
(b) States on composite systems
(a) Noisy quantum data (NC 2.4, KLM 3.5.1) 

(c) Most general (noisy) quantum dynamics 

8. Modelling noise: mixed state QM & Q operations

 (NC 8.3.1, 2.5, KLM 3.5.2)

(d) Characterizations (NC 8.2, KLM 3.5.3)
(e) Important examples (NC 8.3)

(f) POVM measurements (NC 2.2.6, KLM A8)
(g) Trace distance, indistinguishability, 
      Helstrom-Holevo theorem (NC 9.2, KLM A8)
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Pure state
   on RS

Mixed state
     on S

partial trace

purification

Physically irreversible unless discarding
an uncorrelated system (QECC)

Concept: accessing 1 out of 2 systems

Concept: given a state on system S, what 
pure states in systems RS, if exist, could 
have given rise to it?

Conceptual inverse of partial trace, not 
physically possible, crucial in cryptograhy
and extremely useful in general.  
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Definition: given a density matrix       on a system S,
a purification of       is a pure state        on S and an 
auxiliary system (say, R), such that  

(1) is there always a purification? 

Given a density matrix, 

(2) how big does the "purifying system" (R) have to be? 

(3) if purifications exist, how are they related?  
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Theorem: Let      be a density matrix in system S. 

has a purification on sys R iff dim(R)      rank(    ).

(ii) Furthermore, if are two purifications of 
with purifying system R, then, =
for some unitary U acting on R.

(i)

Extension of (ii):  Suppose

:purification of with purifying system R1 

:purification of with purifying system R2 

WLOG, dim(R2) is no less than dim(R1). 

Then, = for some isometry U from R1 to R2.

The proof for R1=R2 holds for this extension 
(modifications needed will be made in green).  
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Proof (if): By the spectral theorem 

Let

is a purification.  

positive e-vectors

computational basis states on R

=

Theorem: Let      be a density matrix in system S. 

has a purification on sys R iff dim(R)      rank(    ).(i)

Proof (only if): suppose
Let

Partial-trace of R gives a sum of at most r rank-1 
projectors, with rank at most r.  So, rank(    )

is a purification, r = dim(R). (2nd
 rep)
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We saw earlier that if       is a purification of

To see (ii), consider partial trace with the 1st rep of 
bipartite states on RS. 

so is 

for any unitary U on R.  

(ii) says there are no other purifications.  

Let 

Let

The transformation 

rs-dim vectors to r-by-s matrices. 

=
dim(R) dim(S)

defines a bijection from



Ex: check that 

r blocks

if then M = 

call this Mat(     )



Lemma: 

The proof is a useful exercise for W25.  
Answer in the next few pages.  
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Lemma: 

Proof: LHS = 

RHS = 
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For the extension dim(R1)=r1, dim(R2)=r2, r1     r2:

M1 M2

Singular value decomp (SVD) : (V unitary)

Rest of proof  
as before. 



A purification is a pure state on 2 systems.

Returning to topic03-02 briefly ... 

On the 3rd representation of bipartite states, 
the Schmidt decomposition. 

Assigned as reading exercise for W25?



3 ways to write down a pure state on 2 systems A & B:

1. Take any basis           for A, and basis            for B.

for unique 

2. Take any basis           for A, and basis            for B.

where unit vectors, not 
necessarily ortho

Similarly with AB interchanged. 



3. The Schmidt decomposition (singular value decomp)

Starting from

Define matrix M with (i,j)-entry being

NC 2.5

From the singular value decomposition M = UDV 
where D is diagonal with non-negative entries, and

U,V are unitary.  So, Thus

D diagonal, 
  so, l = k.   

Ex: check that  

KLM A7

no cross terms!

orthonormal, by unitarity of U (V).



NB The Schmidt decomposition is like the 2nd  
representation but the expression is in terms of a 
basis for A and also a basis for B!  We pay a price -- 
in the 2nd representation, we can choose any basis 
for A, here we do not get to choose either basis.   

NB The singular values of M,  , are called the 
Schmidt coefficients of  The rank of M, which is

the number of terms in the Schmidt decomposition,
is called the Schmidt rank.  The bases  
are called the Schmidt bases of

Exercise: show that the Schmidt coefficients are 
invariant under local unitaries acting on A and B.  

They characterize the entanglement of 



Example:

is already in a Schmidt decomposition.

