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tGiven an undire
ted graph G = (V;E) and three spe
i�ed terminal nodes t1; t2; t3,a 3-
ut is a subset A of E su
h that no two terminals are in the same 
omponent ofGnA. If a non-negative edge weight 
e is spe
i�ed for ea
h e 2 E, the optimal 3-
utproblem is to �nd a 3-
ut of minimum total weight. This problem is NP-hard, and infa
t, is max-SNP-hard. An approximation algorithm having performan
e guarantee76 has re
ently been given by C�alines
u, Karlo�, and Rabani. It is based on a 
ertainlinear-programming relaxation, for whi
h it is shown that the optimal 3-
ut has weightat most 76 times the optimal LP value. It is proved here that 76 
an be improved to 1211 ,and that this is best possible. As a 
onsequen
e, we obtain an approximation algorithmfor the optimal 3-
ut problem having performan
e guarantee 1211 . In addition, we showthat 1211 is best possible for this algorithm.1 Introdu
tionGiven an undire
ted graph G = (V;E) and k spe
i�ed terminal nodes t1; : : : ; tk, a k-
utis a subset A of E su
h that no two terminals are in the same 
omponent of GnA. If anon-negative edge-weight 
e is spe
i�ed for ea
h e 2 E, the optimal k-
ut problem is to�nd a k-
ut of minimum total weight. This problem was shown by Dahlhaus, Johnson,Papadimitriou, Seymour, and Yannakakis [7℄ to be NP-hard for k � 3. (Of 
ourse, it issolvable in polynomial time if k = 2.) They also gave a simple polynomial-time algorithmhaving performan
e guarantee 2(k�1)k , that is, one that is guaranteed to deliver a k-
ut ofweight at most 2(k�1)k times the minimum weight of a k-
ut. Later, in [8℄, the same authorsshowed that for k � 3 the problem is max-SNP-hard, whi
h implies that, assuming P 6=NP, there exists a positive " su
h that the problem has no polynomial-time approximationalgorithm with performan
e guarantee 1 + ".�S
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The present paper 
on
entrates on the optimal 3-
ut problem. From the above remarks,it follows that this problem is max-SNP-hard, and the approximation algorithm of [8℄ hasa performan
e guarantee of 43 . Later, C�alines
u, Karlo�, and Rabani [1, 2℄ gave an approxi-mation algorithm having a performan
e guarantee of 76 . We give a further improvement thatis based on their approa
h.Chopra and Rao [4℄ and Cunningham [5℄ investigated linear-programming relaxations ofthe 3-
ut problem, showing results on 
lasses of fa
ets and separation algorithms. Here arethe two simplest relaxations. (By a T-path we mean the edge-set of a path joining two ofthe terminals. By a wye we mean the edge-set of a tree having exa
tly three nodes of degreeone, ea
h of whi
h is a terminal. For a set A, a subset B of A, and a ve
tor z 2 RA, z(B)denotes Pj2B zj.) minimize Pe2E 
exe(LP1) subje
t tox(P ) � 1; P a T -pathxe � 0; e 2 E:minimize Pe2E 
exe(LP2) subje
t tox(P ) � 1; P a T -pathx(Y ) � 2; Y a wyexe � 0; e 2 E:It follows from some simple observations about shortest paths, and the equivalen
e of op-timization and separation, that both problems 
an be solved in polynomial time. It wasproved in [5℄ that the approximation algorithm of [7℄ delivers a 3-
ut of value at most 43times the optimal value of (LP1). (In parti
ular, the minimum weight of a 3-
ut is at most43 times the optimal value of (LP1).) It was 
onje
tured that the minimum weight of a3-
ut is at most 1615 times the optimal value of (LP2). The examples in Figure 1 (from [5℄)show that this 
onje
ture, if true, is best possible. In both examples, the values of a feasiblesolution x of (LP2) are shown in the �gure. The weights 
e are all 2 for the example on theleft. For the one on the right they are 1 for the edges of the interior triangle, and 2 for theother edges. In both 
ases the minimum 3-
ut value is 8, but the given feasible solution of(LP2) has value 7.5.
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Re
ently, C�alines
u, Karlo�, and Rabani [1, 2℄ gave a new linear-programming relax-ation. Although their approa
h applies to any number k of terminals, we 
ontinue to restri
tattention to the 
ase when k = 3. They need to assume that G be a 
omplete graph. (Ifany missing edges are added with weight zero, the resulting 3-
ut problem is equivalent tothe given one, so this assumption is not limiting.) The relaxation is based on the followingobservations. First, every minimal 3-
ut is of the form �(R1; R2; R3), where ti 2 Ri for alli. Here, where R is a family of disjoint subsets of V whose union is V , �(R) denotes theset of all edges of G joining nodes in di�erent members of the family. Sin
e 
 � 0, there isan optimal 3-
ut of this form. Se
ond, the in
iden
e ve
tor x of a minimal 3-
ut is a kind ofdistan
e fun
tion, that is, it de�nes a fun
tion d(v;w) = xvw on pairs of nodes of G whi
h isnon-negative, symmetri
, and satis�es the triangle inequality. Finally, with respe
t to d thedistan
e between any two terminals is 1, and the sum of the distan
es from any node v tothe terminals is 2. The resulting linear-programming relaxation is:minimize Pe2E 
exe(LP3) subje
t toxvw = 1; v; w 2 T; v 6= wPv2T xvw = 2; w 2 Vxuv + xvw � xuw � 0; u; v; w 2 Vxe � 0; e 2 E:This relaxation is at least as tight as (LP2). To see this, suppose that (after addingmissing edges to make G 
omplete), we have a feasible solution x to (LP3). Then for anypath P of G joining u to v, x(P ) � xuv, by applying the triangle inequality. It follows thatx(P ) � 1 for any T -path P . Moreover, any wye Y is the disjoint union of paths P1; P2; P3from some node v to the terminals. It follows that x(Y ) � Pw2T xvw = 2. Thus everyfeasible solution of (LP3) gives a feasible solution of (LP2) having the same obje
tive value.The �rst example of Figure 1 shows that the optimal value of (LP3) 
an be stri
tly greaterthan the optimal value of (LP2). On the other hand, the se
ond example shows that thereis no hope to prove in general that the minimum weight of a 3-
ut is less than 1615 times theoptimal value of (LP3).It was proved in [1, 2℄ that the minimumweight of a 3-
ut is at most 76 times the optimalvalue of (LP3). As a 
onsequen
e, an approximation algorithm for the optimal 3-
ut problemhaving a performan
e guarantee of 76 was derived. (It is 
lear that (LP3) 
an be solved inpolynomial time, sin
e it is of polynomial size.) However, it was left open whether or not thisresult 
ould be strengthened; the se
ond example of Figure 1 shows an example for whi
hthe minimum weight of a 3-
ut 
an be as large as 16/15 times the optimal value of (LP3),and this is the worst example given in [1, 2℄. (To see that x of that example does extend toa feasible solution of (LP3), we simply de�ne x on ea
h missing edge uv to be the minimumlength, with respe
t to lengths xe, of a path from u to v.)In this paper we show that the minimum weight of a 3-
ut is at most 1211 times theoptimal value of (LP3), and we show that the 
onstant 1211 is best possible. As a 
onsquen
e,we give an approximation algorithm for the optimal 3-
ut problem and prove that it has aperforman
e guarantee of 1211. These results were obtained independently by Karger, Klein,Stein, Thorup, and Young [10, 11℄. We also provide a more pre
ise bound, whi
h depends3



