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tPerhaps the two most fundamental well-solved models in 
ombinatorial optimization arethe optimal mat
hing problem and the optimal matroid interse
tion problem. We review thebasi
 results for both, and des
ribe some more re
ent advan
es. Then we dis
uss extensionsof these models, in parti
ular, two re
ent ones|jump systems and path-mat
hings.1 Introdu
tionIn the 1960's Edmonds 
alled attention to the 
lass of (polynomially) solvable problems and to
ertain other problems (su
h as the Travelling Salesman Problem), whi
h he 
onje
tured to beunsolvable. He also proved that several important models asso
iated with graph mat
hing andmatroids are solvable, and observed an apparent 
onne
tion between solvability and the existen
eof 
ertain of these stru
tures. In the ensuing years there has been in
reasing re
ognition, both ofthe importan
e of his results and the validity of his hypothesis.Two of those original models, the optimal mat
hing problem and the optimal matroid inter-se
tion problem, remain the most important well-solved models in 
ombinatorial optimization.Some of the foundations for them already appeared in the 1940's, in the purely 
ombinatorialwork of Tutte and Rado. However, it was Edmonds in the 1960's who made these subje
tspart of 
ombinatorial optimization. He was the �rst to provide eÆ
ient algorithms and poly-hedral des
riptions. In addition, he found beautiful 
onne
tions, analogies, generalizations, andappli
ations.Sin
e then, our understanding of both models has grown. Edmonds' original proofs weremainly algorithmi
 and polyhedral. Now several di�erent proofs are known, and solution algo-rithms that are essentially di�erent from his augmenting path algorithms exist. There have alsobeen a number of important su

esses in extending these models in new dire
tions. I want toemphasize that these two themes|alternate approa
hes to the 
lassi
al results, and extensionsof those results|are not unrelated. Very often the newer, more general results have been estab-lished by methods that were already introdu
ed for mat
hing, but were not the original methods.�Resear
h partially supported by a grant from the Natural S
ien
es and Engineering Resear
h Coun
il of Canada.1



In many 
ases it is simply not known whether the original methods 
an be generalized. Hav-ing an arsenal of other te
hniques, in
luding ones introdu
ed for \already solved problems", isimportant.The fundamental results on mat
hing and matroid interse
tion have already found their wayinto textbooks. We review some of the main points, and try to emphasize a few importantaspe
ts, su
h as the Tutte matrix and the Gallai-Edmonds partition, that are less well-knownto optimizers. Work on extensions has already ex
eeded what 
an be surveyed adequately in apaper of this length, so we have made some 
hoi
es. The 
lassi
al extensions found by Edmonds|degree-
onstrained subgraphs and polymatroid interse
tion|are very important, but have alreadyappeared in earlier surveys. Of the many other important extensions, several are related to thefundamental notion of submodular fun
tions, and are rather independent of mat
hing theory.Here I refer espe
ially to the submodular 
ow models of Edmonds and Giles [16℄ and others, thebisupermodular 
overing model of Frank and Jordan [18℄, and, of 
ourse, the fundamental prob-lem of minimization of submodular fun
tions, on whi
h there have been ex
iting developmentsre
ently. We 
ontinue to be motivated somewhat by the very old question of �nding a satisfa
tory
ommon generalization of optimal mat
hing and optimal matroid interse
tion. We des
ribe insome detail two re
ent attempts, jump systems and path-mat
hing.This paper is mainly expository. However, Theorems 5.3 and 6.5 are new. Also, we summarizein Se
tion 6 some results from [8℄, whi
h has not yet appeared.We introdu
e here a bit of notation. For sets S; T , we denote their symmetri
 di�eren
e (theset of elements in exa
tly one of them) by S 4 T . We denote by RS (ZS) the set of all real(integral) ve
tors having 
omponents indexed by S. If we have T � S and x 2 RS , we denoteP(xj : j 2 T ) by x(T ). For an undire
ted graph G = (V;E) and S � V , we denote by Æ(S)(respe
tively, 
(S)) the set of edges having one end (respe
tively, both ends) in S. The subgraphof G having vertex set S and edge set 
(S) is denoted by G[S℄. For a path P of a graph, we useE(P ) to denote the set of edges of P .2 Mat
hingA mat
hing in a graph G = (V;E) is a set M of edges su
h that no two elements of M have a
ommon end. A mat
hing is said to 
over the verti
es that it is in
ident with. If B is the set ofverti
es 
overed by some mat
hing, then B is 
alled a mat
hable set of G. A mat
hing is perfe
tif it 
overs all of the elements of V . The number of 
omponents of G having an odd number ofverti
es is denoted by odd(G). Tutte [41℄ proved the fundamental theorem about the existen
eof perfe
t mat
hings.Theorem 2.1 (Tutte's Mat
hing Theorem) G has a perfe
t mat
hing if and only ifodd(G[V nS℄) � jSj for all S � V .By now there are many proofs of this theorem, and we will mention some below. Tutte'soriginal proof is not one of the better known ones, but it has begun to attra
t more attentionre
ently. It uses the following idea. Let ze; e 2 E; be distin
t 
ommuting variables. Let A(G)be a V by V skew-symmetri
 matrix whose entries satisfy aij = �ze if ij = e 2 E, and aij = 0otherwise. We 
all A(G) the Tutte matrix of G (even though it is not quite unique). Tutte2



observed, as a dire
t 
onsequen
e of nineteenth 
entury theory of determinants, the followingunexpe
ted fa
t.Theorem 2.2 G has a perfe
t mat
hing if and only if A(G) is nonsingular.(Note what it means for su
h a matrix to be nonsingular|that its determinant, viewed as amultivariate polynomial, is not identi
ally zero.) It is a ni
e exer
ise to prove Theorem 2.2 dire
tly.Here is an outline of a proof. It is easily 
he
ked that ea
h non-zero term in the determinantexpansion arises from a set of vertex-disjoint paths 
overing all the verti
es, su
h that ea
h pathis 
losed, but is otherwise vertex-simple. (Note that the path v; w; v arising from a single edge issu
h a path.) A perfe
t mat
hing obviously determines su
h a set of paths, and moreover, onewhose 
orresponding term in the expansion 
annot be 
an
elled by another term. If su
h a setof paths has the property that ea
h path is of even length, it is easy to see that G has a perfe
tmat
hing. On the other hand, if one or more of the paths has odd length, then there is anotherterm that 
an
els this term. Thus there is a perfe
t mat
hing if and only if the determinant isnot zero.It follows from Theorem 2.2 that a set B of verti
es is mat
hable if and only if the prin
ipalsubmatrix of A(G) with rows and 
olumns indexed by B, is nonsingular. Further, sin
e therank of a skew-symmetri
 matrix is equal to the size of a maximum-size nonsingular prin
ipalsubmatrix, this implies that the rank of the Tutte matrix is equal to the size of a maximummat
hable set.Tutte's Mat
hing Theorem is equivalent to the following result of Berge, now often referredto with both of their names. Note that the size of a largest mat
hable set is twi
e the size of alargest mat
hing, so one 
an write the formula a little more 
leanly in terms of mat
hable sets.However, we have used the more traditional statement.Theorem 2.3 (Tutte-Berge Formula) The maximum size of a mat
hing of G is the minimum,over subsets S of V of 12 (jV j � odd(G[V nS℄) + jSj) :In his 
lassi
 paper [13℄ Edmonds gave the �rst eÆ
ient algorithm to �nd a mat
hing ofmaximum size (and hen
e to de
ide whether a graph has a perfe
t mat
hing). The algorithmis an augmenting path method|if the 
urrent mat
hing M is not maximum, it �nds a path Psu
h that M 4E(P ) is a mat
hing of size larger by one. If M is maximum it �nds a set S su
hthat jM j = (jV j � odd(G[V nS℄) + jSj)=2: Thus it also provides another proof of the Tutte-BergeFormula. In fa
t, the algorithm �nds a 
ertain 
anoni
al minimizing set S. Namely, de�ne thepartition A;C;D of V byD = fv 2 V : there is a maximum mat
hing not 
overing vg;A = fu 2 V nD : uv 2 E for some v 2 Dg;C = V n(D [A):The partition (A;C;D) is 
alled the Gallai-Edmonds partition of G. It is 
learly well-de�ned. As
an be seen from the following result, this partition tells a great deal about mat
hing propertiesof G. Its statement uses one more notion|a graph H is 
riti
al if, deleting any vertex from H ,3



