s Modelli <o mixed M & C .
States:

(b) States on composite systems (NC 8.3.1, 2.5, KLM 3.5.2)
(a) Noisy quantum data (NC 2.4, KLM 3.5.1)

Evolution:

(c) Most general (noisy) quantum dynamics
(d) Characterizations (NC 8.2, KLM 3.5.3)
(e) Important examples (NC 8.3)

Measurements:

(f) POVM measurements (NC 2.2.6, KLM AS8)

(g) Trace distance, indistinguishability,
Helstrom-Holevo theorem (NC 9.2, KLM A8)
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Concept: accessing 1 out of 2 systems

Physically irreversible unless discarding
an uncorrelated system (QECC)

partial trace ,
Pure state > Mixed state

on RS < —— on S
purification

Concept: given a state on system S, what
pure states in systems RS, if exist, could
have given rise to it?

Conceptual inverse of partial trace, not
physically possible, crucial in cryptograhy
and extremely useful in general.



Definition: given a density matrix f° ona system 5,

a purification of £ is a pure state Y>on S and an
auxiliary system (say, R), such that TFR 1Y XY :/) ,



Definition: given a den5|ty matrix on a system S,

a purification of /J is a pure state [Y>on S and an
auxiliary system (say, R), such that TFR 1Y XY :/) ,

Given a density matrix,

(1) is there always a purification?

(2) how big does the "purifying system" (R) have to be?
(3) if purifications exist, how are they related?



Example:

Recall that for any basis {lei)} on R
any unit vectors |0 on S

V) = %‘ Qi lex>lvl;> on RS
Tep WY = 2207 2l = fs



Example:

Recall that for any basis {le:)} on R
any unit vectors (i) on S

V) = % Qi lei>lq:> on RS
Tep WY = 2207 ] = fs

~ N\

= >\\ ‘e\xel\ + 7\1 \67.)(€z|
A= D\go ) 7\7, = 0.0

1€ = [0q6] |, 1€ =] 0
0.L9 ‘\’016

e.g. /) =

/
o~ |
-+~ m\—

N—



Example:

Recall that for any basis {le:)} on R
any unit vectors (i) on S

W) =2 aile ) on RS
Trp WY = 2207 ] = fs

- N\

X, leXe |l + Ny e Xerl
A= D~go ) 7\1 = 0.20

1€ = | 096 ) €2y =[0.29
021 Lo‘ﬂe
Possible

purification: Y7 = D 1)led + I\ 125 1e)

e.g. /):

/
o~ —F\ W
- -



Theorem: Let o be a density matrix in system S.
(i) P has a purification on sys R iff dim(R) = rank( f).



Theorem: Let P be a density matrix in system S.
(i) o has a purification on sys R iff dim(R) = rank( ).
(if) Furthermore, if |¥,), [Y») are two purifications of P

with purifying system R, then, [Y») = Uz ® Ts |V¥,)
for some unitary U acting on R.



Theorem: Let P be a density matrix in system S.
(i) o has a purification on sys R iff dim(R) = rank( ).
(i1) Furthermore, if |V,), |V») are two purifications of P

with purifying system R, then, [Y») = U ® Ts |V¥,)
for some unitary U acting on R.

Extension of (ii): Suppose

\V,) :purification of Je with purifying system R1
\Y2) :purification of p with purifying system R2
WLOG, dim(R2) is no less than dim(R1).

Then, [V») = U & Ts |¥,) for some isometry U from R1 to R2.

The proof for R1=R2 holds for this extension
(modifications needed will be made in green).
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rkip)

Proof (if): By the spectral theorem p= z; Ne e e

p05|t|ve e-vectors



Theorem: Let o be a density matrix in system S.
(i) Je has a purification on sys R iff dim(R) = rank( /).
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Theorem: Let P be a density matrix in system S.
) p has a purification on sys R iff dim(R) = rank( /).

rki)

Proof (if): By the spectral theorem P = z, Ne e Cex|

rkt )

Let (V) = > ﬂ;(lo ) p05|t|ve e-vectors
- \

computatlonal basis states on R

Trg [WXY] = PRy e®Ls (WY ok I

K=
rkig)

= Z I leeScedd Sy = p

. |'t) is a purification.



Theorem: Let P be a density matrix in system S.
) p has a purification on sys R iff dim(R) = rank( ).

rkie)

Proof (if): By the spectral theorem P = Z Ne e Cex|

rkt )

Let (V) = > ﬁ; [k lex)s p05|t|ve e-vectors
- | |
computational basis states on R

Trg WV = %()<k|K®IS (W W) es K% Lg

rk( ¢)

= ﬁz ledcexl [y, = e

. |') is a purification.
Proof (only if): suppose V)
s a purification, r = dim(R). Let [¥) = 5 0 (ky, [, .20



Theorem: Let o be a density matrix in system S.
(i) # has a purification on sys R iff dim(R) = rank( ).

rkug)

Proof (if): By the spectral theorem P = z Ne leedCex|

rkie)

Let V) = o > Phy kS, lewd, p05|t|ve e-vectors
i \

computational basis states on R

Tr{i (WY = r{i{ <kle® Lc WV RSIK>R®IS

rkl )

z, I lesscet I, = Je

|

. |') is a purification.
Proof (only if): suppose |V)

is a purification, r = dim(R). Let |V¥) = ;L’_ O TRy (W) (2
= |

S rep)

Partial-trace of R gives a sum of at most r rank-1
projectors, with rank at mostr. 50, rank( ) <



We saw earlier that if |Y) is a purification of p, so is
Ue I 1), for any unitary U on R.
(11) says there are no other purifications.



