
Syllabus:

When QM meets information theory (wk 1-3)

Noiseless Q computation of classical problems (wk 4-7)

QM & immediate consequences for info processing

Q circuits, universality, Q algorithms

Q computation in the presence of noise (wk 8-10)

Q computation in the presence of adversary (wk 11-12)

Q cryptography

*

(8) Modelling noise: mixed state QM & Q operations

(9) Quantum error correction

(10) Reliable Q computation using noisy components



(b) States on composite systems
(a) Noisy quantum data (NC 2.4, KLM 3.5.1) 

(c) Most general (noisy) quantum dynamics 

8. Modelling noise: mixed state QM & Q operations

 (NC 8.3.1, 2.5, KLM 3.5.2)

(d) Characterizations (NC 8.2, KLM 3.5.3)
(e) Important examples (NC 8.3)

(f) POVM measurements (NC 2.2.6, KLM A8)
(g) Trace distance, indistinguishability, 
      Helstrom-Holevo theorem (NC 9.2, KLM A8)

States:

Evolution:

Measurements (reading exercise):
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(c)(d) Most general (noisy) quantum dynamics 

known from our 5 postulates

could have postulated QM w/ these

either way, once proved, we use all of the above methods
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General:

For any measurement on S given by projectors 

on RS.  

pr(k) = 

real ortho-normal unit vector on S

where

: density matrix on S
dxd if d = dim(S) 

trace 1, positive semidefinite 
revised rep 
for quantum 
data on S

revised 
formula  
for prob 
of meas
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Revised formulation of QM: 

1. outer product 2. partial trace

Revised description of quantum state: 
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Revised formulation of QM: 

1. outer product 2. partial trace

Revised description of quantum state: 

revised description of measurement: 

pr(k) = 

=

pr(k) = 

Define partial trace (describing a state on S from a 
state on RS) so postmeasurement states & dynamics 
also makes sense.  
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Recall the trace of a matrix M is the sum of all the 
diagonal elements.  In the Dirac notation:

 insert 
identity tr is cyclic 
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basis independent



The partial trace

Recall the trace of a matrix M is the sum of all the 
diagonal elements.  In the Dirac notation:

 insert 
identity tr is cyclic 

and linear

Definition: the partial trace of system B, denoted 
is defined on matrices acting on systems AB as 

basis d dim, basis 

i.e., trace B and 
do nothing on A



Question:

Suppose and we apply partial 

trace to R, what is the density matrix on S? 

(a) 

real

(b) (c) 

Please do not scroll down ...

Useful from previous slides:

1. outer product 2. partial trace

=
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Question:

Suppose and we apply partial 

trace to R, what is the density matrix on S? 

(a) 

real

(b) (c) 

Answer is (b).  

Exercise: show that, if we apply the partial trace to S 
instead, the density matrix, now on R, is (c)!  Hint: 
rewrite the joint state on RS using method 2 with the
basis                    for S. 

NB: partial tracing R is different from partial tracing S! 
Outcomes even have different dims if dim(R) = dim(S). 



Exercise: show that partial tracing R or S from any of 
the 4 Bell states give density matrices equal to I/2 !



Exercise: show that partial tracing R or S from any of 
the 4 Bell states give density matrices equal to I/2 !

So, the partial trace is a many-to-one mapping, and is 
mathematically irreversible.  

Crucial in cryptography (later in the course) to learn 
when two states have the same partial trace, and if
you see system S, what do you know about RS jointly. 



We have defined the partial trace in the dirac notation.

Next we derive how it looks in matrix representation. 
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tracing
each block

consistent with the idea entries in each block 
rep states in B while the block labels corr to 
states in A 

00   01    10   11

00   
01    

10   
11



Exercise:

tracing
each block

summing dia-
 gonal blocks



Example: A, B are 3- and 2-dim respectively.  (M: 6x6)

Each         is a 2x2 matrix.
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Example: A, B are 3- and 2-dim respectively.  (M: 6x6)

Each         is a 2x2 matrix.

(note, the reduced matrix
 on B is 2x2)

(note, the reduced matrix
 on A is 3x3)



The trace of an r-dim system is a linear map from 
r x r matrices to real numbers.  

Remark:



The trace of an r-dim system is a linear map from 
r x r matrices to real numbers.  