on the value of the least 
ommon denominator of the 
omponents of an optimal solutionto (LP3).The main results above were des
ribed in the short paper of the last two authors [6℄. The
urrent paper 
ontains more detailed proofs. In addition, we answer one question that wasleft open in [6℄. Namely, we show that the performan
e guarantee of the algorithm is bestpossible; that is, no better guarantee holds for this algorithm.2 Triangle embeddingsC�alines
u, Karlo�, and Rabani [1, 2℄ 
onsidered an extremely useful geometri
 relaxation,whi
h they showed was equivalent to the linear-programming relaxation (LP3). Let 4denote the 
onvex hull of the three elementary ve
tors e1 = (1; 0; 0), e2 = (0; 1; 0), ande3 = (0; 0; 1) in R3. By a triangle embedding of G we mean a mapping y from V into 4 su
hthat y(ti) = ei for i = 1; 2; 3. A triangle embedding y determines a ve
tor x 2 RE as follows.For ea
h edge uv, let xuv be one-half the L1 distan
e from y(u) to y(v). It is easy to see thatthis x is a feasible solution to (LP3). Conversely, a feasible solution x of (LP3) determinesa triangle embedding y as follows. For ea
h node v, let y(v) = (1� xt1v; 1 � xt2v; 1� xt3v).Given a triangle embedding y we 
an obtain x as above, and then use x to obtain atriangle embedding y0. It is easy to see that y = y0. It is not true, on the other hand,that every feasible solution of (LP3) arises in this way from a triangle-embedding. However,it is \almost true". The following result is impli
it in [1, 2℄, and we in
lude a proof for
ompleteness.Theorem 1 Let x be a feasible solution of (LP3), let y be the triangle embedding determinedby x and let x0 be the feasible solution of (LP3) determined by y. Then x0 � x, and if x isan optimal solution of (LP3), so is x0.Proof. First, observe that the se
ond statement is a 
onsequen
e of the �rst and thenon-negativity of 
. Now let uv 2 E. Both y(u) and y(v) have 
omponent-sum 1. Therefore,y(u)�y(v) has 
omponent-sum zero, and so one-half of the L1 distan
e between y(u) and y(v)is the sum of the non-negative 
omponents of y(u)� y(v). Hen
e we may assume, perhapsby inter
hanging u with v and relabelling the terminals, that one-half of the L1 distan
ebetween y(u) and y(v) is the sum of the �rst two 
omponents of y(u)� y(v). Therefore,x0uv = 12ky(u)� y(v)k1 = y1(u)� y1(v) + y2(u)� y2(v)= 1� xut1 � (1� xvt1) + 1 � xut2 � (1� xvt2)= xut3 � xvt3� xuv;as required. �The approximation algorithm of C�alines
u, Karlo�, and Rabani uses the following ideas.Suppose that (LP3) is solved, and an optimal solution x� that arises from a triangle em-bedding is found. For a number � between 0 and 1 that is di�erent from x�rv for ev-ery v 2 V and r 2 T , and an ordering r; s; t of T , de�ne Rr = fv 2 V : x�rv < �g,4



Rs = fv 2 V nRr : x�sv < �g, Rt = V n(Rr [ Rs). We 
all the 3-
ut �(Rr; Rs; Rt) uniform(with respe
t to this x�). It is easy to see that there are O(n) uniform 3-
uts. The algorithmof [1, 2℄ simply 
hooses the uniform 3-
ut having minimum weight. It is proved to haveweight at most 76 times the minimum weight of a 3-
ut.We 
onsider a slight generalization of the notion of uniform 3-
ut. Let �;�0 be twonumbers 
hosen as � was above, and let r; s; t be an ordering of T . De�ne Rr = fv 2 V :x�rv < �g, Rs = fv 2 V nRr : x�sv < �0g, Rt = V n(Rr [ Rs). We 
all the 3-
ut �(Rr; Rs; Rt)
at (with respe
t to this x�). Clearly, every uniform 3-
ut is 
at. It is easy to see that thereare O(n2) 
at 3-
uts. Our approximation algorithm simply 
hooses the 
at 3-
ut havingminimumweight. We will show that it has weight at most 1211 times the weight of an optimal3-
ut. This result is based on a tight analysis of the bound for the optimal 3-
ut problemgiven by (LP3).3 Linear programming againIt is easy to 
he
k that if the optimal value of (LP3) is zero, then there is a 3-
ut of weightzero. Therefore, we may assume that the optimal value is positive. De�ne� := infG;
 optimal value of (LP3)minimum weight of a 3-
ut :So our problem may be restated as �nding the value of �. By multiplying 
 by an appropriatepositive number, we may assume that the minimum weight of a 3-
ut is 1. It is now more
onvenient to determine the best lower bound on the value of (LP3).Assume that G is �xed, and that an optimal solution x� of (LP3) is also �xed. We mayassume that x� is rational, sin
e it is an optimal solution of a linear-programming problemhaving rational data. Therefore, there exists a positive integer q su
h that qx� is integer-valued. By Theorem 1, we may assume that x� arises from a triangle-embedding y�, and it iseasy to see that qy� is integral, as well. Therefore, we 
an think of y� as embedding the nodesof G into a �nite subset 4q of 4, 
onsisting of those points y 2 4 for whi
h qy is integral.We de�ne the planar graph Gq = (4q; Eq) by uv 2 Eq if and only if the L1 distan
e betweenu and v is 2q . Figure 2 shows G9. (Note that the de�nition of the verti
es as points in R3and the edges as straight line segments joining their ends provides a natural embedding intothe plane de�ned by x1+x2+x3 = 1. We make use of this embedding whenever the 
ontextassumes Gq to be a plane graph.)For nodes u; v of Gq, we denote by dq(u; v) the least number of edges of a path in Gqfrom u to v. It is easy to see that dq(u; v) is equal to q2 times the L1 distan
e from u to v.Theorem 2 Let G; 
 be a 3-
ut instan
e, let x� be a rational-valued optimal solution of(LP3), with 
orresponding triangle-embedding y�, and let q be a positive integer su
h thatqx� is integral. Then there is a 3-
ut instan
e on graph Ĝ with nodeset 4q and edge-weights
̂ su
h that:(a) x̂ de�ned by qx̂uv = dq(u; v) for all uv 2 E is a feasible solution of (LP3) (for Ĝ; 
̂),and 
̂x̂ � 
x�; 5