We saw earlier that if [Y) is a purification of p, so is
U L [¥)y for any unitary U on R.
(1) says there are no other purifications.

To see (ii), consider partial trace with the 1st rep of

bipartite states on RS. | |
dim(R) dim(S)
S

Let [¥y = = Ly 117137, =T 1L
“J =1 =

Let ™M = Z 7y 130<00,
‘)



We saw earlier that if |t) is a purification of p, so is
U® T [Y),s for any unitary U on R,
(11) says there are no other purifications.

To see (ii), consider partial trace with the 1st rep of
bipartite states on RS. 5 .
im(R) dim(S)

Let |y) = T <Liyliv137y _Zj=r7l
30T

S
vy I'S"'-‘

Let M = Z dy 13><00.
‘)

The transformation |Y) — ™M defines a bijection from
rs-dim vectors to r-by-s matrices.



Ex: check that
—Yv—>

o N\

if 14 = SI ‘ then M = |

S
“ o
. | 7 r blocks

call this Mat( 1))

C\ CL "




Y7o = T iy liviyy, M= Z diy 1<
LJ \)

Lemma: T lyXy| =mHT

The proof is a useful exercise for W25.
Answer In the next few pages.



V)= T Ligliviyy, M= Z 453 13>
LJ \J

Lemma: frg (&3¢ =M™’
Kl TIf)

;
Proof: LHS = k(T | -
KE Ve L = Ldg 1))




\WRS: Zj Liyliv13y, M = Z’3 413 13><.
Lemma: Teg v X | =M M7

, C CkleT[%)
Proof: LHS = k(T T ~
\Z_l | XY |k)e T =3 2 13

= 3 Ledgl Z;‘f\fyq’\
=l J




Y0 = T Lyglivipy, M= Z 43 1<)
l,J \)

Lemma: TaleXy| =M™'

. CKle LY
Proof: LHS = 3 <K[®T [¥X¥| |KeT = L 13
K= )
- i X
= 5 Ledgliy el (]
K=t J J

RHS = T dj 13><1 (z b 1< >+
\J



V7= T Liglivi3y, M= Z 43y 1<)
ST 5 3

Lemma: Teg ¥ | =M M7

; kDT ()
Proof: LHS = S <k[eT ¥X¢( |Wel = L g 1)
K= | J
— i’_ Z)JKJ\D Z;‘i\é:j’ (]'\
K=1 J J

RHS = ZT iy 13><1 (z”_ o~ \3>< >+

]

Z 419Kl T b 10

‘) T\) A



“\’>RS= LoLiypliviyy, M = Z’3 413 13><.

“J

Lemma: Teg (v X | =M M7

Proof: LHS =

]

RHS =

]

|

; ~ CKl2T(Y)
2 KD [YXY| kel = L g 1)
K=1 J

. i %

S LI Z; Ly (7]

K=l J J

+
,Z A3y 135< (z Ly 1394 )

2 iy 1< '\I><3\
b L’ /J

Z T 453110 T diy <51 = LHS
) )

[



Theorem: (ii) if |¥,), |Y») are two purifications of P
with purifying system R, then, |Y») = U ® Ts |V¥,)
for some unitary U acting on R.



Theorem: (ii) if |¥,), [Y») are two purifications of P
with purifying system R, then, [Y») = U ® Ts |¥,)
for some unitary U acting on R.

Proof: let ™, = Mat (1%,2), M.= Mat (%))



Theorem: (ii) if |¥,), [Y») are two purifications of P
with purifying system R, then, [Y») = U ® Ts |¥,)
for some unitary U acting on R.

Proof: let ™, = Mt (1)), Mo= Mat (%)),

ki
then /3 P Mm@(&l = MM = MM

\ /

spectral decomp lemma



Theorem: (ii) if |V,», |Y») are two purifications of /J
with purifying system R, then, [Y2) = Uz ® Ts |V¥,)
for some unitary U acting on R.

Proof: let ™\ = M,t (I%)), Ma= Mat (I%)).

th rk(() -+
en /) )\ e = M MT = M, M, .

\ /

spectral decomp lemma

Singular value decomp (SVD) : M= [MMtV (V unitary)



Theorem: (ii) if |¥,), |Y») are two purifications of /J
with purifying system R, then, [V») = U ® Ts |¥,)
for some unitary U acting on R.

Proof: let ™\ = M.t (I1%)), M= Mat (%))

ki
then /) ; Ox [eedien] = MM = MM
\ /
spectral decomp lemma

Singular value decomp (SVD) : M= [MMTV (V unitary)

rkee) .
M= o Dhelefel = [P U, Where U= T lewXfx]

rkey

M, = > 2 T [ h lee(gel = J/D Us , Where U, = £ 1€ed(qkl

-~
—



Theorem: (ii) if |V,), [Y») are two purifications of /3

with purifying system R, then, [Y») = U ® Ts |¥,)
for some unitary U acting on R.

