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Abstract

Given an undirected graph G = (V, E) and three specified terminal nodes t1, 3, t3,
a 3-cut is a subset A of E such that no two terminals are in the same component of
G\A. If a non-negative edge weight ¢, is specified for each ¢ € E, the optimal 3-cut
problem is to find a 3-cut of minimum total weight. This problem is A"P-hard, and in
fact, is max-SAP-hard. An approximation algorithm having performance guarantee
g has recently been given by Calinescu, Karloff, and Rabani. It is based on a certain
linear-programming relaxation, for which it is shown that the optimal 3-cut has weight
at most g times the optimal LP value. It is proved here that g can be improved to %,
and that this is best possible. As a consequence, we obtain an approximation algorithm
for the optimal 3-cut problem having performance guarantee % In addition, we show

that % is best possible for this algorithm.

1 Introduction

Given an undirected graph G = (V, E) and k specified terminal nodes tq,...,t, a k-cut
is a subset A of E such that no two terminals are in the same component of G\A. If a
non-negative edge-weight ¢, is specified for each e € FE. the optimal k-cut problem is to
find a k-cut of minimum total weight. This problem was shown by Dahlhaus, Johnson,
Papadimitriou, Seymour, and Yannakakis [7] to be AP-hard for k > 3. (Of course, it is

solvable in polynomial time if & = 2.) They also gave a simple polynomial-time algorithm

2(k—1)
%

weight at most times the minimum weight of a k-cut. Later, in [8], the same authors

showed that for & > 3 the problem is max-SAP-hard, which implies that, assuming P #
NP, there exists a positive ¢ such that the problem has no polynomial-time approximation

having performance guarantee , that is, one that is guaranteed to deliver a k-cut of

2(k—1)

algorithm with performance guarantee 1 + ¢.
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The present paper concentrates on the optimal 3-cut problem. From the above remarks,
it follows that this problem is max-SNP-hard, and the approximation algorithm of [8] has
a performance guarantee of %. Later, Calinescu, Karloff, and Rabani [1, 2] gave an approxi-
mation algorithm having a performance guarantee of g. We give a further improvement that
is based on their approach.

Chopra and Rao [4] and Cunningham [5] investigated linear-programming relaxations of
the 3-cut problem, showing results on classes of facets and separation algorithms. Here are
the two simplest relaxations. (By a T-path we mean the edge-set of a path joining two of
the terminals. By a wye we mean the edge-set of a tree having exactly three nodes of degree
one, each of which is a terminal. For a set A, a subset B of A, and a vector = € R4, z(B)

denotes ) .cp2;.)

minimize ) .y ccTc

(LP1) subject to
#(P) > 1, P aT-path
xre > 0, e€ E.
minimize ) .y ccTc
(LP2) subject to
#(P) > 1, P aT-path
(YY) > 2, Y awye
xre > 0, e€ E.

It follows from some simple observations about shortest paths, and the equivalence of op-
timization and separation, that both problems can be solved in polynomial time. It was
proved in [5] that the approximation algorithm of [7] delivers a 3-cut of value at most 3
times the optimal value of (LP1). (In particular, the minimum weight of a 3-cut is at most
2 times the optimal value of (LP1).) It was conjectured that the minimum weight of a
3-cut is at most 12 times the optimal value of (LP2). The examples in Figure 1 (from [5])
show that this conjecture, if true, is best possible. In both examples, the values of a feasible
solution = of (LP2) are shown in the figure. The weights ¢, are all 2 for the example on the
left. For the one on the right they are 1 for the edges of the interior triangle, and 2 for the
other edges. In both cases the minimum 3-cut value is 8, but the given feasible solution of

(LP2) has value 7.5.

Figure 1: Bad examples for (LP2)



Recently, Calinescu, Karloff, and Rabani [1, 2] gave a new linear-programming relax-
ation. Although their approach applies to any number k of terminals, we continue to restrict
attention to the case when k& = 3. They need to assume that G be a complete graph. (If
any missing edges are added with weight zero, the resulting 3-cut problem is equivalent to
the given one, so this assumption is not limiting.) The relaxation is based on the following
observations. First, every minimal 3-cut is of the form (R, Ry, R3), where t; € R, for all
i. Here, where R is a family of disjoint subsets of V' whose union is V, 3(R) denotes the
set of all edges of G joining nodes in different members of the family. Since ¢ > 0, there is
an optimal 3-cut of this form. Second, the incidence vector = of a minimal 3-cut is a kind of
distance function, that is, it defines a function d(v,w) = x,, on pairs of nodes of G which is
non-negative, symmetric, and satisfies the triangle inequality. Finally, with respect to d the
distance between any two terminals is 1, and the sum of the distances from any node v to
the terminals is 2. The resulting linear-programming relaxation is:

minimize EeeE Celle
(LP3) subject to
Tyw = 1, vyweT, v£w
Yower Tow = 2, weV
Tuo + Tow — T > 0, u,v,weV
xr. > 0, e€kF.

This relaxation is at least as tight as (LP2). To see this, suppose that (after adding
missing edges to make G complete), we have a feasible solution = to (LP3). Then for any
path P of G joining u to v, x(P) > xy,, by applying the triangle inequality. It follows that
x(P) > 1 for any T-path P. Moreover, any wye Y is the disjoint union of paths Py, Py, Ps
from some node v to the terminals. It follows that x(Y) > EweT Tpw = 2. Thus every
feasible solution of (LP3) gives a feasible solution of (LP2) having the same objective value.
The first example of Figure 1 shows that the optimal value of (LP3) can be strictly greater
than the optimal value of (LP2). On the other hand, the second example shows that there
1s no hope to prove in general that the minimum weight of a 3-cut is less than % times the
optimal value of (LP3).