the resulting graph has a perfe
t mat
hing; su
h a mat
hing is 
alled a near-perfe
t mat
hing ofH .Theorem 2.4 (Gallai-Edmonds Stru
ture Theorem) If (A;C;D) is the Gallai-Edmondspartition of G, then every 
omponent of G[D℄ is 
riti
al, and every maximum mat
hing of G
onsists of� a perfe
t mat
hing of G[C℄;� a near-perfe
t mat
hing of H for ea
h 
omponent H of G[D℄; and� an edge joining v to some vertex in D for ea
h v 2 A.It is an easy 
onsequen
e that A is a minimizing 
hoi
e for S in the Tutte-Berge Formula.Edmonds' algorithm �nds the Gallai-Edmonds partition, in parti
ular, �nds as a minimizing setS; the set A.Weighted mat
hing and mat
hing polyhedraEdmonds [14℄ also 
onsidered the problem of �nding a (perfe
t) mat
hing of maximum weight,subje
t to given weights on the edges. (The easier spe
ial 
ase in whi
h the graph is bipartitehad been solved in the 1950's by Kuhn.) He was able to �nd a des
ription by linear inequalitiesof the \Mat
hing Polytope", the 
onvex hull of in
iden
e ve
tors of mat
hings.Theorem 2.5 (Mat
hing Polytope Theorem) The 
onvex hull of the set of in
iden
e ve
torsof mat
hings of G is the set of solutions ofx(Æ(v)) � 1 (v 2 V )x(
(S)) � (jSj � 1)=2 (S � V; jSj odd)x � 0:Edmonds gave an eÆ
ient algorithm that not only �nds a maximum weight mat
hing, butveri�es that the in
iden
e ve
tor of the mat
hing optimizes 
Tx over all x satisfying the system,thus proving the Mat
hing Polytope Theorem. It essentially applies his maximum 
ardinalitymat
hing algorithm to the subgraph 
onsisting of the edges whose dual 
onstraints are satis�edwith equality for the 
urrent dual solution, and then 
hanges the dual solution (if ne
essary).Other proofs of the theorem have been given by Lov�asz and S
hrijver. Both of these newer proofsintrodu
ed te
hniques that have been useful in proofs of other important theorems of polyhedral
ombinatori
s.Cunningham and Marsh [9℄ proved that the system of linear inequalities in the Mat
hingPolytope Theorem is totally dual integral|for any 
 2 ZE; su
h that the maximum of 
Txsubje
t to the system exists, the dual linear program has an integral optimal solution. Thisresult implies the Tutte-Berge Formula. The proof of [9℄ is algorithmi
. S
hrijver [39℄ has givena very short indu
tive proof, again introdu
ing a te
hnique that has been used elsewhere.A version of the Mat
hing Polytope Theorem provides a des
ription of the perfe
t mat
hingsby linear inequalities. This theorem and Theorem 2.5 
an ea
h be proved from the other.4



Theorem 2.6 (Perfe
t Mat
hing Polytope Theorem) The 
onvex hull of the set of in
i-den
e ve
tors of perfe
t mat
hings of G is the set of solutions ofx(Æ(v)) = 1 (v 2 V )x(Æ(S)) � 1 (S � V; jSj odd) (1)x � 0:There are important extensions of mat
hing theory that are nevertheless essentially equivalent.A T -join is a subset of edges having the property that the number of them in
ident to ea
h vertexof G is odd pre
isely if the vertex is in T . The Chinese postman problem in a 
onne
ted graphis to �nd a minimum-
ost 
losed path 
overing all edges. It 
an be redu
ed to the problem of�nding a minimum-weight T -join where T is the set of odd degree verti
es of G. Given G, b 2 ZV+,u 2 (Z+ [ f1g)E , and 
 2 RE , the u-
apa
itated b-mat
hing problem is to �nd x 2 ZE su
h thatx(Æ(v)) = bv for all v 2 V , 0 � x � u, and 
Tx is minimized. These problems 
an be solvedusing algorithms for optimal mat
hing as the essential ingredient. Moreover, the 
orrespondingpolyhedral des
riptions 
an be proved from those for mat
hing. See Cook, et al. [5℄.Mat
hing AlgorithmsIt seems still to be true that implementations of Edmonds' algorithm provide the fastest way,in theory and pra
ti
e, to solve mat
hing problems. However, several other algorithms, ea
hinteresting from some point of view, have been introdu
ed. Often they have provided te
hniquesthat 
ould be generalized when the augmenting path approa
h seemed diÆ
ult to extend.An algorithm for �nding a maximum mat
hing, or more generally, a maximum-weight mat
h-ing, 
an be based on the equivalen
e of separation and optimization [24℄. It is most 
onvenientto des
ribe this for the problem of �nding an optimal perfe
t mat
hing. It is enough to showthat the problem: \Given x 2 RE, �nd if one exists, an inequality from (1) violated by x" 
anbe solved in polynomial time. The only inequalities for whi
h testing violation is nontrivial, arethe ones of the form x(Æ(S)) � 1. It is enough, therefore, to have an eÆ
ient algorithm to �nda minimum weight \odd" 
ut with respe
t to given non-negative weights. Padberg and Rao [35℄showed that one 
an be found by �rst �nding a minimum 
ut Æ(S). If jSj is odd then 
learly Æ(S)is a minimum odd 
ut, and we we are done. If not, one 
an show that the problem redu
es toone of �nding a minimum odd 
ut in ea
h of two smaller graphs (obtained by shrinking S and its
omplement to single verti
es). We remark that the resulting algorithm for �nding an optimalperfe
t mat
hing is based on the ellipsoid method, and is not at all pra
ti
al.Lov�asz and Plummer [33℄ gave a new algorithm, based on the Gallai-Edmonds partition, for�nding a mat
hing of maximum 
ardinality. (It is a
tually a spe
ialization of Lov�asz's algorithmfor the linear matroid parity problem, whi
h is introdu
ed below.) It works as follows. At step iwe have a list Li of at most jV j mat
hings of size ki. Based on that list we de�ne the partitionA;C;D as above. (That is, we use Li instead of the set of all maximum mat
hings to de�ne D.)If the set S = A and a mat
hing M of size ki satisfy the equation of the Tutte-Berge Formula,then M is a maximum mat
hing. If not, then one of the 
on
lusions of the Gallai-EdmondsStru
ture Theorem is violated. Any su
h violation leads to the dis
overy of a new mat
hing M 0,of 
ardinality ki + 1 or ki. In the former 
ase, we pro
eed to step i + 1 with ki+1 = ki + 1, and5



Li+1 = fM 0g. In the latter 
ase, we pro
eed to step i+1 with ki+1 = ki, and Li+1 = Li[fM 0g. (Inthis 
ase, the set D of the new partition will be larger.) Of 
ourse, we have omitted some details.These details do involve the use of augmenting-like paths, but, unlike in Edmonds' algorithm,one does not have to sear
h for the paths|they just appear.Lov�asz and Plummer also gave a variant of the Edmonds algorithm for �nding a maximumweight mat
hing. Edmonds' algorithm, while the 
urrent dual solution remains �xed, is essentiallyworking on the subgraph 
onsisting of edges whose 
orresponding dual 
onstraints hold withequality. The dual 
hange that it makes 
an depend, at least in many versions of the algorithm,on some arbitrary 
hoi
es. Lov�asz and Plummer's variant uses only the Gallai-Edmonds stru
tureof this subgraph and the old dual solution to de�ne the new dual solution. It thus separates theprimal-dual phase from the augmenting path phase of the Edmonds algorithm. (Another way tosay it, is that any algorithm 
apable of �nding the Gallai-Edmonds partition of a graph 
an beused as a subroutine in the primal-dual algorithm.) Although this idea does not lead to a moreeÆ
ent algorithm, it does provide more insight. In addition, it turns out to be very important ingeneralizations.Mat
hing algorithms from the Tutte matrixThe Tutte matrix lends itself to algorithmi
 approa
hes to the maximum mat
hing problem. Weknow that it is enough to 
ompute its rank. (This will �nd the size of a maximum mat
hing;a
tually �nding su
h a mat
hing takes a bit more work, whi
h we will ignore here.) However,a straightforward approa
h fails. Gaussian elimination, applied dire
tly, leads to intermediatematri
es having entries that are exponentially long. Rather, we use an approa
h based on theidea of an evaluation of the Tutte matrix. This is a rational matrix obtained from the Tutte matrixby assigning a rational value to ea
h variable ze. It is easy to see that the rank of A(G) is at mostthe rank (over the rationals) of any evaluation of A(G), and that there exists an evaluation whoserank is equal to the rank of A(G). Lov�asz showed that a randomly 
hosen evaluation of the Tuttematrix has a signi�
ant probability of being su
h a maximum-rank evaluation. Choosing a fewsu
h evaluations independently, one 
an �nd in polynomial time the size of a maximum mat
hingwith high probability.Geelen [23℄ re
ently showed how the Tutte matrix 
ould be used to give a deterministi
polynomial-time algorithm. This is a beautiful result, and shows that mat
hing theory itselfremains a vital area of resear
h. His algorithm begins with an arbitrary evaluation, and thensear
hes lo
ally for an improvement. One obvious idea for a lo
al improvement is to �nd a variableze whose value 
an be 
hanged to in
rease the rank of the evaluation. It is not quite true that anevaluation that is lo
ally optimal in this sense will have maximum rank. However, it turns outto be suÆ
ient to amend the de�nition of \improvement" just slightly. Say that a row or 
olumnof a matrix is dependent if its deletion does not de
rease the rank. (In view of Theorem 2.2,the dependent rows of the Tutte matrix 
orrespond exa
tly to the set D of the Gallai-Edmondspartition of G.) We de�ne an evaluation to be lo
ally optimal if no 
hange to the value of a singlevariable either in
reases the rank of the evaluation, or keeps the rank the same while in
reasingthe number of dependent rows. 6