Figure 2: G9(b) The optimal 3-
ut value for Ĝ; 
̂ is at least that for G; 
;(
) 
̂e = 0 for all e =2 Eq;(d) For every 
at 3-
ut of Ĝ with respe
t to x̂, there is a 
at 3-
ut of G with respe
t to x�having no larger weight.Proof. We use the mapping y� from V to 4q, and we assume that x� arises from y�.Suppose that two nodes u; v of G are mapped to the same point of 4q by y�. Form G0 byidentifying u with v and, where multiple edges are formed, repla
ing the pair by a singleedge whose weight is their sum. Then every 3-
ut of G0 determines a 3-
ut of G having thesame weight, so the minimum weight of a 3-
ut of G0 is at least the minimum weight of a3-
ut of G. Moreover, x� also determines a triangle-embedding of G0, so there is a feasiblesolution of (LP3) for G0 having value 
x�. Finally, every 
at 
ut of G0 gives a 
at 
ut of G ofthe same weight. Thus the theorem is true for G if it is true for G0, and so we may assumethat y� is one-to-one.Now suppose that y� is not onto, that is, that there is an element z of 4q su
h thaty�(v) 6= z for all v 2 V . We 
an form a graph G0 from G by adding a node v and an edge uvof weight zero for every u 2 V . It is easy to see that the minimum weight of a 3-
ut of G0 isthe same as that of G. Also, if we map the new node to z, we get a triangle embedding of G0,and it 
orresponds to a feasible solution of (LP3) on G0 having value equal to 
x�. Finally,every 
at 
ut of G0 
orresponds to a 
at 
ut of G of the same weight. So the theorem is truefor G if it is true for G0. It follows that we may assume that y� is onto. Therefore, we mayassume that V = 4q, and that y� is the identity mapping.Now suppose that there exists uv 2 EnEq, su
h that 
uv = " > 0. Let P be the edge-setof a path in Gq from u to v su
h that jP j = dq(u; v). De
rease 
uv to zero, and in
rease 
eby " for all e 2 P . We denote the new 
 by 
0. Then, sin
e every 3-
ut using e uses an edgefrom P , the minimum weight of a 3-
ut with respe
t to 
0 is not less than that with respe
tto 
. (Similarly, every 
at 3-
ut has value with respe
t to 
0 not less than that with respe
tto 
.) Now 
0x� = 
x� � "dq(u; v) + "dq(u; v) = 
x�. This argument 
an be repeated as longas there is su
h an edge uv. �6



(Remark: It 
an be shown that x̂ of Theorem 2 is an extreme point of the feasible regionof (LP3).)For ea
h positive integer q, let F (q) be the optimal value of the following linear-programmingproblem. minimize 1qPe2E 
e(Pq) subje
t to
(S) � 1; S a 3-
ut of Gq
e � 0; e 2 Eq:The dual problem is maximize P zS(Dq) subje
t toPe2S zS � 1q ; e 2 EqzS � 0; S a 3-
ut of Gq:Proposition 3 � = infq F (q).Proof. Let �0 denote infq F (q). It is easy to see from Theorem 2 that �0 is a lower boundfor �.Now, 
onsider an optimal solution �
 to (Pq) for some q. Clearly, the optimal weight ofa 3-
ut in the weighted graph (Gq; �
) is 1. However, x̂ as de�ned in Theorem 2 is a feasiblesolution to (LP3) for (Gq; �
) with obje
tive value F (q). Thus, � � F (q). Sin
e q is arbitrary,it follows that � � �0. The result follows. �We used CPLEX to solve (Pq) and (Dq) for all values of q up to 50, and then were ableto �nd solutions for general q.Theorem 4 For q � 1,F (q) = 8><>: 1112 + 112(q+1); if q � 0 mod 31112 + 112q ; if q � 1 mod 31112 + 112q � 112q2 ; if q � 2 mod 3Moreover, there is an optimal solution of (Dq) for whi
h zS is positive only if S is a 
at3-
ut.It is easy to see that Proposition 3 and Theorem 4 have the following 
onsequen
e.Theorem 5 For any 3-
ut instan
e, the minimum weight of a 3-
ut is at most 1211 times theoptimal value of (LP3), and the 
onstant 1211 is best possible. �Theorem 5 has been proved independently by Karger et al. [10℄, whose approa
h issomewhat di�erent, but also uses a linear-programming analysis of triangle-embedding.7