The partial trace of an r-dim system is a linear 
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the trace is applied to R, and the identity map on S. 
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The trace of an r-dim system is a linear map from 
r x r matrices to real numbers.  

The partial trace of an r-dim system is a linear 
map from rs x rs matrices to s x s matrices where
the trace is applied to R, and the identity map on S. 

scalar productscalar

Remark:

It acts on tensor product matrices as:

and extends to any rs x rs matrix (by linearity).  
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Revised description of quantum state: 

=

Checking the new definition of partial trace on 

So same as wanted above. 
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Revised formulation of QM: 

1. outer product 2. partial trace

Revised description of quantum state: 

revised description of measurement: 

pr(k) = 

post-meas state:

=









revised description of 
post-measurement state
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Revised formulation of QM: 

Revised description of quantum state: 

Revised description of measurement: 

pr(k) = 

=

pr(k) = 

post-meas state:

Revised description of evolution by unitary U on S: 

Revised rules coincide with alternative interpretation of
density matrix as ensemble of quantum states (later).  



We took our 5 postulates, applied to composite 
system RS and derived QM as viewed from S.  

We now deduce some properties for the states
and evolution/measurement.   

We can instead start with these properties and 
formulate all QM from scratch based on them ...
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      party holding R can affect the density matrix of S
      and it measurement statistics, thereby partially
      communicating whether U is applied or not.    



Properties of the density matrix and partial trace: 

1. For any on RS, for any unitary U on R, 

Remarks:

(a) This restates the non-signalling principle in the 
      presence of entanglement: if 1 doesn't hold, a 
      party holding R can affect the density matrix of S
      and it measurement statistics, thereby partially
      communicating whether U is applied or not.    

(b) Or, the above can be proved directly as an 
      alternative proof to the non-signalling principle.  
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note the switch
of the ordering
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Properties of the density matrix and partial trace: 

1. For any on RS, for any unitary U on R, 

Proof: Let r, s be dim of R, S. 

M = : r-by-r 
  matrices. 

(exercise)
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Properties of the density matrix and partial trace: 

1. For any on RS, for any unitary U on R, 

2. Corollary: the partial trace of R can be taken along  
    any basis of R (just as the trace is basis indep).  

Proof (reading exercise for W25):
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1. For any on RS, for any unitary U on R, 

2. Corollary: the partial trace of R can be taken along  
    any basis of R (just as the trace is basis indep).  

Proof:

and any basis of R can be written as 

for some 



3. Partial tracing a system R has physical meaning of 
    not accessing R.  One example is losing access to R 
    irreversibly (disgarded or corrupted by noise).  

Properties of the density matrix and partial trace: 

1. For any on RS, for any unitary U on R, 

2. Corollary: the partial trace of R can be taken along  
    any basis of R (just as the trace is basis indep).  



4. The partial trace is: 
    (a) linear 
    (b) trace preserving 
    (c) completely positive (i.e., applied to 1 out of 2 
         systems, it takes positive semidefinite (PSD) 
         matrices to PSD matrices)

Properties of the density matrix and partial trace: 

hermitian with non-negative eigenvalues
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4. The partial trace is: 
    (a) linear 
    (b) trace preserving 
    (c) completely positive (i.e., applied to 1 out of 2 
         systems, it takes positive semidefinite (PSD) 
         matrices to PSD matrices)

Properties of the density matrix and partial trace: 

5. Corollary: is trace 1 and PSD.

6. Corollary: where 

eigenvector of 
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Properties of the density matrix and partial trace: 

7. For where 

a measurement on S has same statistics as drawing
k with prob       , preparing       , and measuring.  

Proof: if measurement is given by projectors 

Property 7 gives a second interpretation of density 
matrix as a probabilistic mixture (or ensemble) of
quantum states (later).  



We took our 5 postulates, applied to composite 
system RS and derived QM as viewed from S.  

We now deduce some properties for the states
and evolution/measurement.   

We can instead start with these properties and 
formulate all QM from scratch based on them ...
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Alternative approach to
deriving the density matrix



Mixed state quantum mechanics
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From vectors to density matrices

The density matrix of a pure state       is 

Definition: if a system is in the state        with prob     

Terminology: this is called a mixed state.  

The prescription: "with probability     the state is     " is
called an ensemble, or a probabilistic mixture, of states.