Theorem 2.7 A lo
ally optimal evaluation of the Tutte matrix of G is a maximum-rank evalu-ation.Geelen also shows that one 
an restri
t values for the ze in an evaluation to the integersf1; 2; : : : ; jV jg. It is now immediate that there is a polynomial-time algorithm to �nd the eval-uation. Namely, we try 
hanging the value of a variable to one of jV j � 1 other possible values.If we get an improvement, we 
ontinue, and otherwise we have an optimal evaluation. Clearly,we need to try at most jV j3 evaluations to get an improvement, at most jV j5 throughout thealgorithm, and the work at ea
h step is simple linear algebra. Thus there is an almost trivialalgorithm for �nding the size of a maximum mat
hing. (On the fa
e of it, it is very ineÆ
ient.There are a number of observations that make it possible to improve the running time. Moreover,the algorithm 
an be re�ned to a
tually �nd a maximum mat
hing. See [23℄.)It is interesting to observe that three of the algorithms for �nding a maximum mat
hing thatwe have mentioned have a 
ommon stru
ture. The Lov�asz-Plummer algorithm keeps at ea
hstep a list of mat
hable sets of the same size. (These are the sets indu
ed by the mat
hingsin the list Li.) Geelen's algorithm also keeps su
h a list, impli
itly; its elements 
orrespond tothe maximum-rank prin
ipal submatri
es of the 
urrent evaluation. Edmonds' algorithm keepsa forest of \alternating trees" rooted at the unmat
hed verti
es of a \shrunken graph", whi
halso en
odes su
h a list impli
itly. The mat
hable sets 
orrespond to the mat
hings that 
an beobtained by taking a maximum mat
hing of ea
h tree and the 
urrent mat
hing of the verti
es notin the forest, and then extending the mat
hing to the original graph by repeatedly \expanding".Ea
h of the algorithms tests whether optimality is rea
hed, and if not, makes a new list with thefollowing property. Either the new list 
onsists of mat
hable sets of larger size, or the list 
onsistsof mat
hable sets of the same size, the union of whose 
omplements is larger.3 MatroidsA matroid on T 
an usually be thought of as a matrix with 
olumns indexed by elements of T ,where available knowledge of the matrix is limited to knowledge of the subsets of T that indexlinearly independent sets of 
olumns. Although there do exist matroids that do not arise frommatri
es in this way, this fa
t is not very important for our purposes. However, the fa
t that we
annot ne
essarily a

ess the matrix itself is important. A matroid may be de�ned in a number ofways, for example, via its set of independent sets, or its set of bases (maximum size independentsets), its set of 
ir
uits (minimal dependent sets), or its rank fun
tion (giving, for any subset Aof T , the size r(A) of a largest subset of A that is independent). Here is an axiomati
 de�nitionin terms of the set of bases|for any two bases B;B0 and any element e 2 B0nB there existsf 2 BnB0 su
h that (B [ feg)nffg is also a basis. Algorithms operating on matroids typi
allya

ess the matroid only through an \ora
le" that, given a subset A of T , tells whether or not Ais independent.A well-known 
lass of matroids arises from graphs|take T to be the edge set of a (
onne
ted)graph, and de�ne a set of edges to be independent if they do not 
ontain the edges of a simple
ir
uit. Then the bases of the matroid are the (edge sets of) spanning trees of the graph. There isa well-known \greedy" pro
edure for �nding a spanning tree of maximum (or minimum) weight.7



Perhaps the earliest 
onne
tion of matroid theory with 
ombinatorial optimization is a result ofRado [37℄, that su
h a pro
edure works in general for matroids.Greedy AlgorithmOrder T as fe1; : : : ; emg, where 
e1 � 
e2 � : : :� 
em ;Initialize B = ;;For i = 1 to mIf B [ feig is independentAdd ei to B.Theorem 3.1 At termination of the Greedy Algorithm, B is a basis of maximum weight.Edmonds redis
overed this fa
t, and proved the stronger result that the in
iden
e ve
tor of Bmaximizes 
Tx over all x satisfying a natural set of inequalities. Thus he established a des
riptionfor the 
onvex hull of in
iden
e ve
tors of bases of the matroid.Theorem 3.2 (Matroid Basis Polytope Theorem) The 
onvex hull of the set of in
iden
eve
tors of bases of the matroid M on T is the set of solutions ofx(A) � r(A) (A � T )x(T ) = r(T )x � 0:Matroid Interse
tionThe most important model related to matroids, is matroid interse
tion. We are given twomatroidson the same set T , and we are interested in the existen
e of a 
ommon basis. So we may assumethat the two matroids have the same rank, say k. Let ri(A) denote the rank of A in matroid Mi,for i = 1 and 2. If B is a 
ommon basis and A is any subset of T , we havek = jBj = jB \Aj+ jB \ (TnA)j � r1(A) + r2(TnA):Edmonds [15℄ proved that this ne
essary 
ondition is also suÆ
ient.Theorem 3.3 (Matroid Interse
tion Theorem) IfM1;M2 are matroids on T of rank k, theyadmit a 
ommon basis if and only if for every set A � Tr1(A) + r2(TnA) � k:One spe
ial 
ase of the existen
e problem for a 
ommon basis is the existen
e problem for aperfe
t mat
hing in a bipartite graph G. We may assume that the parts, P1; P2 of the bipartitionboth have size k. Where T is the edge-set of the graph, we say that a set of edges is a basis in M1if it has exa
tly one edge in
ident with ea
h vertex of P1, and similarly for M2 and P2. Then the
ommon bases are indeed the perfe
t mat
hings of G. Now let us apply the Matroid Interse
tion8



Theorem to this spe
ial 
ase. Let A � E, and 
onsider the set C 
onsisting of those verti
es ofP1 in
ident with at least one edge in A, together with those verti
es of P2 in
ident with at leastone edge of EnA. Noti
e jCj = r1(A) + r2(TnA), and that every edge of G is in
ident to at leastone vertex in C. So Theorem 3.3 implies that, if G has no perfe
t mat
hing, then it has a \vertex
over" of size less than k. This is a form of the K}onig-Hall Theorem for bipartite mat
hing.There are a number of attra
tive theorems that are equivalent to the Matroid Interse
tionTheorem. One of them was a
tually found earlier by Rado [36℄. There are also a number ofelegant proofs. Edmonds' original proof was 
onstru
tive, providing an eÆ
ient augmenting pathalgorithm, generalizing su
h algorithms for bipartite mat
hing.Edmonds also 
onsidered the more general problem of �nding a maximum weight 
ommonbasis. He proved that the 
onvex hull of 
ommon bases of two matroids is the interse
tion ofthe 
onvex hulls of the two basis polyhedra. Moreover, he showed that the system 
onsisting ofthe linear des
riptions for the two basis polyhedra, is totally dual integral. (This 
an be used toprove Theorem 3.3.) He gave an elegant non
onstru
tive proof of the polyhedral theorem and thetotal dual integrality. He also gave an algorithmi
 proof, based on a primal-dual approa
h. Likethe maximum-weight mat
hing algorithm, it uses the linear des
ription and the augmenting-pathalgorithm for the unweighted 
ase.4 ExtensionsIn the early years the striking similarity of the results|existen
e theorems, eÆ
ient algorithms,polyhedral des
riptions|for mat
hing and matroid interse
tion suggested to many the existen
eof a ni
e, solvable 
ommon generalization. Sin
e one 
ould de�ne a 
ommon generalization to besimply the union of the two models, the \ni
e" quali�er is important.Many of the most useful extensions of one of mat
hing or matroid interse
tion, do not seemto bear any relation to the other one. However, we will des
ribe in this paper three that do, anddes
ribe some of their advantages and limitations. The reader (or time) will de
ide how \ni
e"ea
h of them is. The generalizations are matroid parity, jump systems, and path-mat
hing. Sin
ethe �rst one is relatively old, we dis
uss it only brie
y here. Then we devote the next two se
tionsto the other two models.We are given a matroid M on T and a pairing of the elements of T . A parity set is asubset of T that 
ontains either both or neither of the elements of ea
h pair. We are interestedin parity bases|bases that are also parity sets. Consider the spe
ial 
ase in whi
h we aregiven a graph G = (V;E); it is 
onvenient to assume that G has no isolated verti
es. We takeT = f(v; e) : v 2 V; e 2 E; v in
ident with eg. The pairing simply pairs (v; e) and (w; e), wheree joins v to w. The matroid M has as bases the subsets of T of size jV j su
h that every vertexo

urs exa
tly on
e. Then the parity bases 
orrespond to the perfe
t mat
hings of G. As ase
ond spe
ial 
ase, suppose that we have matroids M1;M2 on S. We make disjoint 
opies S 0; S00of S and form the matroid on T = S 0 [ S 00 whose bases 
onsist of the union of a subset of S 0
orresponding to a basis of M1 with a subset of S 00 
orresponding to a basis of M2. The pairingsimply pairs two elements of T that are 
opies of the same element of S. Then a parity basis
orresponds to a 
ommon basis of M1;M2. So matroid parity is indeed a 
ommon generalizationof mat
hing and matroid interse
tion. 9



The problem of determining whether a parity basis exists is unsolvable in general [30℄. (Thatis, there is no polynomial-time algorithm to solve it, assuming that the algorithm is allowed toa

ess the matroid only by 
alling an independen
e-testing ora
le.) In addition, it 
ontains NP-hard spe
ial 
ases. Nevertheless, there are some deep results. First, Lov�asz gave an existen
etheorem and an eÆ
ient algorithm for the 
ase whereM arises from a (given) matrix. This \linearmatroid parity problem" does not quite give a solvable 
ommon generalization of mat
hing andmatroid interse
tion|it in
ludes the 
ase of matroid interse
tion only where the two matroidsarise from (given) matri
es over the same �eld. (The weighted version of the linear matroid parityproblem remains open.) Se
ond, there are results for the general problem that lead to solutionsfor other important spe
ial 
ases [30℄.5 Jump SystemsIn this se
tion we let V = f1; : : : ; ng: For x; y 2 ZV we de�ne [x; y℄ to be fx0 2 ZV : min(xi; yi) �x0i � max(xi; yi); i 2 V g: We 
all [x; y℄ a (bounded) box. (More generally, a box is a Cartesianprodu
t of intervals in Z, where the intervals are possibly in�nite.)We de�ne d(x; y) to be P(jxi � yij : i 2 V ); and, for subsets A;B of ZV , d(A;B) to bemin(d(x; y) : x 2 A; y 2 B). A point x0 2 ZV is a step from x to y (or an (x; y)-step) if x0 2 [x; y℄and d(x; x0) = 1: Let J be a nonempty subset of ZV ; a point x 2 J is 
alled a feasible point.The set J is a jump system if it satis�es the following axiom:two-step axiom Given feasible points x; y and a step x0 from x to y, then either x0 is feasible,or there exists a feasible step x00 from x0 to y.For 
onvenien
e in this paper, we will assume that the jump systems are also bounded. However,the results|sometimes with slight modi�
ations|hold without this assumption.Examples in Z2 are useful for understanding the de�nition; see Figure 1, where solid pointsare the feasible ones. The example on the left is a jump system, and that on the right is not|thetwo-step axiom fails for the indi
ated points.
x

yFigure 1: A jump system and a set that is not a jump systemExamples and Constru
tionsJump systems were introdu
ed by Bou
het and Cunningham [3℄. Ex
ept where mentioned ex-pli
itly, the following examples and basi
 results are from that paper. Here are some examples ofjump systems. 10