Proof: let ™= M4t (I1%,)), M= Mat (%)),

rk(() +
»\K|CK‘><CKI — M M\ — MzMz .

\ /

lemma

then /3

spectral decomp

Singular value decomp (SVD) : M= [MMtV\ (V unitary)
rkee)y

M= B elethd = [P U, where W= T leaxtn
rke)

Ma= 2 N led gl = [P U, where Un= I lexxq

|

Ml ul \AL



Let |y = L Ly livi3y, M= T iy 13><L
l.j )

linear

- § T
M, = M UTML = Z\E o \3><<(\ U, ML) " comb of g



Let |y) = L Ly liv13y, M= T iy 13><0.
l,J ‘)

M)_: MI u;{-ML

e—
a—

L o+ linear
g’j ol m(mu[ ML> ‘”‘combof@\’g

Let V=(UTU) = Ui u
VI = ?;—Unll)
GV = T

Z g 1 (Ui ) = Zdig 13 Tuh
V) ‘) L
Inverting Mat, |t,) = L dj %uf.'l FORRY
‘)
= ;’34:3 VY 13

= T (UL U] 15



Let |y) = L Ly liv13y, M= T diy 13X<AL
LJ ‘)

. o 4 linear
M= T = 24 0 (U ) - o

SD ‘\Y2>

I

oL T K- . , previous
L 3 (W) 13y, e B



Let |v) = L o5y 11717
% - I3y, M= Zd 1<

—_ + .
M?_ MI U( M)_ bt T\L;_ oL"C) \3)((‘[\ uj—M)_) — linear

comb of <q|’s
¥,y = . i
So %27 ZJ L3 (U UF1) 13y, & BRorons
page

I

T ok o
(U\L U ® L) Zj L3y 1TV 1Y

= (W wez) v




For the extension dim(R1)=rl, dim(R2)=r2, r1 < r2:

—n — —Ya —
1\ M1 1 M2 P = Pk \KICKXCK! = MM =M. M,

Singular value decomp (SVD) : M= [MMFV (V unitary)

rkey

™M = %: D leescul = p U, Ohere U= L lewXfx]
M\U\T=
fete) _— _ 5
™M, = z; IRVRIIE N :J/J Uz , Where Uy = L 1ekXgx]
= [P UWW U = M UT U

¥—\(—=—-—/
2

Rest of proof (
as before.




A purification is a pure state on 2 systems.
Returning to topic03-02 briefly ...

On the 3rd representation of bipartite states,
the Schmidt decomposition.

Assigned as reading exercise for W257



3 ways to write down a pure state on 2 systems A & B:

1. Take any basis {le:7} for A, and basis {i;} for B.

ly) = %J\J ley 1£y for unique A %(J_\le: s

2. Take any basis {\6.17} for A, and basis {\m} for B.

Yy = L oLy lenylfy = Z,\e.njoijm
“J

|

Z—J C'n \617 \\’\'L7

s unit vectors, not
T - W . \ \'F'? . '
where C J%\oi-j\ ) W7 = (; 2;’ i necessarily ortho

Similarly with AB interchanged.



3. The Schmidt decomposition (singular value decomp)

KLM A7
Starting from |y) = L o5y (e £ NC 2.5

-
Define matrix M with (i,J)-entry being o3y .

From the singular value decomposition M = UDV
where D is diagonal with non-negative entries, and

U,V are unitary. So, «i = ZL Uik D Vyy . Thus
19\.

[¥) = L iyl = L T Ui D Vy lea) 1)
LJ “ )

— Z Dk LM|K\€72—:\/‘3H:7 = Z D |Gk | b )

D d|agonal \_\”_"/ “ no cross terms!
so, | = k. \QK> HDK>

Ex: check that la«)5 (|L,)s) orthonormal, by unitarity of U (V).



NB The Schmidt decomposition is like the 2nd
representation but the expression is in terms of a
basis for A and also a basis for B! We pay a price --
In the 2nd representation, we can choose any basis
for A, here we do not get to choose either basis.

NB The singular values of M, D, , are called the
Schmidt coefficients of |y) The rank of M, which is

the number of terms in the Schmidt decomposition,
is called the Schmidt rank. The bases {la«)y {|b D}
are called the Schmidt bases of |y

Exercise: show that the Schmidt coefficients are
iInvariant under local unitaries acting on A and B.

They characterize the entanglement of |y )



Example:
- 1
4= 5 loodt E_ (1)

IS already in a Schmidt decomposition.