4 An improved approximation algorithmAlgorithm 3-CUT1. Find a rational-valued optimal solution x� of (LP3).2. Find the triangle embedding y� determined by x�.3. Return the 
at 3-
ut of minimum weight.As pointed out before, the �rst step 
an be performed in polynomial time. The polynomial-time algorithms for linear programming 
an be modi�ed to return a rational-valued optimalsolution, and one of polynomial size. The se
ond is easy. So is the third step, using theobservation made earlier that there are only O(n2) 
at 3-
uts of G.Theorem 6 Algorithm 3-CUT returns a 3-
ut of weight at most 1F (q)
x� where q is a 
om-mon denominator for the 
omponents of x�.Proof. We may assume that the optimal value of a 3-
ut is 1. Consider an optimal solutionz� of (Dq) as given by Theorem 4. ThenXS 1F (q)z�S � 1;and z�S > 0 only if S is a 
at 3-
ut of Gq. Obtain 
̂ from Theorem 2. Then,min weight of a 
at 3-
ut of (G; 
)� min weight of a 
at 3-
ut of (Gq; 
̂) by part (d) of Theorem 2� minz�S>0 
̂(S)� XS 1F (q)z�S 
̂(S)= 1F (q)XS z�S 
̂(S)= 1F (q) Xe2E(Gq) 
̂eXe2S z�S� 1F (q) Xe2E(Gq) 
̂ex̂e� 1F (q)Xe2E 
ex�e by part (a) of Theorem 2: �Corollary 7 Algorithm 3-CUT returns a 3-
ut of weight at most 1211 times the minimumweight of a 3-
ut.Proof. Sin
e 1F (q) < 1211 and the optimal value of (LP3) is at most the minimum weight ofa 3-
ut, the result follows immediately from Theorem 6. �8



5 Proof of Theorem 4To prove Theorem 4, it is enough to give feasible solutions of (Pq) and of (Dq) having the
laimed 
ommon obje
tive value. We shall give the details only for the 
ase when q = 3mfor some integer q � 2. Note that this is suÆ
ient to obtain Theorem 5 and Corollary 7,sin
e a 
ommon denominator for the 
omponents of x� 
an always be 
hosen to have thisproperty. (In fa
t, to prove Corollary 7 and all but the \best possible" part of Theorem 5,su
h a solution of (Dq) is enough.) The remaining 
ases are similar and do not add mu
hmore insight to the problem. Complete details of the other 
ases 
an be found in [3℄.For a terminal t and an integer j, let Rt(j) denote the set fv 2 Vq : dq(t; v) < jg. If a fa
etriangle of Gq has the same orientation as 4, it is 
alled upright; otherwise, it is inverted.A solution to (Dq)First we show a feasible solution of (Dq) having obje
tive value 1112 + 112(3m+1). This requiresassigning dual variables to 
at 3-
uts of Gq. We need some terminology.We use the term row in the following te
hni
al sense. A row is de�ned by a straightline through the 
entre of a fa
e triangle and parallel to one of its three sides. The terminalopposite to the row is the terminal separated by the straight line from the other two terminals.When we speak of the fa
e triangles in the row, we mean all of the fa
e triangles that areinterse
ted by the line. When we speak of the edges in the row, we mean all of the edgesthat are interse
ted by the line. The distan
e between the row and its opposite terminal isde�ned as the shortest graph distan
e from the terminal to a vertex of one of the trianglesin the row. Some of the above de�nitions are illustrated on the left in Figure 3.
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r s

t

distance 5 from its
opposite terminal

A row having

t Figure 3: Illustrations for te
hni
al de�nitionsWe assign positive dual variables to two kinds of 
at 3-
uts. The values assigned to the�rst type of 3-
ut are determined by a weighting of the fa
e triangles of Gq. A
tually, weassign weights only to upright fa
e triangles. Figure 4 shows weightings of the fa
e trianglesfor G6 and G9. (The weight of any fa
e triangle 
ontaining no number is understood to bezero.) 9
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A weighting for the general 
ase 
an be de�ned indu
tively. Think of G3m as 
onsistingof the rows at distan
e 3m � 1 from the terminals together with G3(m�1) (see Figure 5)and use the fa
e weighting for G3(m�1) with the following 
hanges. In ea
h row at distan
em � 1 from its opposite terminal, ea
h upright triangle is assigned weight m. In ea
h rowat distan
e 3m � 1 from its opposite terminal, ea
h upright triangle between the two onesassigned weight m above, is assigned weight 3m� 1. Finally, ea
h upright triangle in a rowat distan
e m from its opposite terminal, whi
h was assigned weight m � 1 in G3(m�1), isassigned weight 3m � 2. Clearly, the sum of the weights of the fa
e triangles in ea
h rowof distan
e exa
tly m� 1 from its opposite terminal is m2. It is an easy indu
tion to showthat the sum of the weights of the fa
e triangles in ea
h row of distan
e at least m from itsopposite terminal is m(3m+ 1).Given an upright fa
e triangle, 
onsider the set of all edges in the three rows 
ontainingthe triangle. Choose two 
at 3-
uts of Gq whose union is this set, and whose interse
tionis the set of edges of the fa
e triangle. (There is more than one way to do this. See theillustration on the right in Figure 3.) For ea
h of these two 3-
uts, assign a z-value equal tothe weight of the fa
e triangle divided by B, where B = 6m2(3m+ 1).Let Ie denote the 
onstraint of (Dq) 
orresponding to an edge e. The 
ontribution to theleft-hand side of Ie by the variables whose values we have just assigned is the sum of theweights of the fa
e triangles in the two rows 
ontaining e divided by B. We now 
onsiderthree types of edges e:(a) Those for whi
h the two rows 
ontaining e are at distan
e at least m from their re-spe
tive opposite terminals, in whi
h 
ase this sum is twi
e m(3m+ 1)=B = 13m ;(b) Those for whi
h one of the rows 
ontaining e is at distan
e less than m � 1 from theopposite terminal (so the other is at distan
e at least m+1 from its opposite terminal),in whi
h 
ase this sum is m(3m+ 1)=B = 16m ;(
) Those for whi
h one of the rows 
ontaining e is at distan
e exa
tly m � 1 from theopposite terminal (so the other is at distan
e at least m+1 from its opposite terminal),in whi
h 
ase this sum is m(3m+ 1)=B +m2=B.Note that for edges of type (a) above, the dual variables already de�ned satisfy Iewith equality. We now assign positive z-values to some uniform 3-
uts, whi
h will 
on-tribute to Ie only for edges e of types (b) and (
). For ea
h uniform 3-
ut S of theform �(Rr(j); Rs(j); V n(Rr(j) [ Rs(j))) where r and s are two distin
t terminals and j 2f1; 2; :::;m� 1g, we set zS = 112m. These 
ontribute to Ie only for edges of type (b), and it iseasy to see that those inequalities are now satis�ed with equality. Finally, for ea
h uniform3-
ut S of the form �(Rr(m); Rs(m); V n(Rr(m) [ Rs(m))) where r and s are two distin
tterminals, we set zS = 2m+112m(3m+1). Note that these variables 
ontribute to Ie only for edges eof type (
), and it is easy to 
he
k that those inequalities are now satis�ed with equality.Hen
e we have de�ned a feasible solution to (Dq). It remains to 
ompute its obje
tivevalue. There are 3(m � 1) variables 
orresponding to uniform 3-
uts with value 112m andthree variables 
orresponding to uniform 3-
uts with value 2m+112m(3m+1). The 
ontribution ofthe other variables is two times the sum of the weights of the fa
e triangles divided by B.11