� Low-dimensional jump systems. If n = 1, J is a jump system if and only if there donot exist two feasible points su
h that between them, there is no feasible point and two ormore nonfeasible points. If n = 2, a 
hara
terization is more involved. See [22℄.� Matroids and delta-matroids. The jump systems 
ontained in f0; 1gV are 
alled delta-matroids. These were introdu
ed earlier [1℄, [4℄, [10℄, and have many attra
tive properties.However, we will not go into them here. Those that are also 
onstant sum, that is, have theproperty that ea
h feasible point has the same 
oordinate sum, are equivalent to matroids.That is, they are exa
tly the ones whose feasible points are the in
iden
e ve
tors of basesof a matroid.� Degree systems. This is perhaps the most fundamental example. Let G = (V;E) be agraph. For a spanning subgraph H of G; we de�ne the degree sequen
e of H, to be theve
tor degH 2 ZV su
h that, for v 2 V , degH(v) is the degree of vertex v in H . The set ofdegree sequen
es of spanning subgraphs of G is 
alled the degree system of G.We list a few ways to 
onstru
t jump systems from others. In the �rst few examples, it isobvious that we get a jump system, but in some of the later ones it is not.} Translation. For an integral ve
tor b, add b to every feasible point.} Re
e
tion. For a 
oordinate i, repla
e xi by �xi for every feasible point x.} Interse
tion with a Box. Given a box B, J \ B is a jump system, if it is non-empty.} Proje
tion. Given a set S � V , repla
e ea
h feasible point by its restri
tion to S (anddelete dupli
ates).} Sum. This is perhaps the most important operation on jump systems. If J 1 and J 2 arejump systems, then J 1 + J 2 = fx+ y : x 2 J 1; y 2 J 2g is also a jump system.} Closest Points to a Box. Given a box B, J B = fx 2 J : d(x;B) = d(J ; B)g is a jumpsystem [32℄.} Fa
es. Let F be a non-empty fa
e of 
onv(J ). Then J \ F is a jump system [32℄.Here are some examples using the above ideas.� If we interse
t the degree system of a graph G with the unit 
ube, the feasible points arethe in
iden
e ve
tors of mat
hable sets of G. This is a fundamental 
lass of delta-matroids.� The degree system of a graph is the sum of the degree systems of its one-edge spanningsubgraphs. Sin
e these are trivially jump systems, this proves that degree systems areindeed jump systems.� If we begin with a matroid, re
e
t it in all 
oordinates, and then translate it by the ve
torof all 1's, we get another jump system in the unit 
ube that is 
onstant sum, that is, we getanother matroid. Its bases are the 
omplements of the bases of the given matroid M ; thatis, it is the dual of M . 11



� A minor of J is obtained by taking, for some S � V and some y 2 ZV nS , J 0 = fx 2 ZS :(x; y) 2 J g. It is a jump system, be
ause it is a proje
tion followed by interse
tion with abox.� (Homomorphism) Given J � ZV , form J 0 � Z(V nfng) by J 0 = f(x1; : : : ; xn�2; xn�1 +xn) : x 2 Jg. We 
an see that J 0 is a jump system as follows. First, extend J to Zn+1 byde�ning J 1 = f(x; 0) : x 2 Jg. Now de�ne J 2 � Zn+1 by J 2 = f(0; : : : ; 0;�yn�1;�yn; yn�1+yn) : yn�1; yn 2 Zg. It is easy to 
he
k that J 2 is a jump system. Now take J 00 = J 1+J 2,and then take the minor 
onsisting of those points z 2 J 00 su
h that zn�1 = zn = 0. Thisis J 0 (essentially).Basi
 ResultsThe following nested box lemma of Lov�asz [32℄, is an important tool in the proof of many resultsin [32℄. (A
tually, as observed by Geelen [22℄, one 
an take this as the de�nition of a jumpsystem.)Theorem 5.1 If J is a a jump system and B1 � : : : � Br are boxes, then JB1 \ : : :\JBr 6= ;.One appli
ation of this lemma is the validity of a greedy algorithm. We state the algorithmand refer to Geelen [22℄ for the proof. Suppose that we are interested in maximizing 
Tx overfeasible points x of a bounded jump system J . By re
e
tion, we may assume that 
 � 0.Greedy Algorithm for Jump SystemsOrder V as fj1; : : : ; jng, where 
j1 � 
j2 � : : :� 
jk > 0 = 
jk+1 = � � �= 
jn ;Initialize J 0 = J ;For i = 1 to kSet � = max(xei : x 2 J i�1);Set J i = fx 2 J i�1 : xei = �g.Theorem 5.2 Ea
h point x 2 J k maximizes 
Tx over J .Note that the set J k is a fa
e of J ; we 
all it a greedy fa
e of J . (It is also a minor of J .)It is interesting to 
onsider the relationship between this greedy algorithm and the one formatroids. If the 
j were initially non-negative, then this algorithm does indeed yield the one formatroids. And of 
ourse, we 
ould (taking advantage of the fa
t that matroids are 
onstant-sum)make the 
j non-negative by adding a 
onstant to all of them, and again the above algorithm wouldredu
e to the one for matroids. However, if we use the re
e
tion method before applying the jumpsystem greedy algorithm, the resulting matroid algorithm is di�erent|it involves 
onsidering theelements in de
reasing order of their absolute value.12



Jump systems and restri
ted � 2-fa
torsMany of the known algorithms for mat
hing and generalizations are based on augmenting paths.Often, however, an augmenting path theorem|roughly, the fa
t that any non-maximum mat
hingX 
an be transformed into a larger one using a path|
an be proved more easily in a non
on-stru
tive way than by formulating an algorithm. (We are using the term \mat
hing" here, thoughthese remarks also apply to more general obje
ts.) Indeed, there are settings where augmentingpath theorems have been found, but augmenting path algorithms are not known. Non
onstru
-tive proofs use a parti
ular larger mat
hing Y together with X to prove the existen
e of a path.The path transforms X into a mat
hing X 00 of size jX j + 1. (In general X 00 6= Y .) Its degreesequen
e di�ers from that of X only at the ends, u and v, of the path. Suppose that we 
onsiderthe degree sequen
es x of X and y of Y and take x0 to be obtained from x by in
reasing xu by 1,and x00 to be the degree sequen
e of X 00. Then there is a good deal of similarity to the two-stepaxiom. For a 
lass F of subgraphs of G, we are interested in algorithmi
 solvability of problemsinvolving F . Possibly this issue is related to two others|the existen
e of an augmenting paththeorem for F , and whether the set of degree sequen
es of members of F is a jump system. Herewe explore this idea in some detail for some 
hoi
es of F related to 2-fa
tors.A 2-fa
tor (respe
tively, � 2-fa
tor) of a graph G = (V;E) is a set X � E su
h that everyvertex of G is in
ident with exa
tly (respe
tively, at most) two edges of X . For this subse
tion, wewill use the term fa
tor to refer to � 2-fa
tors. For a positive integer k, a fa
tor X is k-restri
ted,or simply restri
ted, if every 
ir
uit formed by edges of X has length at least k + 1. If k � 2,then this is no restri
tion at all. It is well-known that questions about fa
tors 
an be solvedby redu
tion to ordinary mat
hings|see [5℄. (They 
an also be solved dire
tly, by generalizingmat
hing te
hniques.) On the other hand, if jV j � 1 � k � jV j2 , then a restri
ted fa
tor 
an
ontain only 
ir
uits that are hamiltonian, so de
iding the existen
e of a k-restri
ted 2-fa
tor ishard in general. In fa
t, for most other values of k, questions about restri
ted fa
tors are alsohard. For k � 5 the problem of �nding a largest restri
ted fa
tor has been proved to be NP-hardby Papadimitriou; see [6℄. Hell, Kirkpatri
k, Krat
hovil, and Kriz [27℄ proved a stronger result,that if the set of 
ir
uit lengths to be ex
luded is not a subset of f3; 4g, then the problem isNP-hard.On the positive side, Hartvigsen [25℄ gave an eÆ
ient (but very 
ompli
ated) algorithm for the
ase when k = 3. As yet, no 
lean statement of a min-max theorem for this 
ase is known. The
ase k = 4 remains open, but there are some reasons for optimism. One reason is that there existsan augmenting path theorem|see Russell [38℄. (In fa
t, [38℄ identi�es exa
tly the sets of ex
luded
ir
uit lengths for whi
h there exists an augmenting path theorem. One warning|there do existNP-hard problems for whi
h augmenting-path theorems exist; an example is the problem wherethe only allowed 
ir
uit length is 3.) Another reason is that there is a ni
e min-max theoremfor the 
ase when G is bipartite, due to Kiraly [28℄. Also Frank [17℄ observed that this theorem
ould be derived from the very general theory of Frank and Jordan [18℄. Neither of these proofsis algorithmi
, but Hartvigsen [26℄ has outlined an algorithm.There is also the more general problem, where there are weights on the edges and the goalis to �nd a maximum-weight fa
tor. Of 
ourse, this problem is eÆ
iently solvable for k � 2 andNP-hard for k � 5, so the dividing line between tra
tability and hardness is near that for theunweighted version. However, the 
ase k = 4 of the weighted problem is already NP-hard, even13