Example: dpn=7, dg=3

_ |
|L‘»>_,,j_6ﬁ(\oo§+z\ol}+3\ol7+%\l0\>’r S1Y t6112))

M= L [V 23
I RN




l

M M

—

[

Vi DV

Performing a spectral decomposition:

(0.3
0.57

0.8 -0 | L r“Io.% 0

0.1

(17 L ) |
24 3L

27 3¢ L\-S/

N

N,

141

0.82 °
L 0-10 =058 ~0.4]

/ N\

(0.3 057 0.70

D

0.3 Odl -(.5¢
(041 0.8L ~0.%1
T~

\/



MM = LoD W

Performing a spectral decomposition:

MM+: T4 32} = [ 037 —Mz] [0 4o 0] (037 0“1‘1}
izy 77 L 042 037J) Mo 060 |-042 037
~— — _/
W DD*
~ [ N
pp e[t ol he 1 fEm o o
> e o Al 06 o
O O O
M= UDV = [037 —Mz} 1 [!‘10.% 0 o]’o.ﬂ 057 070
L0a2 031 Tl o [0 o] gl odl -0
Gl T o8 082 -0t
W D L Y

\Y



47 = LDy Lllielen TVig 15 = L Dy la) by )

I

vy, 1

—

DH = Jw = 09947 | Dzv_:% = 0.0%107.

|1

(k=) \a, )= U, 1oy T Uy (1)
(k=2) la,>= U, 0% T Uy (1)

037105 + 042 (1D
-bpAa2loy + 037 (1)

||

(k=) b= Vi oy + Vi, t Vi W U

]
= 0.3 10% + 05T (1Y £ 0.10 (2% Un
(K:)‘§ \bl>: \/'L( |O> + \/22(‘> -[- \/23(2.> \/: /\[[\ UQ_\/B\

= 08l 10% + Odl (') - 058 (2 Vo Vo Vg
Vi V3 sy




‘\}/) = 09947 | (037 0y + 642 (\>> (0%3 0y + 057 (121 0.10 (2>>

T 0.08102 (—-Oﬁ2|0> + 037017 > ( 031 10% + 0.1 (1D - 0.5¢ (z))

End of reading exercise for Schmidt decomposition.



Partial tracing a pure bipartite state: say, of system A

1. |y) = L oLy lev 16
-]

2. |¥Y) =L G ley lw

3. |y = ZKJ Dk 1Gk) | by D

Recall we can take the partial in any basis.

From 1: ’rrwa\v\ = %'«k\@: YXY| e oL

—
—

K] \H Y| legye L

I

Z

ZZ Lozk fyl

=ZZ DA 1 £57 <551
33 ( kj°zk3>

matrix in |£57basis



From 2: TrA\“\/X‘\/\ = §<ek\®1 Y XY| leger

I

% Cyelungy LY| \eggeoL

= % Ckc!ik lwg 2 < |

convex combination of pure states 1w, <w.| s

From 3: fr, 14| = Z<aite 1YXY| layer

\

I

Z Dis [bi) <] laye L
\

; D’\’\l HD’\ >< \o'\\

I

spectral decomp of T(A\\vx\y\ “'bs )¢ orthonormal.

Note that all 3 answers are the same -- we obtain
different expressions for the same density matrix !!



(b) (a)

Pure state Ensemble
QM on 2 of pure
systems RS ¢« stateson S

purific-— / mixin
: - g
partial ’c(;‘?;e ation states
onS
quantum Density matrix on S
operation (revised measurement)

onS



Quantum Operations




What is the most general transformation allowed by QM?

Any reasonable transformation N should take quantum
states to quantum states !
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Any reasonable transformation N should ta
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Viewing N as a mapping from matrices to matrices:
(1) N is linear (QM is)

(2) N is trace preserving: tr(N(M)) = tr(M)
(conservation of probability when M = /))



What is the most general transformation allowed by QM?

Any reasonable transformation N should ta

Ke quantum
states to quantum states !

Viewing N as a mapping from matrices to matrices:
(1) Nis linear (QM is)

(2) N is trace preserving: tr(N(M)) = tr(M)
(conservation of probability when M = /))

(3) N is completely positive (CP): M0 I®N(MI=D

N applied to 1 out of 2 systems takes a valid initial
joint state f >0 to a valid new joint state 1o\ (f)?O'



What is the most general transformation allowed by QM?

Any reasonable transformation N should ta

ke quantum
states to quantum states !

Viewing N as a mapping from matrices to matrices:
(1) N is linear (QM is)

(2) N is trace preserving: tr(N(M)) = tr(M)
(conservation of probability when M = /J)

(3) N is completely positive (CP): M>0=3 TeN(M)=0D

N applied to 1 out of 2 systems takes a valid initial
joint state f >0 to a valid new joint state l@M(f)?O,

/J{__ ll@t\](f)

N —




What is the most general transformation allowed by QM?

Any reasonable transformation N should ta

Ke quantum
states to quantum states |

Viewing N as a mapping from matrices to matrices:
(1) N is linear (QM is)

(2) N is trace preserving: tr(N(M)) = tr(M)
(conservation of probability when M = /3)

(3) N is completely positive (CP): M0 = I&N(MI=D

N applied to 1 out of 2 systems takes a valid initial
joint state /) >0 to a valid new joint state lcx)t\)(f)?O,

e.g., conjugation by a unitary is CP
e.g., partial trace is CP



Definition: a quantum operation is a mapping
from matrices to matrices that is (1) linear,
(2) trace-preserving, and (3) completely positive.

Synonyms: quantum channel, TCP map ...




Question:

Define the transpose map as T(M) = MT.
Is the transpose map a quantum channel?
(a) yes, (b) no



Question:

Define the transpose map as T(M) = MT.
Is the transpose map a quantum channel?
(a) yes, (b) no

The transpose is "positive" : M =0 implies T(M) =0,
but not completely positive. Let [§)= & (loo>+111y),

‘§X§\: ‘LZ‘(\ODYOO\f Lo + oo XXl + \\\><oo\)
LT ({Exah :"7:(\00\)(00\1' lne ol £ o>l + \\0><O|\)

& (lory—110)) : eigenvector with negative eigenvalue.