Therefore the obje
tive value is3(m� 1)12m + 3(2m+ 1)12m(3m + 1) + 2(m2 + 2m2(3m+ 1))B = 1112 + 112(3m + 1) ;as required.A solution to (Pq)We des
ribe a feasible solution 
 of (Pq) having obje
tive value 1112 + 112(3m+1). The solutionis given in terms of the integral ve
tor 
0 = 4(3m+1)
 2 REq . Figure 6 (ignoring the dottededges) shows G6. The numbers beside the edges are the values of 
0, ex
ept that values equalto 1 are omitted.
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0)Here is the general 
onstru
tion. (The 
onstru
tion des
ribed in [6℄ 
ontained an error.)Divide G3m into three 
orner triangles of side m together with the middle hexagon. An edge12



in a 
orner triangle is 
alled a peel edge if it is parallel to some edge on the boundary ofG3m and of distan
e 1 from it. The 
orner subtriangle in a 
orner triangle is the trianglebounded by the peel edges and the boundary edges of the middle hexagon. (Note that whenm = 2, the 
orner subtriangle is a single point.) In ea
h 
orner triangle, the vertex on the
orner subtriangle 
losest to the terminal is 
alled an apex. Put 
0e = 3m + 1 for all edgesin
ident with the terminals. Put 
0e = 2m + 2 for all other edges on the boundary of G3m.Put 
0e = m � 1 for ea
h peel edge in
ident with an apex and a vertex on the boundary ofG3m. In ea
h 
orner subtriangle, put 
0e = m� i� 1 if e is a peel edge of distan
e i from theapex and put 
0e = 1 for all other edges parallel to a peel edge. Put 
0e = 1 for all other edgesin the middle hexagon (in
luding its boundary). Put 
0e = 0 for all other edges. Figure 7(ignoring the values in itali
s) illustrates the de�nition of 
0. The key result is the following.Lemma 8 The minimum weight of a 3-
ut with respe
t to 
0 is 4(3m+ 1).It follows that 
 is a feasible solution to (Pq). Its obje
tive value is the total 
0-weight ofall edges, divided by 4(3m + 1)(3m). There are 6 edges e having 
0e = 3m + 1, 3(3m � 2)edges e having 
0e = 2m+2, 6 edges e having 
0e = m� 1, 6 edges e having 
0e = m� i� 1 fori = 0; :::;m� 3, and 3(m � 2)(m � 3) + 9m2 edges having 
0e = 1, from whi
h we 
omputethe total 
0-weight to be 33m2+12m. It follows that the obje
tive value of 
 is 1112 + 112(3m+1),as required.The ideas for the proof of Lemma 8 
ome, essentially, from the result of Dahlhaus, etal. [7℄, showing that there is a polynomial-time algorithm to solve the optimal multiterminal
ut problem when G is planar and the number of terminals is �xed. Any minimal 3-
ut ofGq has the form �(R1; R2; R3). There are two kinds of su
h 3-
uts, 
orresponding to the
ase in whi
h there is a pair i; j for whi
h there is no edge joining a node in Ri to a node inRj, and the other one where this is not true. We 
all these Type I 
uts and Type II 
uts,respe
tively.From (Gq; 
0), de�ne a 3-terminal Steiner Tree Problem instan
e (G0q; 
0) as follows: Wetake the planar dual of (Gq; 
0) and split O, the vertex that 
orresponds to the outside fa
e,into three verti
es s1; s2; s3, whi
h we 
all the terminals of G0q. We also split the edgesin
ident with O as follows: an edge e is in
ident with si if e 
rosses an edge of Gq oppositeterminal ti. G06 is shown in Figure 6.Observe that a Type I 
ut 
orresponds to a Steiner tree of (G0q; 
0) with no degree-3vertex. It is easy to see that, in order to show that su
h a Steiner tree has weight at least4(3m+ 1), it suÆ
es to show the following.Proposition 9 The weight of a path in (G0q; 
0) joining two distin
t terminals is at least2(3m+ 1).Now, observe that a Type II 
ut 
orresponds to a Steiner tree of (G0q; 
0) with a degree-3vertex in V (G0q)nfs1; s2; s3g. For ea
h v 2 V (G0q)nfs1; s2; s3g, let li(v) denote the length,with respe
t to 
0, of a shortest path from v to si in (G0q; 
0) for ea
h i 2 f1; 2; 3g. To showthat su
h a Steiner tree has weight at least 4(3m + 1), it suÆ
es to show the following.Proposition 10 For ea
h v 2 V (G0q)nfs1; s2; s3g, P3i=1 li(v) � 4(3m+ 1).13
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Hen
e, Lemma 8 follows from Propositions 9 and 10.Before we prove Propositions 9 and 10, we need some further notation and te
hni
alresults. Let v 2 V (G0q)nfs1; s2; s3g. Let f(v) denote the fa
e-triangle to whi
h v 
orresponds.There is a natural 
oordinate system for the elements of V (G0q)nfs1; s2; s3g. For ea
h v 2V (G0q)nfs1; s2; s3g, de�ne pv 2 R3 as follows: For ea
h i 2 f1; 2; 3g, pvi is the smallest numberthat is the (graph) distan
e in Gq between a vertex of f(v) and a vertex on the side of 4opposite terminal ti. For example, in Figure 6, we have pu = (4; 0; 1) and pv = (1; 2; 1). Thefollowing is immediate.Lemma 11 Let v 2 V (G0q)nfs1; s2; s3g. If f(v) is upright, then pv1 + pv2 + pv3 = 3m � 1. Iff(v) is inverted, then pv1 + pv2 + pv3 = 3m � 2.For ea
h i 2 f1; 2; 3g, we are going to de�ne �i 2 Rfsig[(V (G0q)nfs1;s2;s3g) with �isi = 0 su
hthat �i gives a feasible potential for the shortest-path problem from si to all the non-terminalverti
es of G0q. (This will 
ertify the optimality of shortest paths.) We 
onsider two 
ases.Case 1: f(v) is in the middle hexagon. If f(v) is upright, then set �iv = 2m + 2 + 2pvi ;otherwise, set �iv = 2m + 2 + 2pvi + 1.Case 2: f(v) is in a 
orner triangle. If pvi � 2m, then set �iv = 6m + 2. If pvi < 2m, thennote that 0 � pvi � m� 1 and there exist j; k su
h that fi; j; kg = f1; 2; 3g with pvj � m� 1and pvk � m.Suppose pvi = 0. If pvj = 0, then set �iv = 3m+ 1; otherwise, set �iv = 2m+ 2.Suppose pvi � 1. If pvj = 0, then set �iv = 4m; otherwise, set �iv = 3m+ 1 + pvi � pvj .Figure 7 illustrates some of the entries of �1 in itali
s. From the pi
ture, it is obviousthat �iu + 
0uw � �iw for all uw 2 E(G0q � (fs1; s2; s3gnfsig)). Hen
e, we have the next twolemmas. The �rst is immediate.Lemma 12 For ea
h i 2 f1; 2; 3g, li(v) � �iv for all v in V (G0q)nfs1; s2; s3g.Lemma 13 Let i; j 2 f1; 2; 3g be distin
t. The weight of the shortest path between si and sjis at least the minimum value of �iv + �jv over all v su
h that pvi = 0.Proof. This follows from the previous lemma and that pvi = 0 for every neighbour v of si.�Proof of Proposition 9.By symmetry, we may assume that the terminals are s1 and s2. By Lemma 13, it suÆ
esto show that for every v 2 V (G0q)nfs1; s2; s3g su
h that p1v = 0, we have �1v+�2v � 2(3m+1).From the de�nition of �1 and �2, we see that if p2v = 0, then �1v = �2v = 3m + 1, giving�1v+�2v � 2(3m+1); otherwise, �1v � 2m+2 and �2v � 4m, again giving �1v+�2v � 2(3m+1).�Proof of Proposition 10.We 
onsider two 
ases.Case 1: f(v) is in the middle hexagon. 15