when G is bipartite. (See Vornberger [42℄.) Moreover, the 
ase k = 3 remains open (althoughit is solved in the unweighted 
ase), and there is eviden
e that the 
orresponding polytope is
ompli
ated.To make the link with jump systems, we ask the question, \For what values of k does theset G(k) of degree sequen
es of restri
ted fa
tors of any graph G form a jump system?" Thefollowing result gives some eviden
e of a 
onne
tion between the solvability of questions aboutrestri
ted fa
tors and the existen
e of asso
iated jump systems.Theorem 5.3 For any graph G and any k � 3, G(k) is a jump system. For any k > 4 thereexists a graph G su
h that G(k) is not a jump system.Proof For k � 2, sin
e the restri
ted fa
tors are just the fa
tors, G(k) is the interse
tion of thedegree system of G with a box, and so is indeed a jump system.For k = 5, 
onsider the graph G of Figure 2. (This example is derived from a gadget usedin an NP-
ompleteness proof of [27℄.) It is easy to see that there is a 
ir
uit of G of length 9
v

u

Figure 2: G(5) is not a jump systemmissing vertex u, and also su
h a 
ir
uit missing v. Therefore, the ve
tors x and y are both inG(k), where xu = 0 = yv and xw = 2 for all w 6= u and yw = 2 for all w 6= v. Suppose thatG(k) is a jump system. Then one of the ve
tors z de�ned by zw = 2 for all w, or z0 de�ned byz0u = z0v = 1 and z0w = 2 for all other w, is in G(k). But we are not allowed to use 
ir
uits oflength 5 or less, and G has just 10 verti
es. Therefore, z 2 G(k) implies that G has a hamiltonian
ir
uit, whereas z0 2 G(k) implies that there is a path from u to v, either of length 9 or less than4. It is easy to see that none of these possibilities holds, so G(k) is not a jump system. An easymodi�
ation to this example (inserting some additional verti
es of degree 2) shows that for anylarger value of k, we again do not get a jump system.Now 
onsider the 
ase when k = 3. We refer to 
ir
uits of length three as triangles. Wedenote G(3) by J . Let x; y 2 J , let x0 be a step from x to y, and let u be the 
omponent onwhi
h x0 di�ers from x. Suppose �rst that xu < yu. Then x0 is obtained from x by in
reasing xuby 1. Of 
ourse, x0 =2 J , sin
e it has odd 
omponent sum. Therefore, we seek a step x00 from x0to y su
h that x00 2 J . Choose restri
ted fa
tors X; Y having degree sequen
e x; y, respe
tively.We show that there exists an edge-simple path P from u su
h that X 00 = X4E(P ) satis�es theproperties required of x00 above. 14



Consider a path v0; v1; : : : ; vm from u to some vertex v. For i = 0; 1; : : : ; m, we use Pi todenote the path v0; v1; : : : ; vi, and we use Xi to denote X4E(Pi). We require that the path Pmsatisfy:(a) vivi+1 2 Y n(X [ E(Pi)) for i even(b) vivi+1 2 Xn(Y [ E(Pi)) for i odd(
) Xm is triangle-free.Obviously, the path P0 satis�es these 
onditions. We will show how any su
h path Pm thatdoes not satisfy the requirements for P above, 
an be extended to a longer path satisfying (a),(b), and (
). Let us write the degree of a vertex w in the subgraph with edge-set Xm as deg0(w).Suppose �rst that m is odd. If the degree sequen
e of Xm is a step from x0 to y, then Pm isthe required path P . If not, then deg0(v) = xv + 1 > yv , and we 
on
lude that there exists anedge vq 2 Xn(Y [ E(Pm)). We extend Pm by putting vm+1 = q.Now suppose that m is even. If the degree sequen
e of Xm is a step from x0 to y, then Pmis the required path P . If not, then deg0(v) = xv � 1 < yv , and we 
on
lude that there existsan edge vq 2 Y n(X [ E(Pm)). If Xm [ fvqg is triangle-free, then we 
an extend Pm by puttingvm+1 = q. So suppose that Xm 
ontains edges qw; wv for some vertex w. If qw 2 XnE(Pm),then we 
an extend Pm by putting vm+1 = q and vm+2 = w. Otherwise, we have qw 2 E(Pm)nX(and therefore qw 2 Y ). Then sin
e Y is triangle-free, we must have vw 2 Xn(E(Pm)[ Y ). Nowdeg0(v) = xv � 1 = 1, whereas yv = 2. Therefore, there exists an edge vp 6= vq in Y nX . Supposethat Xm [ fvpg 
ontains a triangle. Then the triangle must have verti
es v; p; w. But this wouldimply that deg0(w) = 3, a 
ontradi
tion. Therefore, we 
an extend Pm by putting vm+1 = p.Sin
e the path Pm is edge-simple, and 
an be extended as long as it does not have theproperties required of P , we must eventually �nd su
h a path P .This 
ompletes the proof for k = 3 when xu < yu. However, the situation where xu > yu 
anbe redu
ed to this one. Add a new vertex u0 and a new edge uu0 to G and put the edge into Y .Now xu0 < yu0 . Apply the previous result, to get X 00. Ne
essarily, uu0 2 X 00. Deleting it, we geta restri
ted fa
tor of the original graph with the required properties.The above theorem does not address the 
ase k = 4. It seems that a similar, but more
ompli
ated, approa
h 
an be used to prove that G(4) is a jump system for all graphs G. Ifso, then the values of k not having the jump system property are pre
isely those for whi
h theexisten
e problem for restri
ted fa
tors is known to be NP-hard. I also expe
t (but do not knowhow to prove) that the latter problem is solvable in polynomial time for k = 4. Note that thepaths that arise in this 
ase (either to prove that G(4) is a jump system or to use as augmentingpaths in a possible algorithm) need not be edge-simple. An example to show that it may bene
essary to traverse an edge twi
e is shown in Figure 3. Here X is the fa
tor 
onsisting of thethi
k edges, and Y is any larger restri
ted fa
tor.The Membership ProblemThe membership problem for a jump system J is \Given x 2 ZV , is x feasible?" Here aresome examples. Suppose that J is the degree system of a graph G. Then the question amounts15



Figure 3: Edge-simple paths are not enoughto whether there exists a subgraph of G with pres
ribed degrees at the verti
es, the existen
eproblem for `degree-
onstrained subgraphs'. Of 
ourse, the perfe
t mat
hing existen
e problemis a spe
ial 
ase.Our next two examples use the fa
t that, for jump systems J 1;J 2, the set J 1�J 2 = fx�y :x 2 J 1; y 2 J 2g is also a jump system. (It is the sum of two jump systems, the se
ond oneobtained by re
e
tion of J 2 in all 
oordinates.) Then 0 2 J 1 � J 2 if and only if J 1;J 2 have a
ommon point. So the \interse
tion problem" for two jump systems redu
es to the membershipproblem for their \di�eren
e".This implies, sin
e matroids are jump systems, that the membership problem in
ludes thematroid interse
tion (existen
e) problem as a spe
ial 
ase. On the other hand, suppose that wetake J 1 to be a matroid and J 2 to 
onsist of the set of in
iden
e ve
tors of the mat
hable setsof G, where the edges of G 
onsist of a perfe
t mat
hing. Then the points of J 2 are the paritysets of V with respe
t to the pairing determined by the edges of G. Therefore, a 
ommon pointof J 1;J 2, will 
orrespond to a parity basis.These examples suggest some remarks. One is that the membership problem is, in general,hard, sin
e it in
ludes matroid parity as a spe
ial 
ase. Another is that the devi
e used to redu
einterse
tion to membership should be used with 
aution. For one thing, the diÆ
ulty of a problemon jump systems may depend on how the system is given to us. There seems as yet to be noagreement on standard assumptions about how this is to be done. Moreover, if one 
onsiders,not just the existen
e of a 
ommon point of two jump systems, but the problem of �nding a best
ommon feasible point, the redu
tion to their di�eren
e seems useless. So, for example, there areas yet no results on generalizing the weighted matroid interse
tion problem to jump systems.If a point x̂ is not feasible, we need to be able to demonstrate this fa
t. It may be that x̂ isnot in the 
onvex hull of J , in whi
h 
ase there is an inequality aTx � b satis�ed by every pointof J but violated by x̂. On the other hand, it may be that x̂ is a gap of J|it is an integral butnot feasible point in the 
onvex hull of J . We 
all a jump system 
onvex if it has no gaps. Manyimportant 
lasses of jump systems are 
onvex (more on this below), so the �rst 
ase is importantby itself. Note that the degree system of a graph has gaps|take any integral ve
tor with odd
omponent-sum that is in the 
onvex hull of the system. (In fa
t, a theorem of Koren [29℄ impliesthat these are the only gaps. However, if we interse
t the degree system with a box|that is, putupper and lower bounds on the degrees|the resulting jump system has more interesting gaps.)To understand the situation when x̂ is not in the 
onvex hull of J , it is useful to have alinear-inequality des
ription of the 
onvex hull of a jump system. Let us de�ne, for disjointsubsets A;B of V , f(A;B) to be max(x(A)� x(B) : x 2 J ). Then f has the following property,
alled bisubmodularity:f(A;B) + f(A0; B0) � f(A \ A0; B \ B0) + f((A [A0)n(B [ B0); (B [ B0)n(A[ A0)) (2)16