The identity map:

Consider themap T(™) = M. Itis linear, trace

preserving and completely positive. It represents the
evolution in which nothing happens.




The identity map:

Consider the map T(™M) = ™M . Itis linear, trace

preserving and completely positive. It represents the
evolution in which nothing happens.

The identity map is most often used when one of two
system is being transformed.

Pl




The identity map:

Considerthemap T(™) = M. Itis linear, trace

preserving and completely positive. It represents the
evolution in which nothing happens.

The identity map is most often used when one of two
system is being transformed.

T
&
On a tensor product input, T® N (mg) = 6® N (i\

Then, linearity allows the most general T® N (F\
to be computed.




Definition: a quantum operation is a mapping
from matrices to matrices that is (1) linear,
(2) trace-preserving, and (3) completely positive.




Definition: a quantum operation is a mapping
from matrices to matrices that is (1) linear,
(2) trace-preserving, and (3) completely positive.

Implied from the definition:

1. Composition of two quantum ops is a quantum op.
(All 3 properties are preserved by composition.)

2. Tensor product of two quantum ops (applied to
two disjoint systems) is a quantum op.



Example 1: Conjugation by unitary N (p)=Up Ut
Example 2: Partial trace N(p) = T fqq .



Example 1: Conjugation by unitary M(f )= Up Ut
Example 2: Partial trace M(f) = Trg Pre -

Example 3: N(()) = Tre (U po loxel UT) is a quantum
operation for any system E and any U.

/) _

[0)

U — N(/))

E E ,
Eﬂ ¢« partial trace

Proof: by examples 1-2 and composition.



Example 1: Conjugation by unitary N{¢) = Up Ut
Example 2: Partial trace le) = g Pre -

Example 3: N({)) = Tre (U P IoXxele Ut ) is a quantum
operation for any system E and any U.

Py N
[0)

E E ,
é ¢« partial trace

Proof: by examples 1-2 and composition.

Extensions: E can start in any other density matrix

uncorrelated with p, and partial trace can be taken
over a system E' of any size.

Surprise: this makes up all guantum operations!



Theorem: any quantum operation N from system A to
system B can be represented as N u ur)

for some system E and some Stinesfprmg dllatlon U.

Proof: out of syllabus. For the interested, here's a
write-up you already have the background to read:

arxiv.org/abs/quant-ph/0201119



Representations of quantum operations:

v 1. Unitary representation p A | B N{p)
U
N(p)=Tre (Uput) [0)
{) f = _E\éﬂ ¢« partial trace
can skip

U is then an isometry.
U is called the Stinespring dilation for N.



Example: amplitude damping channel

We can define U by its action on a pure gubit state:

I

A (ovod + biy) G1o0) + b (S=¥ (01> +J% ((o) )
A R

0 =B
the excitation is transfered from Ato E

NB A, B, E all 2-dim.



Example: amplitude damping channel

We can define U by its action on a pure gqubit state:

M(“\b>+‘o\\ ) = G\OO + b 3’:_‘0 + (
7/5\ >E@ (J1=¢ (o1 J?\o))EE

UW=(1 0 T
= the excitation is transfered from A to E
g Jg NB A, B, E all 2-dim.
/

\



Example: amplitude damping channel

We can define U by its action on a pure qubit state:

M( \b>+‘o\\ = Gloo + b j—:-\o + (
4 7)A g (5% (01 I?\w)EB

u _ /l 0 AN T
5 (e the excitation is transfered from Ato E
0 KX NB A, B, E all 2-dim.
\D O/

On a general density matriX/> = [C c\} )
e §

't—'_‘ / \ — / \
U\S’\A\IIO‘ CA["O“DD]- ¢ md /4O
ER Xe Rif ¢f O

O

\ J \D O V) D/



Teg Ug U™ = Trgfc mid sa 0

Jrge (POt Rirgf 0
e Rif f O
.0 O 0 O

/
= ec Jwd] + «f
Jrge (Feof 0 0O

= [ et sd
Jrge  (Fo)f



Tre WU = Trg(c md g 0

Srge (FOf Kt O
e Kirf ¥ O
(0 © 0 O

/
= e wd| + [¢ o
Jrge (Fof 0 0O
= [ et Ikd
Jrye (Fe)f

So, the channel takes /> = [C A] to [C“Hf IRA]
e £ Jrse  (Fo)f

A fraction ¥ of the (1,1) entry is moved to the (0,0)
entry, and the off diagonal terms are diminished.



Representations of quantum operations:

v~ 1. Unitary representation pb L 1B NUp)

N(p)sze(ufW) [0) /

E E

¢« partial trace

can skip

U is then an isometry.
U is called the Stinespring dilation for N.



What is N {3 in terms of U? % \

Uoo MOI Moz .
E C— - — 10 | Uu =t
Let |\ = Z,ZHXKIE@U@( = || YU
1=0 k= U [[ Usr | Y
E: 1st register. -
\ /
can skip

U is then an isometry.




