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tWe 
onsider the 
onvex hull of the even permutations on a set of n elements. Wede�ne a 
lass of valid inequalities and prove that they indu
e a large 
lass of distin
tfa
ets of the polytope. Using the inequalities, we 
hara
terize the polytope for n = 4,and we 
on�rm a 
onje
ture of Brualdi and Liu that, unlike the 
onvex hull of allpermutations, this polytope 
annot be des
ribed as the solution set of polynomiallymany linear inequalities. We also dis
uss the diÆ
ulty of determining whether agiven point is in the polytope.Keywords: even permutations, polyhedra, fa
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omplete digraph on V (that is, the set E of edges of G is V �V ), ea
h element�Resear
h partially supported by a grant from the Natural S
ien
es and Engineering Resear
h Coun
ilof Canada. 1



� of Sn 
an be regarded as a subset K of E. (Namely,K = fij 2 E : �(i) = jg.) We oftenregard a permutation to be su
h a set K. That is, a permutation 
an be 
onsidered to bea set K � E su
h that ea
h vertex of the digraph (V;K) has indegree and outdegree equalto 1. Let x 2 RE be the 
hara
teristi
 ve
tor of an element K of Sn. (We will often use\permutation" as an abbreviation for \
hara
teristi
 ve
tor of a permutation", and thinkof a set of permutations as the set of their 
hara
teristi
 ve
tors.) Then x satis�esXj2V xvj = 1 (v 2 V ) (1)Xi2V xiv = 1 (v 2 V ) (2)xij � 0 (ij 2 E): (3)A famous theorem of Birkho� [2℄ states that the 
onvex hull P (n) of Sn is pre
isely theset of solutions of the system (1), (2), and (3). (P (n) may be viewed as the set of n � ndoubly sto
hasti
 matri
es.)Ho�man (see Mirsky [9℄) asked whether there is a similar 
hara
terization of the 
onvexhullQ(n) of the even permutations. That is, Ho�man asked whether the polytope Q(n) 
an,like P (n), be 
hara
terized expli
itly as the solution set of a system of linear inequalities.Mirsky 
alled the elements of Q(n) even doubly sto
hasti
 matri
es. From the point ofview of the digraph G, an even permutation is a permutation K su
h that the number of
omponents of (V;K) having an even number of edges, is even.Mirsky gave a family of valid inequalities for Q(n); later, von Below [1℄ proved thatthe solution set of this family is equal to Q(n) if and only if n � 3. Brualdi and Liu [4℄proved several results about Q(n). They established its dimension, 
hara
terized adja
en
yof extreme points, and proved that it has diameter 2. They also gave several 
lasses ofnonlinear inequalities that must be satis�ed by elements of Q(n). Finally, they made thefollowing 
onje
ture, suggesting that Q(n) is mu
h more 
ompli
ated than P (n).Conje
ture 1. Q(n) 
annot be 
hara
terized as the solution set of a system of polynomiallymany (in n) linear inequalities.In this note, we prove Conje
ture 1 by expli
itly 
onstru
ting a family of 12n(n � 1)n!linear inequalities, ea
h of whi
h (if n � 5) indu
es a distin
t fa
et of Q(n). We showthat no inequality in Mirsky's 
lass indu
es a fa
et for n � 4. We also give a 
ompletedes
ription of Q(4). Finally, we dis
uss the diÆ
ulty of de
iding membership in Q(n).After this paper was written, we learned of a paper by Hood and Perkinson [6℄. It alsoproves Conje
ture 1. Some remarks on the work in that paper 
an be found after the proofof Theorem 6. 2



PreliminariesWe re
all here a few basi
 fa
ts from polyhedral theory. More details 
an be found inS
hrijver [11℄. The equations (1), (2) are satis�ed by every point in Q(n). Sin