An integral bisubmodular polyhedron is a polyhedron of the form fx 2 RV : x(A) � x(B) �f(A;B) for all disjoint A;B � V g, where f is an integral bisubmodular fun
tion. Bisubmodularpolyhedra generalize polymatroids, submodular polyhedra, generalized polymatroids, and other
lasses. This 
lass of polyhedra was �rst 
onsidered by Dunstan and Welsh [12℄, but withoutthe 
onne
tion to bisubmodularity. The 
onne
tion with jump systems is given by the followingresult from [3℄.Theorem 5.4 The 
onvex hull of a jump system is an integral bisubmodular polyhedron. The setof integral points in any integral bisubmodular polyhedron is a (
onvex) jump system.Corollary 5.5 Let J be a jump system. Then the 
onvex hull of J is the solution set of a setof inequalities with 0; 1;�1 
oeÆ
ients.We summarize the approa
h of Lov�asz [32℄ to the membership problem. First, we generalizethe problem to the following. For a jump system J and a box B, �nd d(J ; B). (In the spe
ial
ase where B = fxg, this minimum distan
e is 0 if and only if x 2 J ). Here is a rather triviallower bound. Let w 2 f0; 1;�1gV . Thend(J ; B) � minx2J wTx�maxx2B wTx: (3)Cases where there exists a w for whi
h equality holds in (3), provide most of our positive resultson the membership problem. One 
ase in whi
h this is true, is when B is \fat".Theorem 5.6 Let B = [a; b℄ be a box with ai 6= bi for all i. Then there exists w 2 f0; 1;�1gVgiving equality in (3).Corollary 5.7 If B = [a; b℄ is a box with ai 6= bi for all i and J is a jump system su
h thatB \ J = ;, then there exists w 2 f0; 1;�1gV , and w0 2 Z su
h that wTx � w0 for all x 2 J ,and wTx > w0 for all x 2 B.Noti
e that, while the 
onvex hull of a jump system 
an 
ontain an integral point that isnot feasible, the 
orollary implies that it 
annot 
ontain a box with no feasible point that hasnon-zero width in every dire
tion. In fa
t, it 
annot even interse
t su
h a box.This last result seems to say nothing about the original motivating 
ase, that is, when B isa singleton. But, by a tri
k, we 
an apply it to the membership problem for 
onstant-sum jumpsystems. Suppose that J is a jump system for whi
h every feasible point x satis�es P(xj : j 2V ) = �. If we wish to determine whether y is feasible, we �rst 
he
k that P(yj : j 2 V ) = �.Now y is feasible if and only if B \ J 6= ;, where B = fx 2 ZV : y � xg. Therefore, if y is notfeasible, we get w and w0 as in the 
orollary. Clearly, we 
annot have any wj = �1, so there is aset A � V su
h that every feasible point x satis�es x(A) � w0, while y(A) > w0.The latter result is already strong enough to imply the Matroid Interse
tion Theorem. Namely,if J is the di�eren
e of two matroids, ea
h having rank k, and having rank fun
tions r1; r2, then Jhas 
onstant sum with � = 0, and the question whether there is a 
ommon basis, is the questionwhether y = 0 is in J . Therefore, if there is no 
ommon basis, we have A as above, and sin
e17



we 
an 
hoose w0 = �1, we have, for all x 2 J , x(A) < 0. That is, for all bases B1 of the �rstmatroid and B2 of the se
ond,jB1 \Aj < jB2 \Aj = k � jB2 \ (V nA)j:This gives the Matroid Interse
tion Theorem.Lov�asz provides a deeper appli
ation of (3), as follows. Let us 
onsider the problem of �ndingthe minimum distan
e from J to 0. De�ne J to be 
riti
al if for every j 2 V and every� 2 f1;�1g, d(�ej;J ) < d(0;J ). (ej is the integral unit ve
tor 
orresponding to j 2 V .) Inother words, every step from 0 is 
loser to J than is 0. Before des
ribing the result, we provide abit of motivation, by showing that, if J is the degree system of a 
onne
ted graph G, translatedby subtra
ting the ve
tor of 1's, then J is 
riti
al if and only if G is 
riti
al in the sense de�ned inSe
tion 2. Suppose �rst that G is 
riti
al. Then 
learly the distan
e from 0 to J is 1, so we needto show that, for every vertex j of G and every � 2 f1;�1g, �ej 2 J , that is, that (1; : : : ; 1)+�ejis the degree sequen
e of a subgraph of G. Sin
e G has a mat
hing missing only j, the 
ase when� = �1 is immediate. Now 
hoose an edge jk of G. There is a mat
hing of G missing only k,and adding jk to the mat
hing gives a subgraph with degree-sequen
e equal to ej plus the ve
torof 1's, handling the other 
ase. Now suppose that J is 
riti
al. Fix j 2 V . Sin
e �ej is 
loserto J than is 0, there is a subgraph H of G whose degree-sequen
e is as 
lose to the all 1's ve
toras possible and su
h that j has degree 0. By repeatedly deleting from H an edge at a vertex ofdegree more than 2, we 
an 
onvert H to a maximum mat
hing leaving j exposed. Therefore, inthe Gallai-Edmonds partition, D = V , and, sin
e G is 
onne
ted, G is 
riti
al.Theorem 5.8 Let J be a jump system, let w 2 f0; 1;�1gV , and let S � V with wj = 0 for allj 2 S. Let F be the greedy fa
e of J maximizing wTx, let w0 be the optimal value, and let FS bethe proje
tion of F onto S. Then d(J ; 0) � d(FS ; 0)� w0:Moreover, there exist S and w su
h that equality holds, and FS is 
riti
al.This result provides a redu
tion of the minimum distan
e problem to the spe
ial 
ase of
riti
al jump systems. In some 
ases the redu
tion is well behaved, and it is possible to obtain agood 
hara
terization of the minimum distan
e. For example, in the 
ase of degree systems, the
riti
al systems that arise are also degree systems, and they are well understood. Lov�asz givesa min-max theorem for a 
lass of jump systems that in
ludes degree systems and di�eren
es ofmatroids. (In parti
ular, both the existen
e theorem for degree-
onstrained subgraphs and theMatroid Interse
tion Theorem 
an be derived.) There may be room to go further in this dire
tion.6 Path-Mat
hingsLet G = (V;E) be a graph and T1; T2 disjoint stable sets of G, that is, sets of mutually nonadja
entverti
es, with jT1j = jT2j = k. We denote V n(T1[T2) by R. A perfe
t path-mat
hing is a 
olle
tionof k vertex-disjoint paths, all of whose internal verti
es are in R, linking T1 to T2, together witha perfe
t mat
hing of the verti
es of R not in any of the paths. Figure 4 shows an example|the18



2T TR1Figure 4: A perfe
t path-mat
hingthi
k edges form a perfe
t path-mat
hing. In the spe
ial 
ase when R = V , a perfe
t path-mat
hing is nothing but a perfe
t mat
hing of G. In the spe
ial 
ase when R = ;, then G isbipartite, and again, a perfe
t path-mat
hing is a perfe
t mat
hing of G. Therefore, this model
ontains bipartite mat
hing in two di�erent ways. As we shall see, this fa
t is related to theexisten
e of a further generalization that in
ludes matroid interse
tion.We �rst des
ribe a 
ondition for the existen
e of a perfe
t path-mat
hing. A pair of subsetsD1 � T1 [ R, D2 � T2 [ R is 
alled stable if no edge of G joins a vertex in D1nD2 to a vertexin D2 or a vertex in D2nD1 to a vertex in D1. The verti
es 
ontained in the ellipses of Figure 5form a stable pair.
2

T R T1 Figure 5: A stable pairSuppose that there exists a perfe
t path-mat
hing K, and let (D1; D2) be a stable pair.We think of the paths of K as being from T1 to T2. There are at least k � jT1nD1j paths of Kbeginning in D1\T1. Ea
h of them eventually leaves D1; 
onsider its �rst vertex not in D1. Sin
e(D1; D2) is stable, that vertex must be in (R[T2)n(D1[D2). Also, for ea
h odd 
omponent H ofG[D1 \D2℄, either an edge of a path of K leaves H or a mat
hing edge of K leaves H . In either
ase the other end of this edge is again in (R [ T2)n(D1 [D2). Now we have identi�ed at leastk � jT1nD1j+ odd(G[D1 \D2℄) verti
es of (R[ T2)n(D1 [D2), and all of them must be distin
t.Therefore, k � jT1nD1j+ odd(G[D1 \D2℄) � j(R[ T2)n(D1 [D2)j: (4)The stable pair of Figure 5 violates (4), and hen
e no perfe
t path-mat
hing exists in that example.The 
ondition (4) is also suÆ
ient, as the following existen
e theorem [7℄ shows.19