It was proved in [1, 2] that the minimum weight of a 3-cut is at most g times the optimal
value of (LP3). As a consequence, an approximation algorithm for the optimal 3-cut problem
having a performance guarantee of g was derived. (It is clear that (LP3) can be solved in
polynomial time, since it is of polynomial size.) However, it was left open whether or not this
result could be strengthened; the second example of Figure 1 shows an example for which
the minimum weight of a 3-cut can be as large as 16/15 times the optimal value of (LP3),
and this is the worst example given in [1, 2]. (To see that x of that example does extend to
a feasible solution of (LP3), we simply define = on each missing edge uv to be the minimum
length, with respect to lengths x., of a path from u to v.)

In this paper we show that the minimum weight of a 3-cut is at most % times the
optimal value of (LP3), and we show that the constant % is best possible. As a consquence,
we give an approximation algorithm for the optimal 3-cut problem and prove that it has a
performance guarantee of % These results were obtained independently by Karger, Klein,
Stein, Thorup, and Young [10, 11]. We also provide a more precise bound, which depends



on the value of the least common denominator of the components of an optimal solution
to (LP3).

The main results above were described in the short paper of the last two authors [6]. The
current paper contains more detailed proofs. In addition, we answer one question that was
left open in [6]. Namely, we show that the performance guarantee of the algorithm is best
possible; that is, no better guarantee holds for this algorithm.

2 Triangle embeddings

Calinescu, Karloff, and Rabani [1, 2] considered an extremely useful geometric relaxation,
which they showed was equivalent to the linear-programming relaxation (LP3). Let A
denote the convex hull of the three elementary vectors e! = (1,0,0), e* = (0,1,0), and
e? =(0,0,1) in R3. By a triangle embedding of G we mean a mapping y from V into A such
that y(¢;) = €' for i = 1,2,3. A triangle embedding y determines a vector € R¥ as follows.
For each edge uv, let x,, be one-half the L; distance from y(u) to y(v). It is easy to see that
this « is a feasible solution to (LP3). Conversely, a feasible solution a of (LP3) determines
a triangle embedding y as follows. For each node v, let y(v) = (1 — 24,0, 1 — Ty0, 1 — Tpy0)-

Given a triangle embedding y we can obtain x as above, and then use z to obtain a
triangle embedding y’. It is easy to see that y = y’. It is not true, on the other hand,
that every feasible solution of (LP3) arises in this way from a triangle-embedding. However,
it is “almost true”. The following result is implicit in [1, 2], and we include a proof for
completeness.

Theorem 1 Let x be a feasible solution of (LP3), let y be the triangle embedding determined
by x and let «' be the feasible solution of (LP3) determined by y. Then o' < x, and if x is
an optimal solution of (LP3), so is x'.

Proof.  First, observe that the second statement is a consequence of the first and the
non-negativity of ¢. Now let uv € E. Both y(u) and y(v) have component-sum 1. Therefore,
y(u)—y(v) has component-sum zero, and so one-half of the L; distance between y(u) and y(v)
is the sum of the non-negative components of y(u) — y(v). Hence we may assume, perhaps
by interchanging u with v and relabelling the terminals, that one-half of the L; distance
between y(u) and y(v) is the sum of the first two components of y(u) — y(v). Therefore,

to = 3l — @) = 00) — (o) + () — (o)
= l—aw — (1 —2pt,) + 1 — 2w, — (1 — Tty)

- xutg - wvtg

S xUU7

as required. O

The approximation algorithm of Calinescu, Karloff, and Rabani uses the following ideas.
Suppose that (LP3) is solved, and an optimal solution #* that arises from a triangle em-
bedding is found. For a number o between 0 and 1 that is different from zj, for ev-
ety v € V and r € T, and an ordering r,s,t of T, define R, = {v € V : af, < a},

TV
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R, ={v € V\R, : 2, < a}, Ry = V\(R, U R;). We call the 3-cut 3(R,, Ry, Ri) uniform
(with respect to this #*). It is easy to see that there are O(n) uniform 3-cuts. The algorithm
of [1, 2] simply chooses the uniform 3-cut having minimum weight. It is proved to have
weight at most g times the minimum weight of a 3-cut.

We consider a slight generalization of the notion of uniform 3-cut. Let «, o’ be two
numbers chosen as o was above, and let r, s,¢ be an ordering of T. Define R, = {v € V :
5, <a}, Ry={v e V\R, : 2%, < o'}, Ry = V\(R, UR,). We call the 3-cut 8(R,, Rs, R;)
flat (with respect to this 2*). Clearly, every uniform 3-cut is flat. It is easy to see that there
are O(n?) flat 3-cuts. Our approximation algorithm simply chooses the flat 3-cut having
minimum weight. We will show that it has weight at most % times the weight of an optimal
3-cut. This result is based on a tight analysis of the bound for the optimal 3-cut problem
given by (LP3).

3 Linear programming again

It is easy to check that if the optimal value of (LP3) is zero, then there is a 3-cut of weight
zero. Therefore, we may assume that the optimal value is positive. Define

) optimal value of (LP3)
p:i=in

G.c minimum weight of a 3-cut’

So our problem may be restated as finding the value of p. By multiplying ¢ by an appropriate
positive number, we may assume that the minimum weight of a 3-cut is 1. It is now more
convenient to determine the best lower bound on the value of (LP3).

