixtures:
0% with prob 2/3,| ) with prob 1/3

0.3 with prob 0.13, [M'{ JWith prob 0.87

:M‘l, 0.13

be distinguished by operating and measuring the
given 2-dim system?

Vote: (a) yes, (b) no.

Answer: no. The subsequent density matrices and
measurement outcomes only depend on /S0,

all decompositions of P Into a convex sum of states
are indistinguishable.



Bloch sphere revisited

For a 2-dimensional quantum system, any density
matrix can be written as: /3 = -'5 (IT+aX tbY tcx),

Z ’D>
Exercise: (0,0,1)4
Show that /JB 0 iff o+ L+ ct < | cal
with rank(P) =1iff a*+ >+ ¢t = | e




Example: classical marginal distribution

A classical random variable U with range {1,...,d} can
be represented as a density matrix -y, luxul, {wy basis.
W=

Classical information is represented by diagonal density
matrices !



Let A denote the density matrix for a joint distribution
on XY and carried by systems AB:
dp de

p=73 L Pry X N \j?(lj]

9(|ij



Let A denote the density matrix for a joint distribution

on XY and carried by systems AB:
da de

/) > 7. \)xj | > )¢ | @ \j?(lj]
A= | ijl
Then,
WB/J = (IeGl) p (I81)

dp de

(Todl) 25 2 Pxy [xXx| @ \j%lj] (ITolw)

a(,ljl

—
—

dg
3___
dp
Z_

=



Let A denote the density matrix for a joint distribution
on XY and carried by systems AB:

p= ZA Z Py [2<x| @ \j><jl
x=) Y|

Then,
TWB/? = é(l@(il) P (I®1)

dp  de

g TG 2 2, Py [xXx| ® 1Yy (L@
1=|( )x=f‘i=l\)j A jIjB( |

I

I

dg dp ds

)L Py I I ® CGlyrylie

LAz Y3 —/ turns B into
é’fj 1-dim sys



Let A denote the density matrix for a joint distribution

on XY and carried by systems AB:
dp de

P = > 2. ij |2 )< | @ \j)(lj]
A= Y=
Then,
d
1?8/3 = lz(l®< ) p (To10)
" 7 Py el © 193] (Lolo))
= ® (1| XX | © | ® 1
Z(I ) = ij c/\ Y ljB
dg dp dp
= L ), 2, Pxy LTlxXx]I © < |\j><j||bz
" T e
da de 4
= 2, Py leXx]
A= Y=

which is indeed the margin distribution X!



Density matrices on a composite system

Consider a bipartite system AB, with dim da , dg |

The most general state on AB is a mixture of pure
states on AB, each is dadzg—dimensional.

Reading exercise for W257?
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1. A pure state on AB.
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The most general state on AB is a mixture of pure
states on AB, each is dadzg—dimensional.

Special cases:
1. A pure state on AB.

2. An uncorrelated state on AB: 6p ® g
where 6y r are density matrices for sys A, B resp.



Density matrices on a composite system

Consider a bipartite system AB, with dim da , ds .

The most general state on AB is a mixture of pure
states on AB, each is dadg—dimensional.

Special cases:
1. A pure state on AB.

2. An uncorrelated state on AB: 6p ® g
where €y, 1, are density matrices for sys A, B resp.

3. A classical-quantum state on AB:

=T Do Ot ® where Is an orthonormal
P x© Px P () set of states on A.



Density matrices on a composite system

Consider a bipartite system AB, with dim da , ds .

The most general state on AB is a mixture of pure
states on AB, each is dadg—dimensional.

Special cases:
1. A pure state on AB.

2. An uncorrelated state on AB: €5 ® Mg
where 6y, 1, are density matrices for sys A, B resp.

3. A classical-quantum state on AB:

=T Dv x| ® where IS an orthonormal
F P P 1522 set of states on A.

A holds the classical description of the state in B.
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These states arises if Alice draws x with prob Px

records x in system A (classical information),
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Exercise:

Show that if [) = E P% 17| @ fx

then ‘VAS) = T Tx fy

W—\/
density matrix for
the mixture fx WP by