e thissystem of 2n equations is easily seen to have rank 2n�1, the dimension of Q(n) is at mostn2� (2n�1) = (n�1)2. Brualdi and Liu [4℄ showed that its dimension is exa
tly (n�1)2,provided that n � 4. (We will generally assume n � 4, to avoid some trivial ex
eptions.)It follows that the solution set of (1), (2) is the aÆne hull of Q(n).An inequality aTx � a0 is valid for Q(n) if it is satis�ed by every point of Q(n). Afa
e of Q(n) is a set of the form fx̂ 2 Q(n) : aT x̂ = a0g for some valid inequality aTx � a0for Q(n). The inequality is said to indu
e the fa
e. An even permutation K is a-tight (orjust tight if a is understood) if it is in the fa
e indu
ed by aTx � a0. A fa
et of Q(n) is amaximal proper fa
e of Q(n). A fa
e of Q(n) is a fa
et if and only if it 
ontains an aÆnelyindependent set of (n� 1)2 even permutations.Let Ax = 1 denote the system (1), (2) of equations. Q(n) is the solution set of a systemof the form Ax = 1, A0x � b0 for some A0; b0. Any su
h system must 
ontain an inequalityindu
ing F for every fa
et F of Q(n) (and need not 
ontain any others). Thus, to showthat Conje
ture 1 is true, it is enough to exhibit suÆ
iently many fa
ets of Q(n). Twovalid inequalities aTx � a0 and bTx � b0 for Q(n) are said to be equivalent if they indu
ethe same fa
e. Clearly, aTx � a0 and bTx � b0 are equivalent if there exist � 2 R with� > 0 and y 2 R2n su
h that (aT ; a0) = �(bT ; b0) + yT (A;1). It is known that, if aTx � a0and bTx � b0 are fa
et-indu
ing, then the 
onverse is true. A basis for A is a subset B ofE of size 2n � 1 indexing a linearly independent set of 
olumns of A. It is easy to 
he
kthat, for any r; s 2 V (possibly equal) the set frj : j 2 V g [ fis : i 2 V g is a basis ofA. Given a basis B of A and any valid inequality aTx � a0, there exists an equivalentvalid inequality bTx � b0 su
h that be = 0 for all e 2 B. We say that su
h an inequalitybTx � b0 is in B-redu
ed form. If aTx � a0 is fa
et-indu
ing, then bTx � b0 is unique upto multipli
ation by a positive s
alar.Here is some digraph notation. Let U;W be subsets of V . We write (U;W ) to denotefij 2 E : i 2 U; j 2 Wg. For u 2 V , we may abbreviate (fug;W ) to (u;W ), and similarlyfor (W; fug). We write E(U) to denote (U;U). For any J � E, let V (J) denote the setfv 2 V : v is in
ident with some e 2 Jg.Finally, for a ve
tor y 2 RE and a subset F of E, we use y(F ) to denote P(ye : e 2 F ).For y 2 RE and U;W subsets of V , we abbreviate y((U;W )) to y(U;W ). (To illustratesome of this notation, equation (1) 
ould be written x(v; V ) = 1 (v 2 V ).)Mirsky's Class of InequalitiesMirsky [9℄ �rst introdu
ed a 
lass of valid inequalities forQ(n). Until very re
ently,Mirsky's
lass was the only known 
lass of valid linear inequalities for Q(n) (other than inequalities3



that are valid for P (n)). This 
lass of inequalities 
an be des
ribed as follows. Let L bean even permutation of V , and let uv 2 L. Then the Mirsky inequality determined by Land uv is x(L)� 3xuv � n � 3: (4)It is easy to see that (4) is valid for Q(n). (If x is the 
hara
teristi
 ve
tor of a permutationK and uv 2 K, then x(L) � 3xuv = x(L) � 3 � n � 3. If uv =2 K, then jK \ Lj � n � 2,and equality 
an hold only if K is odd.) It is also easy to see that, if x is the 
hara
teristi
ve
tor of an odd permutation of V , then there is an inequality of Mirsky type that itviolates. However, as observed in [1℄, Mirsky's inequalities together with (1), (2), and (3)do not de�ne Q(n) for any n � 4. We show something stronger here.Theorem 1 If n � 4, no Mirsky inequality is fa