Assume that G is fixed, and that an optimal solution 2* of (LP3) is also fixed. We may
assume that =™ is rational, since it is an optimal solution of a linear-programming problem
having rational data. Therefore, there exists a positive integer ¢ such that gz* is integer-
valued. By Theorem 1, we may assume that = arises from a triangle-embedding y*, and it is
easy to see that qy* is integral, as well. Therefore, we can think of y* as embedding the nodes
of G into a finite subset A, of A, consisting of those points y € A for which ¢y is integral.
We define the planar graph G, = (A, E,;) by uv € E, if and only if the L; distance between
u and v is 2. Figure 2 shows Gy. (Note that the definition of the vertices as points in R?
and the edges as straight line segments joining their ends provides a natural embedding into
the plane defined by z1 4+ x5 4+ x5 = 1. We make use of this embedding whenever the context
assumes G, to be a plane graph.)

For nodes u,v of G,, we denote by d,(u,v) the least number of edges of a path in G,
from u to v. It is easy to see that dy(u,v) is equal to I times the L; distance from u to v.

Theorem 2 Let G, ¢ be a 3-cut instance, let x* be a rational-valued optimal solution of
(LP3), with corresponding triangle-embedding y*, and let q be a positive integer such that
qz* is integral. Then there is a 3-cut instance on graph G with nodeset A, and edge-weights
¢ such that:

(a) & defined by qiy, = dy(u,v) for all uv € E is a feasible solution of (LP3) (for G, ¢),

and ¢x < ex™;



Figure 2: Gy

(b) The optimal 3-cut value for G, ¢ is at least that for G, c;
(c) éc=0 forall e ¢ E,;

(d) For every flat 3-cut ofé with respect to &, there is a flat 3-cut of G with respect to x*
having no larger weight.

Proof. We use the mapping y* from V to A,, and we assume that =* arises from y*.
Suppose that two nodes u,v of G are mapped to the same point of A, by y*. Form G’ by
identifying v with v and, where multiple edges are formed, replacing the pair by a single
edge whose weight is their sum. Then every 3-cut of G’ determines a 3-cut of GG having the
same weight, so the minimum weight of a 3-cut of G’ is at least the minimum weight of a
3-cut of G. Moreover, «* also determines a triangle-embedding of G’ so there is a feasible
solution of (LP3) for G’ having value cx*. Finally, every flat cut of G’ gives a flat cut of G of
the same weight. Thus the theorem is true for G if it is true for G', and so we may assume
that y* is one-to-one.

Now suppose that y* is not onto, that is, that there is an element z of A, such that
y*(v) # z for all v € V. We can form a graph G’ from G by adding a node v and an edge uv
of weight zero for every u € V. It is easy to see that the minimum weight of a 3-cut of G’ is
the same as that of G. Also, if we map the new node to z, we get a triangle embedding of G’,
and it corresponds to a feasible solution of (LP3) on G’ having value equal to ca*. Finally,
every flat cut of G’ corresponds to a flat cut of G of the same weight. So the theorem is true
for G if it is true for G'. It follows that we may assume that y* is onto. Therefore, we may
assume that V = A, and that y* is the identity mapping.

Now suppose that there exists uv € E\ E,, such that ¢,, =& > 0. Let P be the edge-set
of a path in G, from v to v such that |P| = dy(u,v). Decrease ¢, to zero, and increase ¢,
by e for all e € P. We denote the new ¢ by ¢/. Then, since every 3-cut using e uses an edge
from P, the minimum weight of a 3-cut with respect to ¢’ is not less than that with respect
to ¢. (Similarly, every flat 3-cut has value with respect to ¢’ not less than that with respect
to ¢.) Now ca* = ca™ — ed,(u,v) + ed,(u,v) = cx*. This argument can be repeated as long
as there is such an edge uv. O



(Remark: It can be shown that & of Theorem 2 is an extreme point of the feasible region

of (LP3).)

For each positive integer ¢, let F'(¢) be the optimal value of the following linear-programming

problem.
minimize i Y ek Ce
(P,) subject to
e(S) > 1, Sa3-cutof G,
ce. > 0, e€ck,
The dual problem is
maximize dzs
(Dy) subject to
EeGSZS S év €€ Eq
zg > 0, S a3-cutof Gy.

Proposition 3 p = inf, F(q).

Proof. Let p’ denote inf, F/(q). It is easy to see from Theorem 2 that p’ is a lower bound
for p.

Now, consider an optimal solution ¢ to (P,) for some ¢. Clearly, the optimal weight of
a 3-cut in the weighted graph (G, ¢) is 1. However, & as defined in Theorem 2 is a feasible
solution to (LP3) for (G, ¢) with objective value F(q). Thus, p < F(q). Since ¢ is arbitrary,
it follows that p < p’. The result follows. O

We used CPLEX to solve (P,) and (D,) for all values of ¢ up to 50, and then were able

to find solutions for general q.

Theorem 4 For g > 1,

};—I—l( oyt if g =0 mod 3
F(q) = 11—|—ﬁ, ?fqzlmodi%
+ﬁ_121q27 if ¢ =2 mod 3

Moreover, there is an optimal solution of (Dy) for which zs is positive only if S is a flat
3-cut.

It is easy to see that Proposition 3 and Theorem 4 have the following consequence.

Theorem 5 For any 3-cut instance, the minimum weight of a 3-cut is at most % times the
optimal value of (LP3), and the constant % is best possible. O

Theorem 5 has been proved independently by Karger et al. [10], whose approach is
somewhat different, but also uses a linear-programming analysis of triangle-embedding.