What is N ( {> in terms of U? Olug - )

E E’— - — 10 1] un. -t
et W= [iXklg® Uy = |22
S \< Mm UM \A'LI
E: 1st reqgister. - -

E-_"| c[c’l E

:Tre( Z“Xk[ ®U\Jk)(|OX0[ ®f\ kz— k'X:‘[E@M;'k')



\[S‘OVV\e'fVlﬁ

What is N{J in terms of U? Ul - )

let |\ = ii[gxk(E®u3k = |[ AU ] U
120 k=

Mlo Uu Ml‘l.

E: 1st reqister.

\ /
N({ﬁ) = Trg (U po loXele UT)
de-1 de-| de1 el
= Tre | L L3k ® Uy ) (1oXolcop) | Z_B%lkxs‘ ® lize )
de-| , k-l +
= Trell, I Mo}(m% (Vg ® U |
T~ | dim (2w be o mitred

Isometry



. . - .
What is N{( {J in terms of U: Ul o, -
Let |\ = ZZ, Xkl @ Uy = oA -
’S 0D k= U UU M‘-l
E: 1st register. -
\ /
N(p) = Tre [U po loXele UT)
de-! de-| o1 de-
= fre [ laxele ® Ug ) (10X0l@p) | %%lkm ® Ugi )
de-| de-1

1

- iy T
TrE(KZ;D [3>E ®Mjo>(f§(§0 <3[E®\Aj'o)
—— — |- dim

J isometry (,an‘oeom'\ﬁed

el

= L U p ko mixture of states f’ 3 f Uyd Uye g
120 ] Jr« Wyo U 9

not necessarily unitary



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

/N
U = A, dg
Av_ dg
dadE d¢ blocks

Ak | each taking
dn to dg dims

J | AdE

iy

dE

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

M—:/\W%Ae N(p>=Tre(ufu*)=§ AKIMJ
A

e Kraus representation of N
dadE dr blocks

Ak's : Kraus operators
¥ /
A« | each taking not Mg s

da to de dims

“dp>
dE

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

u:’\r%s Nip)=Tre (Upur) = I heg N
Aa

e Kraus representation of N
dede dr blocks

Ax's : Kraus operators
Ak | each taking * A map w/ Kraus representation
dato Je dims IS linear and completely positive

“dp >
de

Stinespring dilation,
Isometric extension



More generally, let U be an isometry taking system A
to system BE (dims of A, B, and E are arbitrary).

N(p)="Tre (uput) = ?: Ak P Ae

N\
U = A, %AB |
Aa | | ds Kraus representation of N
Ak's : Kraus operators
dedE d¢ blocks

A | each taking * A map w/ Kraus representation
dnto e dims IS linear and completely positive

- 1
l Ade *Uisometry & U U =1,
JE
Ch & > Nhe=1,
JdE
: & N trace preserving

Stinespring dilation,
Isometric extension



Example: amplitude damping channel

U=(1 0" /\[} Nip) = AspAs + Ap Al
0 S o Ji-v

IS A, = [o WJ Ex: check Mg Aot ATA, =T
O

O o©

O
\D /



Example: amplitude damping channel

U=(1 0 /\O:{w} Nip) = AsgAs + Ap AT

0 JF¥ o JI-v
> N A, = [og% Ex: check Ad Aot ATA, =T
\D D/ [O D/\(

If the initial state is vy = atedtb 1> (¢ = (1<)
output is the mixture of two unnormalized states:

Aol¥)= Alo) +JxbL(1)
Al = W\o‘\\)



Example: amplitude damping channel

W= (

\

O—

O O

0

Sy

JX
o)

N\

/

/—\[ ° ] Nip = AspAs + Ap AT

o JI-Y
A, = [o WJ Ex: check As Aot ATA, =T

O o©

If the initial state is vy = atld>tbi> (¢ = (<)
output is the mixture of two unnormalized states:

Aol¥)= Qlo) + JxbL(1)
P\( H’) = W\o‘\>

Interpretation: [0) : ground state

|1y : excited state
A. : de-excitation (with prob ¥ )

Ao = no de-excitation, but diminished
amplitude for |1



Execise: evaluate N (= L+aX+t 7+ ) and find how N
transform the Bloch sphere. 0

NA
// ’

The ground state 10)<ol is a fixed point of N.
N is not unital (taking the identity matrix to itself).




Representations of quantum operations:

v 1. Unitary representation p _A ] | B NI(p)

N(p)=Tre (Uput) :

¢ partial trace

d d
v 2a.Kraus rep: N(p) = 1 Acp A/ KzE‘_lﬁ\ZAkzL\
Ke | 8



Representations of guantum operations:

. 1. Unitary representation

N(p)="Tre (upu*)

/3_/\_

U

E .
¢« partial trace

de c
v 2a. Kraus rep: N(()) = L Aky L\J/ izt‘_‘ L\E[AK:IA
K= | =

2b. Conversely, given JE operators AK mapping from

de de
system A to B satisfying KZEI Me A = Loy U= gt;' [kde @ Ay

de
is an isometry, and Tr¢ | U f Ut ) = Z: Ak ¢ Me ,



Representations of quantum operations:

v 1. Unitary representation

N(p)=Tre (Upu®)