et-indu
ing for Q(n).Proof. Let aTx � a0 denote the Mirsky inequality determined by the even permutationL and uv 2 L. Suppose that the even permutation K of V is tight, that is, it satis�esaTx � a0 with equality. If uv 2 K, then we must have K = L. If uv =2 K, then wemust have jK \ Lj = n � 3, so there are three edges uv; ab; 
d 2 LnK. Consider the setM = Lnfuv; ab; 
dg. It 
onsists of three dire
ted paths together with a number (possiblyzero) of 
y
les. K is formed by adding to M three edges, none of them uv. It is easy tosee that there are exa
tly two ways to do this. Therefore, sin
e there are �n�12 � 
hoi
es forfab; 
dg, there are exa
tly (n�1)(n�2)+1 = n2�3n+3 tight even permutations. The sizeof a set of aÆnely independent even permutations in the fa
e indu
ed by aTx � a0 
annotex
eed this number, whi
h is smaller (sin
e n � 4) than (n � 1)2. Therefore, aTx � a0does not indu
e a fa
et of Q(n).A Class of Fa
et-indu
ing Inequalities of Q(n)Let t; h be distin
t verti
es of G, and let R denote V nft; hg. Let � be an even permutationof V . The triple (t; h; �) determines the following inequality:Xv2Rxv�(v) +Xv2Rxv�(t) +Xv2Rxt�(v) � n� 2: (5)This inequality is in the form x(C) � n � 2 for some C � E with jCj = 3n � 6: It isquite easy to see that for n � 5, ea
h di�erent 
hoi
e of (t; h; �) gives a di�erent set C,and hen
e a di�erent inequality (5). Sin
e there are n(n � 1) 
hoi
es of t; h and 12n! evenpermutations, we get a family of 12n(n � 1)n! di�erent inequalities for n � 5. For n = 4,however, the sets C are not all distin
t; in fa
t, in this 
ase, only 48 di�erent inequalitiesarise.Theorem 2 Inequality (5) is valid for Q(n).4



Proof. Let K be an even permutation of V and let f; g; h denote the values of the threesums in (5) when x is repla
ed by the 
hara
teristi
 ve
tor of K. Clearly, f � n � 2 andg; h � 1. It follows that we need only 
onsider the 
ases in whi
h f is n � 2 or n � 3.In the former 
ase, xv�(v) = 1 for all v 2 R, and it follows that f = g = 0 and so (5) issatis�ed. (We did not need that K is even to make this 
on
lusion.) Now suppose thatf = n� 3. Then there is a unique u 2 R su
h that xu�(u) = 0. If the inequality is violated,then f = g = 1, from whi
h it follows that xu�(t) = xt�(u) = 1. Therefore, K must be thepermutation obtained from � by multiplying it by the transposition (ut), and so K is odd,a 
ontradi
tion.Theorem 3 If n � 4, inequality (5) indu
es a fa
et of Q(n).Let � be a �xed even permutation of V . For any even permutation � of V with
hara
teristi
 ve
tor z 2 RE, it is easy to see that the ve
tor y de�ned by yij = zi�(j) isthe 
hara
teristi
 ve
tor of � Æ �, the permutation mapping i to �(�(i)). Moreover, thetransformation that takes z to y is linear and invertible. (Namely, � indu
es a permutationof E, and the 
orresponding E �E permutation matrix is invertible.) These observationsare very useful for transforming valid inequalities.Lemma 4 Let � be an even permutation of V , let aTx � a0 and bTx � b0 be validinequalities for Q(n), and de�ne â and b̂ by âij = ai�(j) and b̂ij = bi�(j). Then(a) âTx � a0 is a valid inequality for Q(n);(b) âTx � a0 is fa
et-indu
ing if and only if aTx � a0 is;(
) aTx � a0 is equivalent to bTx � b0 if and only if âTx � a0 is equivalent to b̂Tx � b0.Proof. Let z be the 
hara
teristi
 ve
tor of an even permutation � of V , and let y bethe 
hara
teristi
 ve
tor of the (even) permutation � Æ �. ThenâTz = Xij2E ai�(j)zij =Xi2V ai�(�(i)) = Xij2E aijyij � a0;proving (a). Moreover, if y satis�es aTx � a0 with equality, then z satis�es âTx � a0with equality. Therefore, the set of (