Theorem 6.1 (G; T1; T2) admits a perfe
t path-mat
hing if and only if for every stable pair(D1; D2) we have odd(G[D1 \D2℄) � jV n(D1 [D2)j � k:Let us show how Tutte's Mat
hing Theorem follows from this result. The nontrivial part isto show that, if G has no perfe
t mat
hing, then there is a set S violating the 
ondition of thetheorem. Applying Theorem 6.1 with R = V (and so k = 0), there exists a stable pair (D1; D2)su
h that jV n(D1 [D2)j < odd(G[D1 \D2℄):Now observe that, be
ause (D1; D2) is stable, every odd 
omponent of G[D1 \ D2℄ is also anodd 
omponent of G[D1 [ D2℄. Therefore, odd(G[D1 \ D2℄) � odd(G[D1 [ D2℄). If we takeS = V n(D1 [D2), it follows that odd(G[V nS℄) > jSj, as required.Optimal path-mat
hings and polyhedral des
riptionsAn attempt to generalize the problem of �nding a perfe
t path-mat
hing to that of �nding oneof maximum weight leads to the following diÆ
ulty. If we 
onsider the weight of a perfe
t path-mat
hing to be (as usual), the sum of the weights of its edges, then the problem is NP-hard.For suppose that all edge-weights are 1, and jT1j = jT2j = 1. Then there exists a perfe
t path-mat
hing of weight jV j � 1 if and only if G has a hamiltonian path joining T1 to T2. Instead,we de�ne the weight of a perfe
t path-mat
hing to be the sum of the weights of the edges ofthe paths plus twi
e the weights of its other edges. Noti
e that this 
hoi
e has the ni
e propertythat it does not favour putting edges into paths over putting them into the mat
hing, and theresulting maximum-weight problem still 
ontains the weighted version of the perfe
t mat
hingproblem.We de�ne the ve
tor of a perfe
t path-mat
hing K with the above in mind, that is, we assigna 
omponent of 1 for ea
h path edge of K, a 
omponent of 2 for ea
h mat
hing edge of K, and a
omponent of 0 for ea
h non-edge of K. Then the weight of an optimal perfe
t path-mat
hing isequal to the optimal value of 
Tx over the 
onvex hull of su
h ve
tors. This 
onvex hull 
an beni
ely des
ribed.Theorem 6.2 (Perfe
t Path-Mat
hing Polytope Theorem) The 
onvex hull of ve
tors ofperfe
t path-mat
hings with respe
t to G; T1; T2 is equal to the set of all x 2 RE satisfyingx(Æ(v)) = 1 (v 2 V nR)x(Æ(v)) = 2 (v 2 R)x(Æ(S)) � k (T1 � S � T1 [R)x(Æ(S)) � 2 (S � R; jSj odd)x � 0:The Perfe
t Mat
hing Polytope Theorem is an easy 
onsequen
e. It is also quite easy to
he
k that the separation problem for the inequalities of Theorem 6.2 is solvable in polynomialtime, and therefore that there is a polynomial-time algorithm for �nding an optimal perfe
t path-mat
hing. This is the way in whi
h polynomial-time solvability of path-mat
hing problems was�rst established [21℄. 20



We have found it 
onvenient to des
ribe the above results in terms of perfe
t path-mat
hings,whi
h generalize perfe
t mat
hings in graphs. However, there is also a notion that generalizesmat
hings. We take a partition T1; T2; R of V as before, but we do not require that jT1j = jT2j.A path-mat
hing is a subset K of edges su
h that every 
omponent of G(V;K) is a simple pathfrom T1 [ R to T2 [ R, all of whose internal verti
es are in R. Let us refer to the \mat
hingedges" of K as the edges of paths of length 1 having both ends in R, and refer to the other edgesof K as \path edges". If we de�ne the \value" of path-mat
hing K to be jKj plus the numberof mat
hing edges of K, then the maximum value of a path-mat
hing 
an be 
hara
terized asfollows.Theorem 6.3 The maximum value of a path-mat
hing with respe
t to (G; T1; T2) is the mini-mum, over stable pairs (D1; D2) ofjV n(D1 [D2)j+ jRj � odd(G[D1 \D2℄):This theorem generalizes the Tutte-Berge Formula and also implies the existen
e theorem forperfe
t path-mat
hings. (It has been given a ni
e restatement and indu
tive proof by Frank andSzeg}o [19℄.) Morever, the 
onvex hull of path-mat
hing ve
tors (de�ned again to have a 2 forea
h mat
hing edge) has a totally dual integral polyhedral des
ription. The proof in Geelen [21℄of the des
ription follows by a 
onstru
tion from Theorem 6.2; that 
onstru
tion was introdu
edfor mat
hing by S
hrijver [40℄. The total dual integrality of the des
ription is proved in [21℄ usinganother idea introdu
ed for mat
hing by S
hrijver [39℄. The min-max theorem above is provedin [21℄ from the total dual integrality of the system. The proofs in the published version [7℄ followthe same lines, ex
ept that they apply to a more general model (outlined below). Finally, weremark that algorithmi
 results for path-mat
hing follow from those for perfe
t path-mat
hingsby straightforward redu
tions.Combinatorial algorithms for path-mat
hingThe path-mat
hing algorithms derived above depend on the ellipsoid method, and so are some-what unsatisfa
tory. Similarly, the proofs of the existen
e theorems are non-
onstru
tive. Onenatural route to �lling these gaps, would be an augmenting-path algorithm, generalizing Ed-monds' mat
hing algorithm. No su
h algorithm is yet known; we will say a bit more about thislater.A 
ombinatorial method to �nd a path-mat
hing of maximum value has been found [8℄; it isan extension of Geelen's algorithm for mat
hing. This approa
h is based on the following result,whi
h generalizes Theorem 2.2; it 
an be proved by the same methods. In fa
t, this observationwas the original motivation for the notion of path-mat
hing.Theorem 6.4 G; T1; T2 admits a perfe
t path-mat
hing if and only if the submatrix of A(G)having rows indexed by V nT2 and 
olumns indexed by V nT1 is nonsingular.In one dire
tion, this implies that there exists a polynomial-time (ellipsoid) algorithm todetermine whether any square submatrix of the Tutte matrix is nonsingular. (More generally,by elementary linear algebra, there is an eÆ
ient algorithm to �nd the rank of any submatrix21



of the Tutte matrix.) In the other dire
tion, it allows the appli
ation of linear algebra to path-mat
hing. One su
h appli
ation is an argument of Lov�asz [31℄ that gave the �rst 
hara
terizationof existen
e for perfe
t path-mat
hings, and leads to a proof of Theorem 6.1. A se
ond appli
ationis the extension of Geelen's mat
hing algorithm to path-mat
hing. Theorem 2.7 generalizes tosubmatri
es of the Tutte matrix, thus yielding su
h an extension. (One small di�eren
e is that thevalues of the variables 
an be restri
ted to the set of integers i su
h that �(jV j+1) � i � jV j+1.)It is also desirable to have a 
ombinatorial algorithm to �nd a minimum-weight perfe
t path-mat
hing. A primal-dual approa
h to this, with the idea of using the matrix algorithm as asubroutine, runs into the diÆ
ulty that the subproblems generated by the primal-dual approa
hare more general than path-mat
hing. Here is a des
ription of the new problem. Suppose that G0is a dire
ted graph. An even fa
tor is a 
olle
tion of vertex-disjoint dipaths and even di
ir
uits.From a perfe
t path-mat
hing problem, one 
an make su
h a problem by repla
ing ea
h edgein 
(R) by a pair of oppositely dire
ted ar
s, and repla
ing ea
h other edge by a single ar
,su
h that verti
es in T1 are not heads of ar
s and verti
es in T2 are not tails of ar
s. It iseasy to see that there exists an even fa
tor in G0 having jV j � k ar
s if and only if G; T1; T2has a perfe
t path-mat
hing. The problem of �nding an even fa
tor of maximum 
ardinality isshown in [8℄ to be NP-hard in general, but solvable in polynomial time for digraphs that areweakly symmetri
, meaning that every strong 
omponent is symmetri
. Sin
e G0 above is weaklysymmetri
, this result implies the solvability of the problem for path-mat
hings. The algorithmfor weakly symmetri
 digraphs depends on a generalization of the Tutte matrix|if e = ij is adire
ted edge then we put ze into position (i; j), and put �ze or 0 into position (j; i), a

ordingto whether ji is a dire
ted edge or not. These results do provide 
ombinatorial algorithms forweighted perfe
t path-mat
hings, and some generalizations, and also 
onstru
tive proofs of thepolyhedral theorems.Of 
ourse, the problem of �nding an even fa
tor of minimum weight is NP-hard. Are thereother spe
ial 
ases that are solvable? Noti
e that requiring only that the digraph be weaklysymmetri
 will not be enough. Namely, we 
ould redu
e the problem of �nding a maximum
ardinality even fa
tor in a digraph to the problem of �nding a minimum-weight even fa
tor ina weakly 
onne
ted digraph, by giving ea
h ar
 weight �1 and adding appropriate zero-weightar
s. So one must restri
t the 
hoi
e of weights, too. It turns out that one 
an solve the problemfor digraphs G and weights 
 su
h that G is weakly symmetri
 and any two oppositely dire
tedar
s have equal weights. Of 
ourse, this 
lass of problems does in
lude the optimal path-mat
hingproblem as a spe
ial 
ase.Path-mat
hings and jump systemsAs indi
ated in the se
tion on jump systems, an augmenting-path result for a family of subgraphsimplies that the two-step axiom holds (at least for 
ertain 
ases) for the degree sequen
es of thosesubgraphs. We will show that the degree sequen
es of path-mat
hings do satisfy the two-stepaxiom, whi
h suggests that there may be some hope for �nding an augmenting path result forpath-mat
hings. (But as yet, no su
h result has been found.) Suppose that we de�ne the degreesequen
e of a path-mat
hing K by de�ning 
omponent v to be 2 if v is in
ident to a mat
hingedge of K, and to be the number of path edges of K to whi
h v is in
ident, otherwise.22