4 An improved approximation algorithm

Algorithm 3-CUT

1. Find a rational-valued optimal solution a* of (LP3).
2. Find the triangle embedding y* determined by x*.

3. Return the flat 3-cut of minimum weight.

As pointed out before, the first step can be performed in polynomial time. The polynomial-
time algorithms for linear programming can be modified to return a rational-valued optimal
solution, and one of polynomial size. The second is easy. So is the third step, using the
observation made earlier that there are only O(n?) flat 3-cuts of G.

Theorem 6 Algorithm 3-CUT returns a 3-cut of weight at most =—cx™ where q is a com-

F(q)
mon denominator for the components of x*.

Proof. We may assume that the optimal value of a 3-cut is 1. Consider an optimal solution
z* of (D,) as given by Theorem 4. Then

1
ze > 1,
ES:F(Q) ° =

and z5 > 0 only if S is a flat 3-cut of G,. Obtain ¢ from Theorem 2. Then,

min weight of a flat 3-cut of (G, ¢)
min weight of a flat 3-cut of (G,, ¢) by part (d) of Theorem 2
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by part (a) of Theorem 2.

O

Corollary 7 Algorithm 3-CUT returns a 3-cut of weight at most % times the minimum
wetght of a 3-cut.

Proof. Since ﬁ < % and the optimal value of (LP3) is at most the minimum weight of

a 3-cut, the result follows immediately from Theorem 6. 0
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5 Proof of Theorem 4

To prove Theorem 4, it is enough to give feasible solutions of (P,;) and of (D,) having the
claimed common objective value. We shall give the details only for the case when ¢ = 3m
for some integer ¢ > 2. Note that this is sufficient to obtain Theorem 5 and Corollary 7,
since a common denominator for the components of &* can always be chosen to have this
property. (In fact, to prove Corollary 7 and all but the “best possible” part of Theorem 5,
such a solution of (D,) is enough.) The remaining cases are similar and do not add much
more insight to the problem. Complete details of the other cases can be found in [3].

For a terminal ¢ and an integer 7, let R;(j) denote the set {v € V, : d,(t,v) < 7}. If a face
triangle of G, has the same orientation as A, it is called upright; otherwise, it is inverted.

A solution to (D,)

First we show a feasible solution of (D,) having objective value % + m This requires
assigning dual variables to flat 3-cuts of G;. We need some terminology.

We use the term row in the following technical sense. A row is defined by a straight
line through the centre of a face triangle and parallel to one of its three sides. The terminal
opposite to the row is the terminal separated by the straight line from the other two terminals.
When we speak of the face triangles in the row, we mean all of the face triangles that are
intersected by the line. When we speak of the edges in the row, we mean all of the edges
that are intersected by the line. The distance between the row and its opposite terminal is
defined as the shortest graph distance from the terminal to a vertex of one of the triangles

in the row. Some of the above definitions are illustrated on the left in Figure 3.

t

N

A row having

distance 5 from its - 7/\7/\/\, __ ,\,/\, _ -

opposite terminalt

Figure 3: Illustrations for technical definitions

We assign positive dual variables to two kinds of flat 3-cuts. The values assigned to the
first type of 3-cut are determined by a weighting of the face triangles of G,. Actually, we
assign weights only to upright face triangles. Figure 4 shows weightings of the face triangles
for G¢ and Gy. (The weight of any face triangle containing no number is understood to be
zero.)



Figure 4: Weightings of the face triangles of G¢ and Gg

m edges m edges

Figure 5: G, with G3(p—1) inside
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A weighting for the general case can be defined inductively. Think of G5, as consisting
of the rows at distance 3m — 1 from the terminals together with Gs3(n_1) (see Figure 5)
and use the face weighting for G5,y with the following changes. In each row at distance
m — 1 from its opposite terminal, each upright triangle is assigned weight m. In each row
at distance 3m — 1 from its opposite terminal, each upright triangle between the two ones
assigned weight m above, is assigned weight 3m — 1. Finally, each upright triangle in a row
at distance m from its opposite terminal, which was assigned weight m — 1 in Gg(,_1), is
assigned weight 3m — 2. Clearly, the sum of the weights of the face triangles in each row
of distance exactly m — 1 from its opposite terminal is m?. It is an easy induction to show
that the sum of the weights of the face triangles in each row of distance at least m from its
opposite terminal is m(3m + 1).

Given an upright face triangle, consider the set of all edges in the three rows containing
the triangle. Choose two flat 3-cuts of G, whose union is this set, and whose intersection
is the set of edges of the face triangle. (There is more than one way to do this. See the
illustration on the right in Figure 3.) For each of these two 3-cuts, assign a z-value equal to
the weight of the face triangle divided by B, where B = 6m?(3m + 1).

Let I. denote the constraint of (D,) corresponding to an edge e. The contribution to the
left-hand side of I. by the variables whose values we have just assigned is the sum of the
weights of the face triangles in the two rows containing e divided by B. We now consider
three types of edges e:

(a) Those for which the two rows containing e are at distance at least m from their re-

spective opposite terminals, in which case this sum is twice m(3m +1)/B = 5=

(b) Those for which one of the rows containing e is at distance less than m — 1 from the
opposite terminal (so the other is at distance at least m+1 from its opposite terminal),

in which case this sum is m(3m + 1)/B = #;

(c) Those for which one of the rows containing e is at distance exactly m — 1 from the
opposite terminal (so the other is at distance at least m+1 from its opposite terminal),

in which case this sum is m(3m +1)/B + m?/B.