hara
teristi
 ve
tors of) even permutations satisfyingaTx � a0 with equality is mapped by an invertible linear transformation to a set of evenpermutations satisfying âTx � a0 with equality. It follows that aTx � a0 is fa
et-indu
ingif and only if âTx � a0 is fa
et-indu
ing, proving (b). Now suppose that F;H; F̂ ; Ĥ are thefa
es indu
ed by aTx � a0, bTx � b0, âTx � a0, and b̂Tx � b0, respe
tively. Then there isan invertible linear transformation that maps F to F̂ and also maps H to Ĥ. Therefore,F = H if and only if F̂ = Ĥ, proving (
). 5



Proof of Theorem 3.In view of part (b) of Lemma 4, it will be enough to prove the result for the 
ase ofinequality (5) in whi
h � is the identity permutation. So we want to prove thatXv2Rxvv +Xv2Rxvt +Xv2Rxtv � n � 2 (6)indu
es a fa
et of Q(n).We denote the inequality (6) by aTx � a0. Suppose that the fa
e indu
ed by aTx � a0is 
ontained in the fa
e indu
ed by the valid inequality bTx � b0, where b 6= 0. We will showthat this 
ontainment 
annot be proper, and hen
e that aTx � a0 indu
es a fa
et. Noti
ethat aTx � a0 is B-redu
ed with respe
t to the basis B = (h; V ) [ (V; h) of A. We mayassume that bTx � b0 is also B-redu
ed. Sin
e the fa
e indu
ed by aTx � a0 is 
ontainedin the fa
e indu
ed b y bTx � b0, every a-tight even permutation is also b-tight. Therefore,if we have two a-tight permutations, then we get an equation involving the 
omponents ofb. Using this repeatedly we will show that bTx � b0 is a positive multiple of aTx � a0. Itis 
onvenient to use J to denote fvv : v 2 Rg.Claim 1. bvt = btv = bvv + btt for all v 2 R.Proof of Claim 1. The permutations J [ftt; hhg; (Jnfvvg)[fvt; th; hvg and (Jnfvvg)[fvh; ht; tvg are even and tight. Sin
e be = 0 for all e 2 B, the result follows.Claim 2. btt = 0:Proof of Claim 2. Let u; v be distin
t elements of R. Sin
e J[ftt; hhg and (Jnfuu; vvg)[ftv; vt; hu; uhg are even and tight, we havebuu + bvv + btt = bvt + btv = 2(buu + btt);where the se
ond equality follows from Claim 1. Therefore, bvv = buu + btt: Sin
e u and v
ould be inter
hanged, the result follows.Claim 3. There is a number � su
h that bvt = but = � for all u; v 2 R.Proof of Claim 3. The permutations (Jnfvvg)[fvt; th; hvg and (Jnfuug)[fut; th; hugare even and tight. The result now follows from Claims 1 and 2 and the fa
t that be = 0for all e 2 B.Claim 4. Let u; v be distin
t elements of R. Then buv = 0.Proof of Claim 4. The permutation (J [ fuv; vt; tu; hhg)nfuu; vvg is even and tight.This gives buv + 2� = 2�, so buv = 0:Noti
e that, sin
e J [ ftt; hhg is even and tight, we now have b0 = (n� 2)�. We haveshown that bTx � b0 is �(aTx � a0). Therefore, it indu
es the same fa
e as aTx � a0, soaTx � a0 is fa
et-indu
ing.To �nish the proof of Conje
ture 1, we need to show that distin
t inequalities (5) indu
edi�erent fa
ets of Q(n).Theorem 5 For n � 5, inequalities of the form (5) indu
e 12n(n� 1)n! di�erent fa
ets ofQ(n). For n = 4, they indu
e 48 distin
t fa
ets.6



Proof. Ea
h inequality (5) 
an be written in the form x(C) � n�2, and it will be enoughto show that, for all n � 4, the inequalities for distin
t sets C indu
e distin
t fa
ets. Letx(C) � n�2 and x(C 0) � n�2 be two su
h inequalities, determined by 
hoi
es t; h; � andt0; h0; �0 respe
tively. We will show that, unless C = C 0, they are not equivalent.In the subgraph indu
ed by C 0, there is a unique vertex r = h0 having indegree zeroand a unique vertex s = �0(h0) having outdegree zero. Let B = (r; V ) [ (V; s). Then B isa basis for A, and x(C 0) � n � 2 is in B-redu