By Lemma 12, it suÆ
es to show that 3Xi=1 �iv � 4(3m + 1). Suppose f(v) is upright.Then �iv = 2m+ 2 + 2pvi for i = 1; 2; 3. By Lemma 11,3Xi=1 �iv = 3Xi=1 (2m+ 2 + 2pvi ) = 6m+ 6 + 2(3m � 1) = 4(3m + 1):Now, suppose f(v) is inverted. Then �iv = 2m + 2 + 2pvi + 1 for i = 1; 2; 3. By Lemma 11,3Xi=1 �iv = 3Xi=1 (2m+ 2 + 2pvi + 1) = 6m+ 9 + 2(3m � 2) = 4(3m + 1) + 1 > 4(3m + 1)as desired.Case 2: f(v) is in a 
orner triangle.By symmetry, we may assume that pv1 � 2m. Hen
e, �1v = 6m+2 by 
onstru
tion. Now,it follows from Proposition 9 that l2v+l3v � 2(3m+1). Therefore, 3Xi=1 liv � 6m+2+2(3m+1) =4(3m+ 1): �6 Bad Examples for Algorithm 3-CUTSin
e the 
onstant 1211 is best possible in Theorem 5, it is natural to ask if it is best possible inCorollary 7. The two issues are di�erent. By Theorem 6, the weight of the 
at 3-
ut deliveredby Algorithm 3-CUT is at most 1=F (q) times the optimal value of (LP3). It follows that,if that value is 
lose to F (q) times the weight of an optimal 3-
ut, then Algorithm 3-CUTwill deliver a 3-
ut that has weight 
lose to the weight of an optimal 3-
ut. Therefore, badexamples for Theorem 5 do not dire
tly provide bad examples for Corollary 7. However,su
h examples do exist.Theorem 14 For ea
h q � 0 (mod 6), there exist a weighted graph (Hq; 
) and an embeddingof Hq determining an optimal solution for (LP3), su
h that Algorithm 3-CUT delivers a 
at3-
ut (with respe
t to the embedding) having weight 12(q+1)11q+12 times the weight of some 3-
ut.Here is the 
lass of graphs that we will use to prove Theorem 14. Let q = 6m where m isa positive integer. Constru
t the weighted graph (Hq; 
) as follows. Take (Gq; 
0). For ea
houtside edge e on the line joining t2 and t3, redu
e the weight on e by 2m + 2. Let ~v bethe vertex at the midpoint between t2 and t3. Let ~u and ~w be the two neighbours of ~v thatlie on the line joining t2 and t3 with ~u 
loser to t2. Remove the edges ~u~v and ~v ~w. Add theedge ~u ~w with weight 2m and the edges t2~v and t3~v, ea
h with weight 2m+2. The resultingweighted graph (Hq; 
) is depi
ted in Figure 8.Before proving Theorem 14, we brie
y des
ribe the origin of the above 
onstru
tion.When seeking bad examples, there are two main issues to 
onsider. First, we need to identifyweighted graphs su
h that the ratio of the weight of the best 
at 3-
ut with respe
t to some16
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embedding of the graph into 4 and the weight of the optimal 3-
ut is 
lose to 1211. Se
ond,given su
h a weighted graph, we need to make sure the embedding does yield an optimalsolution to (LP3). It is not 
lear how to resolve both issues at the same time. What followsis an outline of our approa
h.We fo
used on graphs that have vertex-set4q for small values of q. (That is, we assumedthat the graphs were already embedded into 4.) Initially, the graphs were assumed to be
omplete. We did the following for ea
h graph G we 
hose. For ea
h (non-
at) 3-
ut C in G,we generated a linear-programming problem. For ea
h edge, there is a variable representingits unknown weight. For ea
h 
at 3-
ut, we have a 
onstraint that ensures that it has weightat least 1. The obje
tive fun
tion is to minimize the weight of the 3-
ut C.We went through all the 3-
uts of G and identi�ed 
andidates that gave the best pos-sible ratio. We then went through the pro
ess on
e again for these 
andidates, ea
h timegradually redu
ing the number of edges that are not in Eq. We then experimented with theweight ve
tor to see if the embedding we started with a
tually gave an optimal solution tothe linear-programming problem with the given weight ve
tor. A pattern gradually emergedand it allowed us to guess whi
h graphs to 
onsider for higher values of q. After performingthe 
omputations on the 
andidates for higher values of q, we formulated a 
onje
ture onwhat would be an in�nite family of bad examples for q � 0 (mod 6). Finally, we proved the
onje
ture using analyti
al methods.Proof of Theorem 14.Sin
e V (Hq) = 4q, the 3-tuples of the verti
es give an embedding of Hq into 4. Notethat a 
at 3-
ut in this embedding has the same weight as the 
orresponding 
at 3-
ut in(Gq; 
0). By Lemma 8, every 3-
ut in (Gq; 
0) has weight at least 4(q + 1). Thus every 
at3-
ut in (Hq; 
) has weight at least 4(q + 1).Now, the 3-
ut �(ft3g; ft2; ~vg; V (Hq)nft2; t3; ~vg):has weight (6m+ 1) + (4m� 1) + 2 + (2m+ 2) + (4m� 1) + (6m+ 1) = 22m+ 4 = 11q+123 .Thus the ratio of the value of an optimal 
at 3-
ut in the embedding of Hq to the value ofthis 3-
ut is 4(q + 1)=((11q + 12)=3) = 12(q + 1)=(11q + 12). As q approa
hes in�nity, theratio approa
hes 1211 . Hen
e, it remains to show that the embedding given by the 3-tuples ofthe verti
es of Hq determines an optimal solution to (LP3).By Theorem 1, it suÆ
es to show that the embedding is optimal formin Xuv2E(Hq) 12
uvkxu � xvk1subje
t toxu 2 4; u 2 V (Hq)nft1; t2; t3gxti = ei; i = 1; 2; 3:Observe that the obje
tive value given by the embedding is 22m + 4. (This 
an also beseen using the 
al
ulation in the paragraph following Lemma 8.) We show that 22m+4 is theoptimal value using linear-programming duality. Sin
e 
 � 0, writing xu as (xu; yu; zu)T , we
an rewrite the above minimization problem as the following linear-programming problem.This problem was introdu
ed by Calines
u et al. [1, 2℄.18