/)__A_

U

| B NI(p)

v 2a. Kraus rep: N({)) = éej Ae p Ne

E .
¢« partial trace

JdE ¢
2 }’\k AK — Ip\
K=l

2b. Conversely, given de operators A\< mapping from

dJ Jde
system A to B satisfying :f_( Ae A = Loy U= Kzt| [kde @ A

de
is an isometry, and Tr¢ | UpUu) =1L Acy Ae |
K=

e f

3. N(P) as an explicit function of {) e.g. [ A}ﬁ\{cm m}

Jige  (Fof



Representations of quantum operations:

v 1. Unitary representation

N(p)="Tre (U put)

v 2a. Kraus rep: N({J) = :ZE; Ag p Ae ,

/)_A__

U

E :
¢« partial trace

J
?AEAK:I

2b. Conversely, given JE operators )ﬁ\K mapping from

system A to B satisfying Z Ae A =

is an isometry, and Tr¢ | [Uput)

IP\JM zm@ka
Z Akf[’\k

3. N ({)) as an explicit function of P eag. [e ﬂ - {C-H]c i d

Jige (mf}

4. Choi matrix (see arxiv.org/abs/quant-ph/0201119)



Example: qubit depolarizing channel w/ noise rate p
A=B=C Nplp) =-p gt t 3 felp).

Specified as a linear map, we do not know upfront
If the map is a quantum operation. We will derive a
Kraus representation which verifies that N, is a q op.



Example: qubit depolarizing channel w/ noise rate p
A=B=C% Ne(p) =lrp gt 3 tlp).

Let Ri¢) = ()
Claim: Ri¢) = _\LF

_i,—i_ the randomization map (p=1).
Pt

Xp £ Yp 1 t2p2). (K rep)



Example: qubit depolarizing channel w/ noise rate p
A=B=cC" Nf(f) = (-p) e+t b Tr({ﬁ).
Let Ri¢)= 1tv(p) T , the randomization map.

Claim: @(@‘—; ?TX xTYf f%).(kmmsr‘e‘a>



Example: qubit depolarizing channel w/ noise rate p
A=B=C* N()(f) =(-pett3 Tr(f).
Let Ri¢) = () T . the randomization map.

(()_\_ XYXT\[()\( '('?:6'2:), (kmwgre‘,)

Claim: RL(B:‘;

Proof: Let p = 4 (fe(p) L+ aXt b+ c2) \
Kex = L(fe(p) L+ aX—bl-c2) e = teig)
o= S () T-aX+ bl c) = RIp)
2pz= L) T-aX-bltck)



Example: qubit depolarizing channel w/ noise rate p
A=B=cC* N()(f) =(-petrs \’r(f).
Let Ri¢) = tv(p) & . the randomization map.

Claim: R(():‘? Pt Xex £ YpY t2p). (kmv\ST‘e\a>

Proof: Let f —’7_ frlp) L+ aX + bl + e )
%fX:’—LH’r(f)) +0X — bl ) ? b T
T 3
1p = L) T-aXtul-c) - R
2px= L(f(p) T-aX—bltc2)

NB 'R can be interpreted as an evolution in which

one of the unitaries |, X, Y, Z are picked at random
and applied to the input.



Example: qubit depolarizing channel w/ noise rate p
A=B=C" N(D(") =(-pPotts Tr(f).

et Rig)= 1v(p) & . the randomization map.

_lemma: th):-‘;(gf Xex £ TP t2p), (kmugre\,,)
o NI (\—p)gff%mf)

(=P 0 b (Pt Xpxt Ypy +2p2)

(T3)p+ SRR L L AT (K ref)

[

1

Il



Example: qubit depolarizing channel w/ noise rate p
A=B=C" Nelp) =-p gt 3 telp).
Let Ri¢) = {v(p) & . the randomization map.

Lemma: R = (P + pxt YpT t2p2). (kmmsre‘o>
C(N(f):(\—P)g’ff%T\r(f))

=P gt PPt xpxt Ypy+2p2)

TUTH) P SRR IO AT (ks )

NB The qubit depolarizing channel w/ noise rate p can
be interpreted as a noise process in which X, Y, and Z
each happens with prob p/4, and | happens otherwise.



For a qubit density matrix /D LT+ aX+t bl +c2)

N(f = \’P)g“r f;Tr(f

[

(1-p) ST+ aXtblted) + p 2

=L+ (-p)(aX+ b+ c2))



For a qubit density matrix {3 L [L+ aX+bl+c2)

N{p)= 'P)?TFZW(’ = () S (LraXtulten) £ p 2

—
e

ST+ (-p) (aX 1 bl + )

The depolarizing channel
shrinks the Bloch vector
by a factor of (1-p).




L

For a qubit density matrix (D LT+ aX+ bl +c2)

[

N(p)= 0-p) ¢ £ pET(p) = () L(T+ 2kt blen) £ pZ

Ry =% =L [T+ (-p) (aX t bl + c2))
The depolarizing channel

shrinks the Bloch vector
by a factor of (1-p).

v

The randomization map

sends any input to the
center.




L

For a qubit density matrix {D LT+ aXt bl +c2)

[

N([’ = \’P)QT f;Tr(f

(-p) S [T+ aXtultcx) £ 9=
R =% =L [T+ (-p)(aX t b+ c))

The depolarizing channel
shrinks the Bloch vector
by a factor of (1-p).