Example:

Singular decomposition of M = 



Performing a spectral decomposition:



Performing a spectral decomposition:





End of reading exercise for Schmidt decomposition.  



Partial tracing a pure bipartite state:

1.

2.

3.

say, of system A

Recall we can take the partial in any basis. 

From 1: 

matrix in      basis



From 2: 

convex combination of pure states

From 3: 

spectral decomp of orthonormal.

Note that all 3 answers are the same -- we obtain 
different expressions for the same density matrix !! 
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What is the most general transformation allowed by QM?

Any reasonable transformation N should take quantum 
states to quantum states !

e.g., conjugation by a unitary is CP 
e.g., partial trace is CP   

(2) N is trace preserving: tr(N(M)) = tr(M) 
     (conservation of probability when M =    )

(3) N is completely positive (CP): 

(1) N is linear (QM is)

Viewing N as a mapping from matrices to matrices:

N applied to 1 out of 2 systems takes a valid initial 
joint state           to a valid new joint state             



Definition: a quantum operation is a mapping 
from matrices to matrices that is (1) linear, 
(2) trace-preserving, and (3) completely positive. 

Synonyms: quantum channel, TCP map ... 
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Question: 

Define the transpose map as T(M) = M  .T

Is the transpose map a quantum channel?

(a) yes, (b) no

The transpose is "positive" :  M    0 implies T(M)    0, 
but not completely positive.  Let

: eigenvector with negative eigenvalue.
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The identity map:

Consider the map .  It is linear, trace

preserving and completely positive. It represents the

evolution in which nothing happens.  

The identity map is most often used when one of two 
system is being transformed.  

On a tensor product input, 

Then, linearity allows the most general 

to be computed.  



Definition: a quantum operation is a mapping 
from matrices to matrices that is (1) linear, 
(2) trace-preserving, and (3) completely positive. 



Implied from the definition:

1. Composition of two quantum ops is a quantum op.  
(All 3 properties are preserved by composition.)

2. Tensor product of two quantum ops (applied to 
     two disjoint systems) is a quantum op.  

Definition: a quantum operation is a mapping 
from matrices to matrices that is (1) linear, 
(2) trace-preserving, and (3) completely positive. 



Example 1: Conjugation by unitary

Example 2: Partial trace =



Example 1: Conjugation by unitary

is a quantum

operation for any system E and any U.  

partial trace 

Example 2: Partial trace =

Example 3: 

Proof: by examples 1-2 and composition.



Example 1: Conjugation by unitary

is a quantum

operation for any system E and any U.  

partial trace 

Example 2: Partial trace =

Example 3: 

Proof: by examples 1-2 and composition.

Extensions: E can start in any other density matrix 
uncorrelated with     , and partial trace can be taken 
over a system E' of any size.  

Surprise: this makes up all quantum operations!  



Theorem: any quantum operation N from system A to 
system B can be represented as 
for some system E and some Stinespring dilation U. 

arxiv.org/abs/quant-ph/0201119

Proof: out of syllabus.  For the interested, here's a 
write-up you already have the background to read: 



1.

partial trace 

Representations of quantum operations:

Unitary representation

can skip

U is then an isometry.
U is called the Stinespring dilation for N.  
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Example: amplitude damping channel

We can define U by its action on a pure qubit state:

the excitation is transfered from A to E 

On a general density matrix 

NB A, B, E all 2-dim.  





So, the channel takes to

A fraction    of the (1,1) entry is moved to the (0,0) 
entry, and the off diagonal terms are diminished.  
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U is called the Stinespring dilation for N.  
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Let 
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What is          in terms of U?

Let 

E: 1st register.

isometry 

mixture of states

not necessarily unitary
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More generally, let U be an isometry taking system A 
to system BE (dims of A, B, and E are arbitrary).  

Kraus representation of N

blocks
each taking

to dims

: Kraus operators

Stinespring dilation,  
isometric extension

* U isometry

trace preserving

* A map w/ Kraus representation 
  is linear and completely positive
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Example: amplitude damping channel

If the initial state is
output is the mixture of two unnormalized states: 

Interpretation: ground state
excited state
de-excitation (with prob     )
no de-excitation, but diminished 
amplitude for 

Ex: check 



Execise: evaluate and find how N

transform the Bloch sphere. 

The ground state           is a fixed point of N.  
N is not unital (taking the identity matrix to itself). 
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1.

partial trace 

2a. Kraus rep:

2b. Conversely, given      operators       mapping from  

is an isometry, and

system A to B satisfying

Representations of quantum operations:

Unitary representation

4. Choi matrix 

3. as an explicit function of e.g.