(SLP ) min Xuv2E(Hq) 12
uv(Xuv + Yuv + Zuv)subje
t toXuv � xu + xv � 0; uv 2 E(Hq)Xuv � xv + xu � 0; uv 2 E(Hq)Yuv � yu + yv � 0; uv 2 E(Hq)Yuv � yv + yu � 0; uv 2 E(Hq)Zuv � zu + zv � 0; uv 2 E(Hq)Zuv � zv + zu � 0; uv 2 E(Hq)xu + yu + zu = 1; u 2 V (Hq)nft1; t2; t3gxt1 = 1; yt1 = 0; zt1 = 0xt2 = 0; yt2 = 1; zt2 = 0xt3 = 0; yt3 = 0; zt3 = 1x; y; z � 0:Noti
e that, while there is one variable Xuv for ea
h edge uv 2 E(Hq)|that is, Xuv isthe same as Xvu|there is a 
onstraint Xuv � xu + xv � 0 for ea
h ordered pair (u; v) su
hthat uv 2 E(Hq). A similar observation holds for Y and Z. Therefore, it is 
onvenient tointrodu
e the digraph H 0q obtained from Hq by repla
ing ea
h edge by a pair of oppositelydire
ted edges. Now, we write the dual of (SLP ). We make use of the notation fz(u)to denote the \net out
ow" from vertex u in H 0q, with respe
t to z 2 RE(H 0q), namely,fz(u) =Pw:uw2E(H 0q) zuw �Pw:uw2E(H 0q) zwu.(DSLP ) max Æt1 + "t2 + �t3 +Pu2V (Hq)nft1;t2;t3g �usubje
t to�uv + �vu = 
uv2 ; uv 2 E(Hq)�uv + �vu = 
uv2 ; uv 2 E(Hq)
uv + 
vu = 
uv2 ; uv 2 E(Hq)�u � f�(u); u 2 V (Hq)nft1; t2; t3g�u � f�(u); u 2 V (Hq)nft1; t2; t3g�u � f
(u); u 2 V (Hq)nft1; t2; t3gÆti � f�(ti); i = 1; 2; 3"ti � f�(ti); i = 1; 2; 3�ti � f
(ti); i = 1; 2; 3�; �; 
 � 0:We now give a feasible solution to (DSLP ) having obje
tive value 22m+ 4. We do thisin two steps. First, we �x the values of the 
omponents of �; Æ; "; � as follows. Let Let Udenote the set of points 1q (x; y:z) of 4q su
h thatx = q3 and y = 0 or z = 0, orx = 4m� 2i, and y = i or z = i for some i 2 f0; :::; 2m� 1g; i 6= m, orx = 4m� 2i+ 1, and y = i or z = i for some i 2 f1; :::;mg, orx = 4m� 2i+ 1, and y = i� 1 or z = i� 1 for some i 2 fm+ 1; :::; 2mg.19