The randomization map
sends any input to the
center.

Unlike the amplitude damping channel, the
depolarizing channel is unital and maps | to I.



Deqgree of freedom in the Kraus operators:

AN de
u fo— A[ AB u — Elk>E®P\K
/‘\7_ a8
Ae = (Kkle®T) W

de
dadE . Sgcl%l(t)aclzfmg N(f):Tre [Up Ur) = KZI Ak f M

da to dg dims

_A | | B
p O NUp)

| Ade

o

e :
Eﬁ ¢ partial trace

Question: if we apply partial trace of E in a basis
different from {5} do we:

(a) get the same map N, same Kraus operators A ’s.
(b) get the same map N but different Kraus operators
(c) get a different map ?



A4 Q2:

Detailed study of decoherence, a guantum operation
that fixes the diagonal and shrinks the off-diagonal

entries.
D 0 b = |la (b
C 4 (-xyec 4



Ad Q2:

Detailed study of decoherence, a guantum operation
that fixes the diagonal and shrinks the off-diagonal

entries.
D a b = |la (b
¢ d (=ne 4

You will show that two different Kraus representations
correspond to the same map.

. T ETCES
One Kraus rep applies ¢ "~ , e~ atrandom.

One Kraus rep applies | with prob 1-p, Z with prob p.



A4 Q2:

Detailed study of decoherence, a quantum operation
that fixes the diagonal and shrinks the off-diagonal

entries.
D O b = |la (~\b
C d (=xYe 4

You will show that two different Kraus representations
correspond to the same map.

. 62 0%
One Kraus rep applies ¢ . e~ atrandom.

One Kraus rep applies | with prob 1-p, Z with prob p.
You will see a Stinespring dilation, and you have to find

a change in the basis of the partial trace that transforms
the second set of Kraus operators to the first.



A4 Q2
In the extreme case:

memap D[25)) =[50

corresponds to someone measuring the qubit.
e.g., with Stinespring dilation

JE\D>+FA\\7 - (3’5\\0051“ E\H>>BE
followed by partial trace of E.

Ex: check that decoherence can arise from a small
probability of having the qubit measured and losing
the outcome (a 3rd interpretation).



A4 Q3:

While quantum operations are not reversible in general,
we characterize conditions for reversal in this question.

The question challenges your understanding of partial
trace, purification, and quantum operations.



~

o ~

Stinesprin
dilatign ’ (b) (a) (c)(d)
Pure state Ensemble Kraus
unitary QM on 2 of pure rep of
on RS systems RS ¢«—— statesonS QOps
purific- .
partial trace ation Srg,)c(égg
of R on S
quantum Density matrix on S ensemble
operation (revised measurement) /of ops
on S Y

\



POVM measurements




Consider the following measurement on system A:

1. Apply an isometry U to system A, mapping it to
systems BE. °e
U = Kl:‘ K ® A .

2. Apply a complete projective measurement along
the computational basis on E.

B MR/ ad g
W VAL

P AU




Projective measurement POVM measurement

JPK]) Er= Ne Ae 20
% P = T \Z Ce =T
me(k): +rP\cf me(K): "“rE\cf
postmeas state postmeas state
:—PK@\)K:@BT@ :AKQA'L :EFJET
WPKS) Tr P“)D —(\?EKY Tr Ek p

P« > kx , orthogonality condition on { Pj} lifted, and
it Is possible to have more outcomes than the dim.

NB POVM measurement on A is projective on BE.



Quick recap of mixed state guantum mechanics:

States: Density matrices: rank 1, positive semidefinite

Interpretation / characterization :
Convex combination of rank 1 projectors
Probabilistic mixture of pure states (outer products)

Transformations:

Mappings N from square matrices to square matrices
that're linear, trace-preserving, & completely positive

Interpretations / characterizations :

1. Stinespring dilation: N () = 1, Up u?

Conjugate input matrix by an isometry (reversible)
Into matrix in 2 systems. Then, apply partial trace
(irreversible) to one system.



2. Kraus representation: N (7) = 2 A Al

Conjugate input matrix by "Kraus operators" and
sum the resulting matrices. The Kraus operators A,
need not be unitary. They satisfy: T AT A =T

K

3. Choi representation:
Define the Choi matrix of N as
TJIN) = TON (1) = L 1ixy1 @ N(1s51)
where (v) = ?mkmh. ’

f ,2 Bell = "0" fo )= T‘ﬂz ( Vol 0 T 3)(,()1 & j('\‘)zz)

< Ex: ver'u&zﬁ V\%'mg Divac notation
— N

—N(/A)
Nipr=Tr, (5) ® T ij




Measurements:

Measurements described by a POVM: {E.}\
b > D,EEK?—I.

Interpretations / characterizations :

1. Stinespring dilation:

Conjugate input matrix by an isometry (reversible)
followed by a projective measurement.

2. Kraus representation: M(z) = 2 Ap Al ® (kXK
EK = AJLAk



Crucial concept: partial trace

Pure state

Fixed pure state
_|_
Unitary

Fixed pure state
_|_

Unitary
+

Projective
measurement

partial trace

/

partial trace

/

no
partial trace

/

Mixed state

Quantum
operation

POVM
measurement