(see arxiv.org/abs/quant-ph/0201119)



Example: qubit depolarizing channel w/ noise rate p

Specified as a linear map, we do not know upfront
if the map is a quantum operation.  We will derive a
Kraus representation which verifies that N   is a q op. p



Example: qubit depolarizing channel w/ noise rate p

Let , the randomization map (p=1).

Claim:



Example: qubit depolarizing channel w/ noise rate p

Let , the randomization map.

Claim:

Proof: Let 



Example: qubit depolarizing channel w/ noise rate p

Let , the randomization map.
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Example: qubit depolarizing channel w/ noise rate p

Let , the randomization map.

Claim:

Proof: Let 

NB can be interpreted as an evolution in which 
one of the unitaries I, X, Y, Z are picked at random
and applied to the input. 
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Example: qubit depolarizing channel w/ noise rate p

Let , the randomization map.

Lemma:

NB The qubit depolarizing channel w/ noise rate p can
be interpreted as a noise process in which X, Y, and Z
each happens with prob p/4, and I happens otherwise. 
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For a qubit density matrix

The depolarizing channel 
shrinks the Bloch vector 
by a factor of (1-p).  

The randomization map 
sends any input to the 
center. 

Unlike the amplitude damping channel, the 
depolarizing channel is unital and maps I to I.  



blocks
each taking

to dims

Degree of freedom in the Kraus operators:

partial trace 

Question: if we apply partial trace of E in a basis  
different from          do we: 

(a) get the same map N, same Kraus operators
(b) get the same map N but different Kraus operators
(c) get a different map ? 
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that fixes the diagonal and shrinks the off-diagonal 
entries. 
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entries. 
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correspond to the same map. 

One Kraus rep applies  at random. 

One Kraus rep applies I with prob 1-p, Z with prob p.  



A4 Q2: 

Detailed study of decoherence, a quantum operation
that fixes the diagonal and shrinks the off-diagonal 
entries. 

You will show that two different Kraus representations
correspond to the same map. 

One Kraus rep applies  at random. 

One Kraus rep applies I with prob 1-p, Z with prob p.  

You will see a Stinespring dilation, and you have to find 
a change in the basis of the partial trace that transforms 
the second set of Kraus operators to the first.  



A4 Q2

In the extreme case: 

the map  

corresponds to someone measuring the qubit. 

e.g., with Stinespring dilation

followed by partial trace of E.  

Ex: check that decoherence can arise from a small
probability of having the qubit measured and losing
the outcome (a 3rd interpretation).  



A4 Q3: 

While quantum operations are not reversible in general,
we characterize conditions for reversal in this question.

The question challenges your understanding of partial 
trace, purification, and quantum operations.  
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POVM measurements



Consider the following measurement on system A:

1. Apply an isometry U to system A, mapping it to 
systems BE.  

2. Apply a complete projective measurement along 
the computational basis on E.  

A
E

B



Projective measurement POVM measurement

postmeas state postmeas state

orthogonality condition on {   } lifted, and

it is possible to have more outcomes than the dim. 

NB POVM measurement on A is projective on BE.  



Quick recap of mixed state quantum mechanics:

States: Density matrices: rank 1, positive semidefinite

Interpretation / characterization : 
Convex combination of rank 1 projectors
Probabilistic mixture of pure states (outer products)

Transformations:

Mappings      from square matrices to square matrices 
that're linear, trace-preserving, & completely positive  

Interpretations / characterizations : 

Conjugate input matrix by an isometry (reversible) 
into matrix in 2 systems.  Then, apply partial trace  
(irreversible) to one system.  

1. Stinespring dilation: 



Conjugate input matrix by "Kraus operators" and 
sum the resulting matrices.  The Kraus operators 
need not be unitary.  They satisfy: 

2. Kraus representation: 

Define the Choi matrix of       as

3. Choi representation: 

where 



Measurements:

Interpretations / characterizations : 

Conjugate input matrix by an isometry (reversible) 
followed by a projective measurement.

1. Stinespring dilation: 

Measurements described by a POVM:

2. Kraus representation: 



Crucial concept: partial trace

Pure state Mixed state

Unitary

Quantum 
operation

Projective 
measurement

Fixed pure state
+

Unitary

Fixed pure state
+

+

partial trace

     POVM 
measurement

partial trace

partial trace
no