The 
ir
led verti
es in Figure 8 are the verti
es in U . Set�~v = 1;�u = 1=2 for all u 2 U;Æt1 = "t2 = �t3 = 6m+ 1;Æt2 = Æt3 = "t1 = "t3 = �t1 = �t2 = �6m� 1:Set all the other 
omponents of �; Æ; "; � to zero. Note that jU j = 2+2(2m�1)+2(2m) = 8m.The resulting obje
tive value isÆt1 + "t2 + �t3 +Xu2W �u = 3(6m+ 1) + 8m(1=2) + 1 = 22m+ 4:Hen
e, to 
omplete the proof, it is suÆ
ient to to �nd �; �; 
 su
h that all the 
onstraintsin (DSLP ) are satis�ed.If we ignore the equality 
onstraints for the moment, the problem redu
es to three sepa-rate feasible 
ow problems on H 0q. One has � as 
ow values and � and Æ as demands, anotherhas � as 
ow values and � and " as demands, and the last has 
 as 
ow values and � and� as demands. In ea
h of these problems, we seek 
ows su
h that the net out-
ow at everyvertex is at least the demand at the vertex.These 
ow problems 
an be simpli�ed further, as follows. Consider �, for example. Inview of the 
onstraint �uv + �vu = 
uv2 , to spe
ify these two values, it is enough to spe
ifytheir di�eren
e �̂uv = �uv � �vu, the \net 
ow" in dire
tion (u; v). Moreover, we 
an 
hoosean orientation (u; v) or (v; u) so that this di�eren
e is non-negative. Then the requirementon these net
ows is, again, that the net 
ow out of ea
h vertex be at least its demand, andthat, if edge uv is oriented from u to v, then its net 
ow be non-negative and at most 
uv2 .We des
ribe values for � and �, omitting those for 
, sin
e it is symmetri
al to �. It isstraightforward to 
he
k that they have the required properties.Values for �. This solution is indi
ated in Figure 9, where we show the orientations andnet 
ow values �̂. The verti
es in U have demand 12 and are 
ir
led. Any other vertex havingnonzero demand has the demand adja
ent to the vertex. Note that a number of edges have
uv = 0 and are omitted from the �gure.Re
all that ~v is the vertex on the midpoint of the line joining t2 and t3. Let ~u denotethe neighbour of ~v on the line between ~v and t2 and ~w denote the neighbour of ~v on the linebetween ~v and t3. Set �̂~u ~w = 0. For ea
h i 2 f2; 3g, set �̂~vti = 
~vti=2. For any edge (u; v) ofH 0q that is parallel to one of the (oriented) line segments from t1 to t2 or t3, set �̂uv = 
uv2 .It remains to 
onsider the \horizontal" edges. First, suppose uv lies on the segmentbetween ~u and t2 or on the segment between ~w and t3. Assuming that (u; v) points towardthe terminal, set �̂uv = i, where i is the graph distan
e between v and ~v in Gq. Now supposethat uv lies on the horizontal line 
ontaining two verti
es w1; w2 2 U . If uv is on the segmentbetween w1 and w2, then set �̂uv = 0. Otherwise, if (u; v) points away from this segment, set�̂uv = 
uv2 . The only remaining possibility for a horizontal edge uv o

urs when the distan
efrom t1 to u is less than 2m, in whi
h 
ase 
uv = 0, so �̂uv = 0. Note that the demand
onstraints for � are a
tually satis�ed with equality at all verti
es ex
ept ~v.Values for �. The solution we are about to des
ribe is indi
ated in Figure 10, whi
h showsthe net 
ows �̂ and the demands, as in Figure 9. Set �̂~u ~w = 
~u ~w2 . Set �̂t2~v = �̂~vt3 = m + 1.20
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For ea
h edge (u; v) that is parallel to the (oriented) line segment from t2 to t1 or t3, set�̂uv = 
uv2 .
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ow values for �Consider an edge uv parallel to the line joining t1 and t3. First, suppose uv is on theline joining t1 and t3. If uv is in
ident with t1 or t3, then, assuming that v is a terminal,set �̂uv = 
uv2 = 3m + 12. If uv is in the 
orner triangle 
ontaining t1, then, assuming that(u; v) points toward t1, set �̂uv = 1. If uv is in the middle hexagon, then, assuming that(u; v) points toward t3, set �̂uv = i + 12, where i+ 2m is the graph distan
e between u andt1. If uv is in the 
orner triangle 
ontaining t3, then, assuming that (u; v) points toward t3,set �̂uv = 
uv2 = 2m+ 1.Now, suppose uv is not on the line joining t1 and t3. If the se
ond 
oordinates of u and vequal 12 and (u; v) points toward t1, set �̂uv = 
uv2 . If i 2 f1; :::; 3m� 1; 3m+1; :::; 4mg, thereare exa
tly two verti
es w1; w2 2 U having se
ond 
oordinate equal to i=q. Suppose uv lies onthe line through w1; w2. If uv lies on the segment between w1 and w2, set �̂uv = 0; otherwise,22



assuming that (u; v) points away from the segment between w1 and w2, set �̂uv = 
uv2 .Note that, ex
ept at the neighbour of t1 having zero se
ond 
oordinate, the demand
onstraints are satis�ed with equality. This 
on
ludes the proof of Theorem 14.7 Con
luding RemarksAll of the results of C�alines
u et al. [1, 2℄ quoted above for k = 3 are spe
ial 
ases of theirresults for general k. They give a linear-programming relaxation that generalizes (LP3),and a 
orresponding generalization of the notion of triangle-embedding, an embedding intoa (k � 1)-dimensional simplex in whi
h the terminals are mapped to the extreme points.They show that the optimal value of a k-
ut is at most 3k�22k times the optimal value of thislinear-programming problem. As a result, they obtain an approximation algorithm for theoptimal k-
ut problem having performan
e guarantee 3k�22k . The re
ent paper by Karger etal. [11℄, whi
h has some of our results for k = 3, also has results for k > 3, improving thebounds given by [1, 2℄. For example, [11℄ gives bounds of 1.1539 for k = 4, 1.2161 for k = 5,and 1:3438 � �k for all k > 6 where �k > 0 is evaluated 
omputationally for any �xed k.Freund and Karlo� [9℄ gave a lower bound of 87+ 1k�1 on the integrality ratio for general k.However, the problem of giving a tight analysis for k > 3, as we now have for k = 3, remainsopen. Why is k = 3 apparently easier to deal with than higher values of k? One importantdi�eren
e is this: For k > 3 the analogue of (Dq) need not have an optimal solution whosepositive variables 
orrespond to 
at k-
uts. This 
an be demonstrated with an example withk = 4 and q = 4.A
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