Note that for edges of type (a) above, the dual variables already defined satisfy I.
with equality. We now assign positive z-values to some uniform 3-cuts, which will con-
tribute to I. only for edges e of types (b) and (c). For each uniform 3-cut S of the
form S(R.(7), Rs(7), V\(R,(7) U Rs(j))) where r and s are two distinct terminals and j €
{1,2,...,m —1}, we set zs = 5—. These contribute to I. only for edges of type (b), and it is
easy to see that those inequalities are now satisfied with equality. Finally, for each uniform
3-cut S of the form S(R,(m), Rs(m), V\(R,(m) U Rs(m))) where r and s are two distinct
%. Note that these variables contribute to I. only for edges e
of type (c), and it is easy to check that those inequalities are now satisfied with equality.

Hence we have defined a feasible solution to (D). It remains to compute its objective

value. There are 3(m — 1) variables corresponding to uniform 3-cuts with value —— and

terminals, we set zg =

12m
three variables corresponding to uniform 3-cuts with value #L{H) The contribution of
the other variables is two times the sum of the weights of the éace triangles divided by B.

11



Therefore the objective value is

3(m —1) N 3(2m +1) 2(m? 4+ 2m*(3m + 1)) o N 1
12m 12m(3m + 1) B 12 12(3m 4+ 1)’

as required.

A solution to (P,)

We describe a feasible solution ¢ of (P,) having objective value % + m The solution
is given in terms of the integral vector ¢’ = 4(3m + 1)c € R+, Figure 6 (ignoring the dotted
edges) shows Gg. The numbers beside the edges are the values of ¢/, except that values equal

to 1 are omitted.

51

Figure 6: G and (G, ¢)

Here is the general construction. (The construction described in [6] contained an error.)
Divide G, into three corner triangles of side m together with the middle hexagon. An edge

12



in a corner triangle is called a peel edge if it is parallel to some edge on the boundary of
Gsm and of distance 1 from it. The corner subtriangle in a corner triangle is the triangle
bounded by the peel edges and the boundary edges of the middle hexagon. (Note that when
m = 2, the corner subtriangle is a single point.) In each corner triangle, the vertex on the
corner subtriangle closest to the terminal is called an apez. Put ¢, = 3m + 1 for all edges
incident with the terminals. Put ¢, = 2m + 2 for all other edges on the boundary of Gs,,.
Put ¢ = m — 1 for each peel edge incident with an apex and a vertex on the boundary of
Gsm. In each corner subtriangle, put ¢, = m —1¢ — 1 if e is a peel edge of distance ¢ from the
apex and put ¢, = 1 for all other edges parallel to a peel edge. Put ¢/ = 1 for all other edges
in the middle hexagon (including its boundary). Put ¢, = 0 for all other edges. Figure 7
(ignoring the values in italics) illustrates the definition of ¢/. The key result is the following.

Lemma 8 The minimum weight of a 3-cut with respect to ¢ is 4(3m + 1).

It follows that ¢ is a feasible solution to (F,). Its objective value is the total ¢-weight of
all edges, divided by 4(3m + 1)(3m). There are 6 edges e having ¢/ = 3m + 1, 3(3m — 2)
edges e having ¢, = 2m + 2, 6 edges e having ¢, = m —1, 6 edges e having ¢, = m —1—1 for
i =0,...,m—3, and 3(m — 2)(m — 3) + 9m? edges having ¢, = 1, from which we compute
the total ¢’-weight to be 33m? 4+ 12m. It follows that the objective value of ¢ is % + 12(371)1“),
as required.

The ideas for the proof of Lemma 8 come, essentially, from the result of Dahlhaus, et

al. [7], showing that there is a polynomial-time algorithm to solve the optimal multiterminal
cut problem when G is planar and the number of terminals is fixed. Any minimal 3-cut of
G, has the form B(Ri, Ry, R3). There are two kinds of such 3-cuts, corresponding to the
case in which there is a pair ¢, j for which there is no edge joining a node in R; to a node in
R;, and the other one where this is not true. We call these Type I cuts and Type II cuts,
respectively.

From (Gg,c'), define a 3-terminal Steiner Tree Problem instance (G, ¢’) as follows: We
take the planar dual of (G, ') and split O, the vertex that corresponds to the outside face,
into three vertices sy, sz, s3, which we call the terminals of G. We also split the edges
incident with O as follows: an edge e is incident with s; if e crosses an edge of G, opposite
terminal ¢;. G§ is shown in Figure 6.

Observe that a Type I cut corresponds to a Steiner tree of (G,c’) with no degree-3
vertex. It is easy to see that, in order to show that such a Steiner tree has weight at least
4(3m + 1), it suffices to show the following.

P(roposit)ion 9 The weight of a path in (G, c) joining two distinct terminals is at least
2(3m +1).

Now, observe that a Type II cut corresponds to a Steiner tree of (G, ¢’) with a degree-3
vertex in V(Gy)\{s1,s2,83}. For each v € V(G7)\{s1, 52,53}, let [;(v) denote the length,
with respect to ¢/, of a shortest path from v to s; in (G, ¢') for each + € {1,2,3}. To show
that such a Steiner tree has weight at least 4(3m + 1), it suffices to show the following.

Proposition 10 For each v € V(G.)\{s1, 50,55}, S, li(v) > 4(3m + 1).
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Figure 7: G, for ¢ = 3m
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Hence, Lemma 8 follows from Propositions 9 and 10.

Before we prove Propositions 9 and 10, we need some further notation and technical
results. Let v € V(G})\{5s1,52,53}. Let f(v) denote the face-triangle to which v corresponds.
There is a natural coordinate system for the elements of V(G )\{s1, s2,53}. For each v €
V(G)\{51, 52, 53}, define p” € R? as follows: For each i € {1,2,3}, p{ is the smallest number
that is the (graph) distance in G, between a vertex of f(v) and a vertex on the side of A
opposite terminal ¢;. For example, in Figure 6, we have p* = (4,0,1) and p¥ = (1,2,1). The
following is immediate.