ed form. We will use the equations (1), (2)to 
onvert x(C) � n� 2 into an equivalent inequality in B-redu
ed form.First, suppose that rs 2 C. Then we 
an rewrite x(C) asx(CnB) + x((C \B)nfrsg) + xrs= x(CnB) + Xrj2C;j 6=s xrj + Xis2C;i6=r xis + 1 �Xj 6=s xrj= x(CnB) + Xrj2C;j 6=s(1�Xi6=r xij) + Xis2C;i6=r(1�Xj 6=s xij) + 1 �Xj 6=s(1�Xi6=r xij):Therefore, a B-redu
ed inequality equivalent to x(C) � n� 2 has left-hand sidex(CnB)� Xrj2C;j 6=s Xi6=r xij � Xis2C;i6=r Xj 6=s xij +Xj 6=sXi6=r xij: (7)It will be enough to show that (7) 
annot be a positive multiple of x(C 0). We �rst provethe following.Claim. There exist u; v 2 V su
h that us; rv 2 C and uv =2 C.Proof of Claim. Sin
e rs 2 C, we know that one of the following three 
ases holds: (a)r 2 R and s = �(r); (b) r = t and s = �(w) for some w 2 R; (
) r 2 R and s = �(t).Consider 
ase (a). Then we 
an 
hoose u = t; v = �(t): Now 
onsider 
ase (b). Then we
hoose any p 2 Rnfwg su
h that (t; �(p)) 2 C and �(p) 6= �(w), and take u = w andv = �(p). Finally, in 
ase (
), we 
hoose some p 2 Rnfrg su
h that (p; �(t)) 2 C, and takev = �(r) and u = p. In every 
ase it is easy to see that u; v have the desired properties.Now it follows from the 
laim that xuv has 
oeÆ
ient �1 in (7), and therefore that theB-redu
ed form of x(C) � n � 2 
annot be a positive multiple of x(C 0) � n� 2. Finally,we need to deal with the 
ase in whi
h rs =2 C. In this 
ase, the left-hand side of aninequality in B-redu
ed form equivalent to x(C) � n�2 is the same as (7) ex
ept that thelast double sum is missing. But then it will have fewer positive 
oeÆ
ients and/or morenegative 
oeÆ
ients than x(C 0), unless the two double sums in the middle are both empty,whi
h happens only if C = C 0. Hen
e if C 6= C 0, then x(C) � n� 2 
annot be equivalentto x(C 0) � n� 2.One may wonder whether it is possible for one of the new inequalities (5) to be equiv-alent to one of the non-negativity inequalities (3). We show below that it is not. For
ompleteness, we prove also that the non-negativity inequalities indu
e distin
t fa
ets ofQ(n). 7



Theorem 6 If n � 4 and e 2 E, the inequality xe � 0 is fa
et-indu
ing. Moreover, it isnot equivalent to any other inequality (3), nor to any inequality from (5).Proof. Note that the transformation of Lemma 4 takes the inequality xij � 0 toxi�(j) � 0. Hen
e, it suÆ
es to show for any v 2 V that �xvv � 0 indu
es a fa
et. We
onvert this inequality into B-redu
ed form with B = (v; V )[(V; v). So the new inequalityaTx � a0 has ae = 0 for all e 2 B and ae = �1 for all e =2 B. Suppose the fa
e indu
edby aTx � a0 is 
ontained in the fa
e indu
ed by the valid inequality bTx � b0. Thus, anya-tight even permutation is also b-tight. Choose three distin
t verti
es i; j; k in V n fvg.Let J = fuu : u 2 V n fv; i; j; kgg. Then the following permutations are easily seen to beeven and tight: J [ fjk; kj; vi; ivg, J [ fii; jk; vj; kvg, and J [ fii; kj; vj; kvg. It followsthat bjk + bjk = bii + bjk = bii + bkj:Therefore, bjk = bkj = bii = � (say), and 2� = b0 � b(J). By symmetry, it followsthat be = � for all e 2 E(fi; j; kg). Repeating the pro
ess for other 
hoi
es of i; j; k (ifne
essary), we derive that be = � for all e 62 B and b0 = �(n�2). So bTx � b0 is a multipleof aTx � a0, whi
h implies that xe � 0 indu
es a fa
et of Q(n).Now we wish to show that, for any e 2 E the inequality xe � 0 is not equivalent toany other non-negativity inequality. By Lemma 4, we may assume that e = fuvg, whereu 6= v. Ea