The definition extends to arbitrary mixtures, over 
any number of states, which can also be mixed.  

and with prob then the state of 

the system is given by the density matrix 
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what is the density matrix ? 
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Example 1

If the state is       with prob 2/3,       with prob 1/3, 
what is the density matrix ? 

Answer:

So the density matrix of interest is
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Example 1 (continued)

Applying spectral decomposition to 

It means that, for a different mixture, where the 
state is         with prob 0.13,          with prob 0.87, 

the density matrix is also

So, two different mixtures can give rise to the same
density matrix.



Example 1 (continued)

If the state is       with prob 2/3,       with prob 1/3,

is the state same as 

Vote: (a) yes, (b) no. 
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Example 1 (continued)

Renormalizing 

If the state is       with prob 2/3,       with prob 1/3,

is the state same as 

Vote: (a) yes, (b) no. 

gives

Note: and 

are very different!

A superposition is a sum over vectors that exhibit 
interference.  A mixture is a sum over density matrices, 
and the summands do not exhibit interference.   



Alternative state postulate: 

For a d-dim system, states are 
(a) trace 1 
(b) positive semidefinite
(c) dxd 

matrices.  

By spectral decomp, states are ensembles of 
pure states.



Evolution of density matrices by unitaries and meas:

a unitary U evolves it to a new mixture:
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with prob with prob 
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Evolution of density matrices by unitaries and meas:

a unitary U evolves it to a new mixture:

The initial density matrix

1. For an initial mixture:

with prob with prob 

with prob with prob 

becomes 



2. For a measurement given by projectors {     }, 

the probability to get outcome j is

for the initial state 

for the initial state 
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2. For a measurement given by projectors {     }, 

the probability to get outcome j is

so, for the mixture, 

for the initial state 

for the initial state 

the probability to get outcome j is

which is equal to for 
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The postmeasurement state given outcome j is

for the initial state 
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The postmeasurement state given outcome j is

for the initial state 
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for the initial state 

The postmeasurement state given outcome j is

for the initial state 

The postmeas state given outcome j for the mixture is



Remarks:

1. A density matrix corresponds to a pure state if and 
only if it is rank-1 (in which case also a projector).  

2. The overall phase of a vector disappears when 
we calculate its density matrix, another way to see 
why it is irrelevant.  



Example 1 (continued)

Can the two mixtures:

with prob 2/3,      with prob 1/3

with prob 0.13,         with prob 0.87

be distinguished by operating and measuring the 
given 2-dim system?  

Vote: (a) yes, (b) no.  



Example 1 (continued)

Can the two mixtures:

with prob 2/3,      with prob 1/3

with prob 0.13,         with prob 0.87

be distinguished by operating and measuring the 
given 2-dim system?  

Answer: no.  The subsequent density matrices and 
measurement outcomes only depend on       , so, 
all decompositions of      into a convex sum of states 
are indistinguishable.  

Vote: (a) yes, (b) no.  



Bloch sphere revisited

For a 2-dimensional quantum system, any density 

matrix can be written as:

Exercise:

iff Show that 

with rank(   ) = 1 iff

x

y

z
(0,0,1)

(1,0,0)

e.g.1



A classical random variable U with range {1,...,d} can 
be represented as a density matrix

Classical information is represented by diagonal density 
matrices !

Example: classical marginal distribution

basis.



Let      denote the density matrix for a joint distribution
on XY and carried by systems AB: 
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Then,

turns B into 
1-dim sys

Let      denote the density matrix for a joint distribution
on XY and carried by systems AB: 

which is indeed the margin distribution X !



Density matrices on a composite system

The most general state on AB is a mixture of pure 
states on AB, each is          dimensional.  

Consider a bipartite system AB, with dim

Reading exercise for W25? 
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Density matrices on a composite system

The most general state on AB is a mixture of pure 
states on AB, each is          dimensional.  

1. A pure state on AB.  

2. An uncorrelated state on AB: 
where are density matrices for sys A, B resp.   

Consider a bipartite system AB, with dim

Special cases:

3. A classical-quantum state on AB:

where is an orthonormal 
set of states on A. 

A holds the classical description of the state in B.  

These states arises if Alice draws x with prob
records x in system A (classical information), 
prepares       on system B and gives it to Bob. 



Exercise:

 Show that if

then

density matrix for 
the mixture