Lemma 11 Let v € V(G))\{51,52,53}. If f(v) is upright, then p{ + py + py = 3m — 1. If
f(v) is inverted, then py + py + ps = 3m — 2.

For each i € {1,2,3}, we are going to define 7' € RUEHVIVIGN o120 ith 7Til, = 0 such
that 7 gives a feasible potential for the shortest-path problem from s; to all the non-terminal
vertices of G7. (This will certify the optimality of shortest paths.) We consider two cases.
Case 1: f(v) is in the middle hexagon. If f(v) is upright, then set 7! = 2m + 2 + 2p};
otherwise, set 7Tf] =2m +2+42pY + 1.

Case 2: f(v) is in a corner triangle. If p! > 2m, then set 7' = 6m + 2. If p! < 2m, then
note that 0 < pf < m — 1 and there exist j, k such that {s, 7, k} = {1,2,3} with pt <m —1
and pj > m.

Suppose pf = 0. If p? = 0, then set 7, = 3m + 1; otherwise, set o= 2m 4 2.

Suppose p; > 1. If p7 = 0, then set m, = 4m; otherwise, set m, = 3m + 1 + p! — pj.

Figure 7 illustrates some of the entries of m! in italics. From the picture, it is obvious
that 7, + ¢, > ., for all uw € E(G), — ({s1,52,53}\{s:})). Hence, we have the next two
lemmas. The first is immediate.

Lemma 12 For each i € {1,2,3}, li(v) > m} for all v in V(G})\{s1, 52, s3}.

Lemma 13 Leti,j € {1,2,3} be distinct. The weight of the shortest path between s; and s;
is at least the minimum value of w4+ w over all v such that p¥ = 0.

Proof. This follows from the previous lemma and that p! = 0 for every neighbour v of s,.

O

Proof of Proposition 9.

By symmetry, we may assume that the terminals are s; and sy3. By Lemma 13, it suffices
to show that for every v € V(G )\{s1, s2, s3} such that p, = 0, we have 7} + 72 > 2(3m +1).
From the definition of 7! and 7%, we see that if p? = 0, then 7! = 72 = 3m + 1, giving
i+ 72 > 2(3m+1); otherwise, 7} > 2m+2 and 72 > 4m, again giving 7} + 72 > 2(3m +1).

O

Proof of Proposition 10.
We consider two cases.

Case 1: f(v) is in the middle hexagon.

15



3
By Lemma 12, it suffices to show that wa] > 4(3m + 1). Suppose f(v) is upright.
=1

Then 7! = 2m + 2 + 2p! for 1 = 1,2,3. By Lemma 11,

3 3
dom=> (2m+2+2p!) =6m+6+23m—1) =43m +1).

=1 =1
Now, suppose f(v) is inverted. Then 7! = 2m +2 +2pY + 1 for i = 1,2,3. By Lemma 11,

3 3
domi=> 2m+24+2p +1)=6m+9+23m —2) =43m +1) +1 > 4(3m + 1)

as desired.
Case 2: f(v) is in a corner triangle.
By symmetry, we may assume that p¥ > 2m. Hence, 7} = 6m + 2 by construction. Now,

3
it follows from Proposition 9 that {2412 > 2(3m+1). Therefore, Z lf] > 6m+2+2(3m+1) =
=1

4(3m +1). 0

6 Bad Examples for Algorithm 3-CUT

Since the constant % is best possible in Theorem 5, it is natural to ask if it is best possible in
Corollary 7. The two issues are different. By Theorem 6, the weight of the flat 3-cut delivered
by Algorithm 3-CUT is at most 1/F(q) times the optimal value of (LP3). It follows that,
if that value is close to F'(q) times the weight of an optimal 3-cut, then Algorithm 3-CUT
will deliver a 3-cut that has weight close to the weight of an optimal 3-cut. Therefore, bad
examples for Theorem 5 do not directly provide bad examples for Corollary 7. However,
such examples do exist.

Theorem 14 For each ¢ =0 (mod 6), there exist a weighted graph (H,, ¢) and an embedding

of H, determining an optimal solution for (LP3), such that Algorithm 3-CUT delivers a flat

12(g+1)
11g+12

3-cut (with respect to the embedding) having weight times the weight of some 3-cut.

Here is the class of graphs that we will use to prove Theorem 14. Let ¢ = 6m where m 1s
a positive integer. Construct the weighted graph (Hy,¢) as follows. Take (G, c’). For each
outside edge e on the line joining ¢ and t3, reduce the weight on e by 2m + 2. Let © be
the vertex at the midpoint between t5 and t3. Let @ and @ be the two neighbours of © that
lie on the line joining ¢, and t3 with @ closer to t;. Remove the edges uv and vw. Add the
edge uw with weight 2m and the edges t50 and ¢30, each with weight 2m + 2. The resulting
weighted graph (Hy, ¢) is depicted in Figure 8.

Before proving Theorem 14, we briefly describe the origin of the above construction.
When seeking bad examples, there are two main issues to consider. First, we need to identify
weighted graphs such that the ratio of the weight of the best flat 3-cut with respect to some

16



Figure 8: H, with edge weights
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embedding of the graph into A and the weight of the optimal 3-cut is close to % Second,
given such a weighted graph, we need to make sure the embedding does yield an optimal
solution to (LP3). It is not clear how to resolve both issues at the same time. What follows
is an outline of our approach.