Theorem 6.5 The set of degree sequen
es of path-mat
hings with respe
t to G; T1; T2 is a jumpsystem.The proof uses the following (known) lemma.Lemma 6.6 Let A be a matrix with rows indexed by I and 
olumns indexed by J, where I andJ are disjoint, and let J denote the in
iden
e ve
tors of sets of the form P [ Q where P � I,Q � J and the (P;Q)-submatrix of A is nonsingular. Then J is a jump system.Proof The result 
an be proved by elementary linear algebra, but here is another proof thatuses some ideas from the previous se
tion. Append an jI j by jI j identity matrix to A to form amatrix A0, whose 
olumns are indexed by I [ J . Then the (P;Q) submatrix of A is nonsingularif and only if (InP )[Q indexes a (
olumn) basis of A0. Thus J 
an be obtained from the jumpsystem J 0 of in
iden
e ve
tors of these bases by negating the 
omponents for elements of I andtranslating by the in
iden
e ve
tor of I .Proof of Theorem 6.5 Let K be a path-mat
hing. We 
hoose a submatrix of A(G) with rowsI 0 and 
olumns J 0 
orresponding to K as follows. If a vertex v is in
ident with a mat
hing edgeof K or is an internal vertex of a path of K, put v into both I 0 and J 0. For a path of K, putone end into I 0 and the other end into J 0, being 
areful always to put elements of T1 only into I 0and elements of T2 only into J 0. Now the (I 0; J 0)-submatrix of the Tutte matrix is nonsingular,sin
e K is a perfe
t path-mat
hing with respe
t to H; T 01; T 02, where T 01 = I 0nJ 0, T 02 = J 0nI 0,and H is the subgraph obtained from G by deleting the verti
es not in I 0 [ J 0 and the edges in
(T 01)[
(T 02). Conversely, given a nonsingular square submatrix with row indi
es I 0 � I = R[T1and 
olumn indi
es J 0 � J = R[ T2, we form the subgraph H and terminal sets T 01; T 02 as above.Then (H; T 01; T 02) admits a perfe
t path-mat
hing K, whi
h is a path-mat
hing with respe
t toG; T1; T2.If we now think of I and J as disjoint sets (say, by making 
opies R1; R2 of R to index therows and 
olumns, respe
tively), then we get a jump system J from Lemma 6.6. We 
an nowform a new jump system J 0 from J using homomorphism, getting the 
omponent for v 2 R byadding the 
omponents 
orresponding to its two 
opies. The feasible points will be pre
isely thedegree sequen
es of path-mat
hings, as required.A matroid generalizationNow we des
ribe a further extension [7℄ of the path-mat
hing model, whi
h also in
ludes matroidinterse
tion as a spe
ial 
ase. We 
onsider as before a graph G = (V;E) and a partition of V intoT1; T2; R with T1; T2 stable sets, but we drop the 
ondition that T1 and T2 have the same size.On the other hand, now we are given matroids M1 on T1 and M2 on T2. We assume that thetwo matroids have the same rank k. A basi
 path-mat
hing is now a set of vertex-disjoint pathsjoining a basis of M1 to a basis of M2 together with a perfe
t mat
hing of the verti
es of R notin any path.In the spe
ial 
ase in whi
h Ti is a basis of Mi for i = 1 and 2, a basi
 path-mat
hing ispre
isely a perfe
t path-mat
hing. A se
ond spe
ial 
ase o

urs when R = ; and G 
onsists ofa perfe
t mat
hing joining T1 to T2. In this 
ase, suppose we think of M1 and M2 as matroids23



on the same set T that have been 
opied onto the sets T1; T2, respe
tively, with edges joining
orresponding 
opies. Then a basi
 path-mat
hing is a subset of the edges mat
hing a basis ofM1 to a basis of M2, and hen
e 
orresponds to a 
ommon basis.Most of the results for perfe
t path-mat
hing above go through|existen
e theorem, polyhe-dral des
ription, existen
e of polynomial-time solution algorithms (based, again, on the equiva-len
e of separation and optimization). We limit ourselves here to stating the existen
e theorem.(Further results and proofs are in [7℄.) The reader 
an use it to derive the existen
e theorems forperfe
t path-mat
hing and for 
ommon bases of two matroids.Theorem 6.7 There exists a basi
 path-mat
hing with respe
t to G;M1;M2 if and only if theredoes not exist a stable pair (D1; D2) for whi
hr1(T1nD1) + r2(T2nD2) + jRn(D1 [D2)j < k + odd(G[D1 \D2℄):Basi
 path-mat
hing seems to provide the desired solvable 
ommon generalization of (weighted)mat
hing and (weighted) matroid interse
tion. We explain now how this model 
an be handled
ombinatorially. (These ideas are from [8℄.) Surprisingly, the te
hniques required to do thisare essentially path-mat
hing plus (valuated) matroid interse
tion. This may suggest that thegeneralization from path-mat
hing to basi
 path-mat
hing is not so substantial.Let V 0 be a 
opy of V . For ea
h subset P of V , we use P 0 to denote the 
orresponding subsetof V 0. We also use M 01 to denote the 
opy of matroid M1 on T 01. We de�ne two matroids Naand Nb on V [ V 0, ea
h having rank jV j. Let Na be the matroid of the matrix (I jA(G)), wherethe 
olumns of the identity matrix I are indexed by the elements of V 0. Then the bases of Naare the sets (V 0nP 0) [ Q, where P and Q are subsets of V su
h that the (P;Q)-submatrix ofA(G) is (square and) nonsingular. From Theorem 6.4, for (V 0nP 0) [ Q to 
orrespond to a basi
path-mat
hing, it will be enough to assure in addition that(a) P \ T1 is a basis of M1 and Q \ T2 is a basis of M2;(b) P \ T2 = ; = Q \ T1;(
) P � R and Q � R.We de�ne Nb to have as bases, sets of the formR [ T 02 [ (T 01nB01) [B2;where B1 is a basis of M1 and B2 is a basis of M2. It is easy to see that Nb is a matroid, sin
eit is the \dire
t sum" of M2, the dual of M 01, and a trivial matroid. Noti
e that P;Q will haveproperties (a),(b),(
) above if and only if (V 0nP 0) [ Q is a basis of Nb. So we get the followingresult.Proposition 6.8 There is a basi
 path-mat
hing with respe
t to G;M1;M2 if and only if thereis a 
ommon basis with respe
t to Na; Nb.One 
an use this 
onstru
tion to prove the Basi
 Path-Mat
hing Existen
e Theorem 6.7 fromthe Matroid Interse
tion Theorem and the Path-Mat
hing Existen
e Theorem 6.1. From the24



algorithmi
 point of view, we 
an apply the Matroid Interse
tion Algorithm to determine whetherthere exists a basi
 path-mat
hing. It needs eÆ
ient subroutines to determine whether a givensubset S of V [V 0 is independent in Na; Nb. For Nb, one needs to 
he
k that S\T2 is independentin M2, that T 01nS 
ontains a basis of M 01, that S \ R0 = ;, and that S \ T1 = ;. Therefore, ifwe have eÆ
ient algorithms to test independen
e in M1;M2, then we have su
h an algorithm forNb. To test whether S is independent in Na, we need to know, where P 0 = V 0nS and Q = S \V ,whether the (P;Q)-submatrix of A(G) has rank jQj. As we pointed out earlier, we do have aneÆ
ient 
ombinatorial algorithm for determining the rank of any submatrix of the Tutte matrix.Optimal basi
 path-mat
hingFinally, we would like to have a 
ombinatorial algorithm for �nding a minimum-weight basi
path-mat
hing. Presumably, it is possible to adopt a primal-dual approa
h, as was done forperfe
t path-mat
hings; one would �rst generalize basi
 path-mat
hings to \basi
 even fa
tors"in weakly symmetri
 digraphs. In [8℄, a di�erent approa
h is taken; it utilizes work of Murota onvaluated matroids.A valuation on a matroid M on T is a fun
tion w assigning an integer weight to ea
h basis Bof M so that for bases B;B0 and elements u 2 BnB0 and v 2 B0nBw(B) + w(B0) � w((Bnfug)[ fvg) + w((B0nfvg)[ fug)whenever the sets on the right are bases. This notion was introdu
ed by Dress and Wentzel [11℄.The fun
tion w given by w(B) = 
(B), arising from an \ordinary" (integral) weighting 
 ofthe elements of T , is a valuation. Murota [34℄ has des
ribed a polynomial-time 
ombinatorialalgorithm that, given two matroids on T and valuations w1; w2 for them, �nds a 
ommon basis Bmaximizing w1(B)+w2(B). His algorithm requires, for ea
h of the matroids, eÆ
ient subroutinesto test the independen
e of a given subset, and to give the valuation asso
iated with a given basis.Suppose that there exists a basi
 path-mat
hing, and we wish to �nd a maximum-weightbasi
 path-mat
hing with respe
t to given non-negative integral weights 
e. (Any minimizationproblem with integral data 
an be 
onverted to this form, by �rst negating the weights and thenadding a suÆ
iently large positive integer to ea
h of them.) We repla
e the Tutte matrix A(G) bythe matrix A0 obtained by multiplying the entries 
ontaining ze by t
e , where t is a new variable.For a polynomial p in t and the ze, we denote by degt(p), the degree of the polynomial obtainedfrom p by treating the ze as 
onstants. For ea
h square nonsingular submatrix A0(P;Q) of A0 andthe 
orresponding basis (V 0nP 0) [ Q of Na, de�new((V 0nP 0) [Q) = degt(det(A0(P;Q)):It follows from a result of Dress and Wentzl [11℄ that w is a valuation on Na. Note that, givenP;Q; the required degree is equal to the maximum weight of a perfe
t path-mat
hing with respe
tto G[P [ Q℄; PnQ;QnP . If we now assign Nb the zero valuation, it is easy to see that solvingthe valuated matroid interse
tion problem on these two valuated matroids, solves the maximumweight basi
 path-mat
hing problem. Thus we 
an apply Murota's algorithm to solve the optimalbasi
 path-mat
hing problem. It requires a subroutine for optimal perfe
t path-mat
hing.25



7 RemarksThe importan
e of the two extensions that we have emphasized here remains to be seen. Path-mat
hing seems to be well-understood in the sense that we have the basi
 results that we wouldlike. What is not 
lear, is whether there are additional useful appli
ations of the model. Inother words, this may be an extension that is a bit too spe
ial to be really important. Jumpsystems have somewhat the opposite 
hara
teristi
. They have very many appli
ations, but, inthe sense that the membership problem is unsolvable, they may be too general. This suggests the
hallenge of �nding additional 
onditions under whi
h the membership problem for jump systemsis solvable.A
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