h of the following permutations is even and does not 
ontain e:the identity permutation K;(Knfuu; vv; ppg) [ fvu; up; pvg, for any p 2 V nfu; vg;(Knfuu; pp; qqg) [ fup; pq; qug, for any p; q 2 V nfu; vg with p 6= q;(Knfuu; pp; qqg) [ fuq; qp; pug, for any p; q 2 V nfu; vg with p 6= q.Let f be an edge di�erent from e. It is easy to 
he
k that one of the above permutations
ontains f . Sin
e it does not 
ontain e, it follows that the fa
e indu
ed by xe � 0 is notequal to the fa
e indu
ed by xf � 0.Finally, let us show that no inequality (5) is equivalent to a non-negativity inequality.By Lemma 4, it is enough to deal only with the inequalityXv2Rxvv +Xv2Rxvt +Xv2Rxtv � n� 2: (8)Ea
h of the following permutations is even and satis�es (8) with equality:the identity permutation K;(Knfpp; qq; ttg) [ fpq; qt; tpg, for any p; q 2 R with p 6= q;(Knfvv; tt; hhg)[ fvt; th; hvg, for any v 2 R;(Knfvv; tt; hhg)[ fvh; ht; tvg, for any v 2 R.Let e be any edge. There is a permutation in the above list that 
ontains e. It follows thatthe fa
e indu
ed by (8) is di�erent from the fa
e indu
ed by xe � 0, as required.8



We give a brief des
ription of the work of Hood and Perkinson [6℄ and relate it to ourwork. They observe that the inequalityX1�i�j�n xij � x22 + x21 � n� 1 (9)is valid for Q(n). They show that it is fa
et-indu
ing for n � 6, and that it provides bysymmetry 12(n � 1)!n! distin
t fa
ets. The symmetries here are of two types. One is thesame as we have used, namely, for any even permutation �, repla
ing aij by ai�(j). Theother is, for any permutation � su
h that �(1) = 1, repla
ing aij by a�(i)�(j). Although theHood-Perkinson 
lass is larger, it is quite easy to see that it 
ontains none of the fa
etsindu
ed by the inequalities (5). Namely, it is shown in [6℄ that the fa
et indu
ed by (9)
ontains the 
hara
teristi
 ve
tors of exa
tly 2n�1�1 even permutations, while it is easy to
he
k that for the fa
et indu
ed by (6), the 
orresponding number is 2n2 � 8n+ 9. Thesetwo numbers 
annot be equal for any integer n � 4, so the two 
lasses have nothing in
ommon. Another distin
tion between the two 
lasses, is that our 
lass already providesfa
ets at n = 4, whi
h is relevant be
ause it leads to a 
hara
terization of the polytope inthat 
ase.A Des
ription of Q(4)In the 
ase n = 4 we 
an prove that the inequalities (5) are all we need to add to thesystem (1), (2), (3) to get a 
omplete des
ription for Q(n).Theorem 7 If n = 4, Q(n) is the set of all solutions to the system (1), (2), (3), and (5).It should be pointed out that standard 
omputer software for dealing with polyhedra,for example, Avis's lrs [7℄, is perfe
tly 
apable of 
omputing the 
omplete list of fa
ets ofQ(n) for n = 4 and 5. In view of this, it may not be 
lear why we have in
luded a proofof Theorem 7. One reason is that we believe that our proof has some intrinsi
 interest.Another is that, be
ause Q(4) is far from full-dimensional, the output of the 
omputerprogram does not dire
tly provide a proof. It reveals that the dimension is nine, and givessixty-four fa
et-indu
ing inequalities. One is then left with the task of 
onvin
ing oneselfthat these inequalities are equivalent to the mu
h more attra
tive system of Theorem 7.Our proof follows a method used previously [3℄. In parti
ular, we need the followingelementary fa
t, whi
h is proved there.Lemma 8 Let P1; P2; P3 be bounded polyhedra in Rm of equal dimension, and suppose thatP1 � P2 � P3. Then there exists a point �x 2 P2nP1 and an extreme point x0 of P3 su
hthat �x is in the 