We focused on graphs that have vertex-set A, for small values of ¢. (That is, we assumed
that the graphs were already embedded into A.) Initially, the graphs were assumed to be
complete. We did the following for each graph G we chose. For each (non-flat) 3-cut C in G,
we generated a linear-programming problem. For each edge, there is a variable representing
its unknown weight. For each flat 3-cut, we have a constraint that ensures that it has weight
at least 1. The objective function is to minimize the weight of the 3-cut C.

We went through all the 3-cuts of G' and identified candidates that gave the best pos-
sible ratio. We then went through the process once again for these candidates, each time
gradually reducing the number of edges that are not in E,. We then experimented with the
weight vector to see if the embedding we started with actually gave an optimal solution to
the linear-programming problem with the given weight vector. A pattern gradually emerged
and it allowed us to guess which graphs to consider for higher values of ¢q. After performing
the computations on the candidates for higher values of ¢, we formulated a conjecture on
what would be an infinite family of bad examples for ¢ = 0 (mod 6). Finally, we proved the
conjecture using analytical methods.

Proof of Theorem 14.

Since V(H,) = A, the 3-tuples of the vertices give an embedding of H, into A. Note
that a flat 3-cut in this embedding has the same weight as the corresponding flat 3-cut in
(G4, ). By Lemma 8, every 3-cut in (G, ') has weight at least 4(¢ + 1). Thus every flat
3-cut in (Hy, c¢) has weight at least 4(¢ + 1).

Now, the 3-cut
6({t3}7 {t27 ﬁ}v V(Hq)\{t27 t3, ﬁ})

has weight (6m +1) + (4m — 1) + 2+ (2m +2) 4+ (4m — 1) + (6 + 1) = 22m + 4 = HLH2,
Thus the ratio of the value of an optimal flat 3-cut in the embedding of H, to the value of
this 3-cut is 4(¢ + 1)/((11q + 12)/3) = 12(¢ + 1)/(11¢ 4+ 12). As ¢ approaches infinity, the
ratio approaches % Hence, it remains to show that the embedding given by the 3-tuples of
the vertices of H, determines an optimal solution to (LP3).

By Theorem 1, it suffices to show that the embedding is optimal for

1
min Y 5 Cunl X = x|
weE(Hy)
subject to
x" e A, u € V(Hq)\{tl,tz,tzg}

xti = ¢, i=1,2,3.

Observe that the objective value given by the embedding is 22m + 4. (This can also be
seen using the calculation in the paragraph following Lemma 8.) We show that 22m+4 is the
optimal value using linear-programming duality. Since ¢ > 0, writing X% as (Zy, Yu, 2u) ", We
can rewrite the above minimization problem as the following linear-programming problem.
This problem was introduced by Calinescu et al. [1, 2].
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. 1
min Z §cuu(qu + Yo + Zuw)
weE(Hy)
subject to
Xuw — Ty + 2, >0, uve E(H,)
Xuw — o +2,>0, uve E(H,)
Y;w_yu‘l’yvzoa UUEE(Hq)
(SLP) Y;w_yv‘l’yuzoa UUEE(Hq)
Zwo — Zu+ 20 >0, uv € E(H,)
Zyw — 2z + 24 >0, uv € E(H,)
Tyt Yu+za =1, uw€V(H)\{t1,t2,t3}
Ty, = 17 Yty :07 Zt =0
Lty = 07 Yt, = 17 Zty = 0
Lty = 07 Yty — 07 Ztg = 1
x,y,z > 0.

Notice that, while there is one variable X,, for each edge uwv € E(H,)—that is, X, is
the same as X,,—there is a constraint X, — x, + ©, > 0 for each ordered pair (u,v) such
that wo € E(H,). A similar observation holds for Y and Z. Therefore, it is convenient to
introduce the digraph H; obtained from H, by replacing each edge by a pair of oppositely
directed edges. Now, we write the dual of (SLP). We make use of the notation f,(u)
to denote the “net outflow” from vertex u in H,, with respect to » € RP(H3) | namely,

fZ(u) = Ew:quE(H(’Z) Ruw EUJ:UUJEE(H(/]) Zwu:

max 5751 + &, + ¢t3 + EuEV(Hq)\{tl,t2,t3} O
subject to
Qup + Q. = 4=, uwv € E(H,)
Buv + Bow = 4=, uv € E(Hy)
Yo + You = %=, wv € E(H,)
(w),  uw€V(H)\{ti, 12,85}
0. < fa(u), u € V(H)\{t1, 12,15}
0. < fy(u), u € V(H,)\{t1,1t2,t3}
(), 1=1,2,3
E; S fg(t,’), ] = 1,2,3
o, < fo(ti), 1=1,2,3
a, B,y > 0.

We now give a feasible solution to (DSLP) having objective value 22m + 4. We do this
in two steps. First, we fix the values of the components of 4,4, ¢, ¢ as follows. Let Let U
denote the set of points i(:z;, y.z) of A, such that
r=Fandy=0orz=0,or
r=4m — 2i, and y = ¢ or z = ¢ for some ¢ € {0,....,2m — 1},i # m, or
r=4m —2i+ 1, and y = ¢ or z = i for some ¢ € {1,...,m}, or
r=4m —2i+1,andy=1—1orz=14¢—1for somei € {m+1,...,2m}.

(DSLP)
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The circled vertices in Figure 8 are the vertices in U. Set

f; =1,
6., =1/2 for all u € U,
(Stl =&ty = qbt?) = 6m—|— ]_7

:5t3 =& = iy :thl :¢t2 = —6m — 1.