onvex hull of P1 [ fx0g.Proof of Theorem 7. Let P1 = Q(4), let P2 be the set of solutions of (1), (2), (3), and (5),and let P3 = P (4). Then P1 � P2 � P3, and they have equal dimension. If P1 = P2, we are9



done, so suppose otherwise. Then all the 
onditions of Lemma 8 are satis�ed. Hen
e thereis a point �x satisfying (1), (2), (3), and (5) but not in Q(4), permutations x0; x1; : : : ; xk,and positive numbers �0; : : : ; �k su
h that x0 is an odd permutation and x1; : : : ; xk areeven permutations, Pnj=0 �j = 1 and �x = kXj=0�jxj: (10)Given �x, we may 
hoose a 
olle
tion X = fxj : j = 1; : : : ; kg of even permutations andthe expression (10) for �x su
h that �0 is as small as possible.By transforming by an even permutation, as in Lemma 4, we 
an assume that x0 isthe permutation f12; 23; 34; 41g. Then x0 violates the instan
es of (5) indi
ated below,where for ea
h inequality, written in the form x(C) � 2, we give the set C. (Note thatthere are really two kinds of inequalities here. The �rst four are equivalent under repeatedappli
ation of the permutation (1234) and the same is true of the other four.)C1 = f12; 13; 23; 24; 32; 34g;C2 = f41; 42; 12; 13; 21; 23g;C3 = f34; 31; 41; 42; 14; 12g;C4 = f23; 24; 34; 31; 43; 41g;C5 = f12; 14; 22; 23; 33; 34g;C6 = f41; 43; 11; 12; 22; 23g;C7 = f34; 32; 44; 41; 11; 12g;C8 = f23; 21; 33; 34; 44; 41g.We make the following observation: For any Ci, sin
e x0(Ci) > 2 but �x(Ci) � 2, itfollows that there exists some xj 2 X su
h that xj(Ci) < 2. (For otherwise, 2 � �x(Ci) =�0x0(Ci) + 2(1 � �0) > 2, a 
ontradi
tion.) For a given Ci, the list of all possible 
hoi
esfor xj satisfying xj(Ci) < 2 is given below, and is easily veri�ed. Here, x K means thatx is the 
hara
teristi
 ve
tor of K.C1: x̂1 f11; 22; 33; 44g, x̂2  f14; 42; 21; 33g, x̂3  f14; 43; 31; 22g;C2: x̂1 f11; 22; 33; 44g, x̂3  f14; 43; 31; 22g, x̂4  f24; 43; 32; 11g;C3: x̂1 f11; 22; 33; 44g, x̂4  f24; 43; 32; 11g, x̂5  f13; 32; 21; 44g;C4: x̂1 f11; 22; 33; 44g, x̂5  f13; 32; 21; 44g, x̂2  f14; 42; 21; 33g;C5: x̂6 f13; 31; 24; 42g, x̂4  f24; 43; 32; 11g, x̂5  f13; 32; 21; 44g;C6: x̂6 f13; 31; 24; 42g, x̂5  f13; 32; 21; 44g, x̂2  f14; 42; 21; 33g;C7: x̂6 f13; 31; 24; 42g, x̂2  f14; 42; 21; 33g, x̂3  f14; 43; 31; 22g;C8: x̂6 f13; 31; 24; 42g, x̂3  f14; 43; 31; 22g, x̂4  f24; 43; 32; 11g.Note that the above observation implies that, for every i, X 
ontains at least one of thepermutations in the list for Ci. Now we 
onsider two 
ases.Case 1. Both x̂1 and x̂6 are in X . 10



Let y1; y2; y3; y4 be the permutations f12; 23; 31; 44g, f23; 34; 42; 11g, f13; 34; 41; 22g,and f12; 24; 41; 33g, respe
tively. Ea
h yi is an even permutation and2x0 + x̂1 + x̂6 = y1 + y2 + y3 + y4:Case 2. One of x̂1 or x̂6 is not in X .Then X must in
lude both x̂3 and x̂5, or both x̂2 and x̂4. The two 
ases are symmet-ri
al, so we 
onsider the �rst. Let y1; y2; y3; y4 denote the permutations f12; 23; 31; 44g,f23; 32; 14; 41g, f12; 21; 34; 43g, and f13; 34; 41; 22g, respe
tively. Noti
e that ea
h yi is aneven permutation, and that2x0 + x̂3 + x̂5 = y1 + y2 + y3 + y4:In either 
ase, we 
an add a (suÆ
iently) small positive multiple of the derived equationto (10). The resulting expression for �x will have all of the required properties, but willhave a smaller �0, a 
ontradi
tion. This 
ompletes the proof.Theorem 7 
an be strengthened, as follows.Theorem 9 For n = 4, the system 
onsisting of any 7 of the 8 equations (1), (2), the16 inequalities (3), and the 48 distin
t inequalities (5), is a minimal system of linearinequalities des