Set all the other components of 6, d, ¢, ¢ to zero. Note that |[U| = 2+2(2m—1)+2(2m) = 8m.
The resulting objective value is

St + e+ Gy + Y 0 =3(6m +1) +8m(1/2) + 1 = 22m + 4.

ueWw

Hence, to complete the proof, it is sufficient to to find «, 5,~ such that all the constraints
n (DSLP) are satisfied.

If we ignore the equality constraints for the moment, the problem reduces to three sepa-
rate feasible flow problems on H,. One has o as flow values and 6 and § as demands, another
has 3 as flow values and 6 and ¢ as demands, and the last has v as flow values and € and
¢ as demands. In each of these problems, we seek flows such that the net out-flow at every
vertex is at least the demand at the vertex.

These flow problems can be simplified further, as follows. Consider «, for example. In
view of the constraint ay, + cu, = 4%, to speafy these two values, it is enough to specify

their difference dryy = iy — Qpu, the © net flow” in direction (u,v). Moreover, we can choose
an orientation (u,v) or (v,u) so that this difference is non-negative. Then the requirement
on these netflows is, again, that the net flow out of each vertex be at least its demand, and
that, if edge uv is oriented from u to v, then its net flow be non-negative and at most “.
We describe values for a and [, omitting those for ~, since it is symmetrical to J. It is
straightforward to check that they have the required properties.

Values for a. This solution is indicated in Figure 9, where we show the orientations and
net flow values &. The vertices in U have demand % and are circled. Any other vertex having
nonzero demand has the demand adjacent to the vertex. Note that a number of edges have
cww = 0 and are omitted from the figure.

Recall that © is the vertex on the midpoint of the line joining ¢ and t3. Let @ denote
the neighbour of © on the line between © and ¢ and @ denote the neighbour of © on the line
between ¢ and t3. Set dgp = 0. For each ¢ € {2,3}, set da;, = ¢, /2. For any edge (u,v) of
Hé that is parallel to one of the (oriented) line segments from ¢; to ¢ or ts, set Gy = cur,

It remains to consider the “horizontal” edges. First, suppose uv lies on the segment
between @ and t5 or on the segment between w and #5. Assuming that (u,v) points toward

the terminal, set &y, = ¢, where 7 1s the graph distance between v and v in G,. Now suppose
that uv lies on the horizontal line containing two vertices wy,wy € U. If uv is on the segment
between w; and wy, then set &,, = 0. Otherwise, if (u, v) points away from this segment, set
Gy = 4. The only remaining possibility for a horizontal edge uv occurs when the distance
from t; to u is less than 2m, in which case ¢,, = 0, so &, = 0. Note that the demand

constraints for « are actually satisfied with equality at all vertices except v.
Values for 3. The solution we are about to describe is indicated in Figure 10, which shows
the net flows ﬁ and the demands, as in Figure 9. Set ﬁuw = 2. Set ﬁtw ﬁm =m+ 1.
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For each edge (u,v) that is parallel to the (oriented) line segment from ¢, to #; or t3, set

/8 _ Cuv
uv T .

Figure 10: Net flow values for

Consider an edge uv parallel to the line joining t; and t3. First, suppose uv is on the
line joining t; and t3. If wv is incident with ¢; or ¢3, then, assuming that v is a terminal,
set fuy = %= = 3m + . If uv is in the corner triangle containing ¢, then, assuming that

(u,v) points toward t, set Buv = 1. If uv i1s in the middle hexagon, then, assuming that
(u,v) points toward ts, set 61“1 =74 L 3» Where ¢ + 2m is the graph distance between u and
t1. If wv is in the corner triangle containing t3, then, assuming that (u,v) points toward ts,
set Bm, =2 =2m+ 1.

Now, suppose uv is not on the line joining #; and ¢5. If the second coordinates of u and v
equal § and (u,v) points toward #;, set Buw = Gn Ifi€{l,...,3m—1,3m+1,...,4m}, there
are exactly two vertices wy, wy € U having second coordinate equal to i/q. Suppose uv lies on

the line through wy, wy. If uv lies on the segment between w; and w,, set 5, = 0; otherwise,
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assuming that (u,v) points away from the segment between w; and w,, set Bm, = G,

Note that, except at the neighbour of #; having zero second coordinate, the demand
constraints are satisfied with equality. This concludes the proof of Theorem 14.

7 Concluding Remarks

All of the results of Calinescu et al. [1, 2] quoted above for k = 3 are special cases of their
results for general k. They give a linear-programming relaxation that generalizes (LP3),
and a corresponding generalization of the notion of triangle-embedding, an embedding into

a (k — 1)-dimensional simplex in which the terminals are mapped to the extreme points.
They show that the optimal value of a k-cut is at most 3’;—;2 times the optimal value of this
linear-programming problem. As a result, they obtain an approximation algorithm for the
optimal k-cut problem having performance guarantee 3’;—;2 The recent paper by Karger et

al. [11], which has some of our results for & = 3, also has results for & > 3, improving the
bounds given by [1, 2]. For example, [11] gives bounds of 1.1539 for k& = 4, 1.2161 for k = 5,
and 1.3438 — ¢ for all £ > 6 where ¢, > 0 1s evaluated computationally for any fixed k.

Freund and Karloff [9] gave a lower bound of H—Ll—
kE—1

However, the problem of giving a tight analysis for & > 3, as we now have for k = 3, remains

on the integrality ratio for general k.

open. Why is k = 3 apparently easier to deal with than higher values of k7 One important
difference is this: For k > 3 the analogue of (D,) need not have an optimal solution whose
positive variables correspond to flat k-cuts. This can be demonstrated with an example with
k=4 and g = 4.
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