ribing Q(n).Proof. It well known and easy to show that any set of 2n� 1 of the 2n equations (1), (2)implies all of them, but no smaller set does. Moreover, in view of Theorems 3, 5, and 6,ea
h of the inequalities in the system is fa
et-indu
ing, and no two of them indu
e thesame fa
et. It follows that the des
ription is minimal.The Membership ProblemThe des
ription of Q(n) appears to be 
ompli
ated in general. Therefore, we 
an expe
tthat it may not be easy in general to test a given point in RE for membership in Q(n). Infa
t, Brualdi and Liu [4℄ 
onje
tured that there does not exist a polynomial-time algorithmto solve this membership problem. Note that there is a 
onne
tion between this se
ond
onje
ture and Conje
ture 1. Namely, due to the polynomial-time solvability of linearprogramming, its truth would imply the truth of Conje
ture 1. More pre
isely, it wouldimply the truth of a version of Conje
ture 1 whi
h requires also that the lengths of the
oeÆ
ients in the linear inequalities be polynomially-bounded. It would also imply thatQ(n) 
annot be the proje
tion of a polytope T (n) in dimension f(n), su
h that T (n) has apolynomial-size des
ription by linear inequalities. Whether su
h a \
ompa
t des
ription"of Q(n) exists, is unknown.While proving the non-existen
e of a polynomial-time algorithm for the membershipproblem seems hopeless, an easier question to answer may be whether the problem is NP-hard. To our knowledge, this remains open. A
tually, there is some weak eviden
e pointing11



in the dire
tion of solvability of the membership problem, whi
h we now summarize. By afundamental result of Gr�ots
hel, Lov�asz, and S
hrijver (see [5℄), the membership problemis solvable in polynomial time if there is a polynomial-time algorithm for the optimizationproblem: \Given 
 2 RE �nd the maximum of 
Tx over x 2 Q(n)." A spe
ial 
ase of theoptimization problem is the 
ase in whi
h 
 is f0; 1g-valued, and we want to know whetherthe maximum is n.The latter problem 
an be stated more simply as follows: Given a digraph H = (V;E 0),determine whether E 0 
ontains an even permutation. (E 0 is just fij 2 E : 
ij = 1g.) Thisproblem is equivalent to several other interesting problems, in
luding that of determiningwhether a given digraph has a dire
ted 
y
le of even length, and determining whethera given bipartite graph has a PfaÆan orientation. These problems have been solved byRobertson, Seymour, and Thomas [10℄, based on a 
hara
terization due independently tothemselves and M
Cuaig [8℄.This problem and the more general optimization problem above, are examples of pairsof problems that o

ur 
ommonly in 
ombinatorial optimization. Suppose we are given afamily of subsets of a set E, su
h as the family of even permutations of G = (V;E). Theoptimization problem is, given a weighting of the elements of E, to �nd the maximum,over all members of the family, of the total weight of that member. The feasibility problemis, given a subset of E, to de
ide whether it 
ontains a member of the family. If theoptimization problem is eÆ
iently solvable, then so is the feasibility problem. In fa
t,families for whi
h the 
onverse is known to fail are rather rare. (This may re
e
t the
urrent la
k of knowledge more than the a
tual state of a�airs.) Sin
e the feasibilityproblem for the family of even permutations is solvable, there is at least some hope thatthe optimization problem over Q(n) is solvable, and hen
e that the membership problemis, too.Referen
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