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Abstract

We consider the convex hull of the even permutations on a set of n elements. We
define a class of valid inequalities and prove that they induce a large class of distinct
facets of the polytope. Using the inequalities, we characterize the polytope for n = 4,
and we confirm a conjecture of Brualdi and Liu that, unlike the convex hull of all
permutations, this polytope cannot be described as the solution set of polynomially
many linear inequalities. We also discuss the difficulty of determining whether a

given point is in the polytope.
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Introduction

Let S, denote the set of permutations of a finite set V' of cardinality n. Where G = (V, E)
denotes the complete digraph on V' (that is, the set E of edges of G is V x V'), each element
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o of S, can be regarded as a subset K of E. (Namely, K = {1j € E:0(i) = j}.) We often
regard a permutation to be such a set K. That is, a permutation can be considered to be
a set K’ C E such that each vertex of the digraph (V, K') has indegree and outdegree equal
to 1. Let = € R” be the characteristic vector of an element K of S,,. (We will often use
“permutation” as an abbreviation for “characteristic vector of a permutation”, and think

of a set of permutations as the set of their characteristic vectors.) Then x satisfies

ay;, =1 (vevl) (1)

X;r =1 (eV) 2)
vij > 0 (ij €E). (3)

A famous theorem of Birkhoff [2] states that the convex hull P(n) of S, is precisely the
set of solutions of the system (1), (2), and (3). (P(n) may be viewed as the set of n x n
doubly stochastic matrices.)

Hoffman (see Mirsky [9]) asked whether there is a similar characterization of the convex
hull @(n) of the even permutations. That is, Hoffman asked whether the polytope Q(n) can,
like P(n), be characterized explicitly as the solution set of a system of linear inequalities.
Mirsky called the elements of Q(n) even doubly stochastic matrices. From the point of
view of the digraph G, an even permutation is a permutation A such that the number of
components of (V, i) having an even number of edges, is even.

Mirsky gave a family of valid inequalities for Q(n); later, von Below [1] proved that
the solution set of this family is equal to @Q(n) if and only if n < 3. Brualdi and Liu [4]
proved several results about Q(n). They established its dimension, characterized adjacency
of extreme points, and proved that it has diameter 2. They also gave several classes of
nonlinear inequalities that must be satisfied by elements of Q(n). Finally, they made the
following conjecture, suggesting that Q(n) is much more complicated than P(n).
Conjecture 1. Q(n) cannot be characterized as the solution set of a system of polynomially
many (in n) linear inequalities.

In this note, we prove Conjecture 1 by explicitly constructing a family of %n(n — 1)n!
linear inequalities, each of which (if n > 5) induces a distinct facet of Q(n). We show
that no inequality in Mirsky’s class induces a facet for n > 4. We also give a complete
description of (4). Finally, we discuss the difficulty of deciding membership in Q(n).

After this paper was written, we learned of a paper by Hood and Perkinson [6]. It also
proves Conjecture 1. Some remarks on the work in that paper can be found after the proof

of Theorem 6.



Preliminaries

We recall here a few basic facts from polyhedral theory. More details can be found in
Schrijver [11]. The equations (1), (2) are satisfied by every point in ((n). Since this
system of 2n equations is easily seen to have rank 2n — 1, the dimension of Q(n) is at most
n? —(2n—1) = (n—1)%. Brualdi and Liu [4] showed that its dimension is exactly (n — 1),
provided that n > 4. (We will generally assume n > 4, to avoid some trivial exceptions.)
It follows that the solution set of (1), (2) is the affine hull of Q(n).

An inequality e’z < ag is valid for Q(n) if it is satisfied by every point of Q(n). A
face of Q(n) is a set of the form {# € Q(n) : a’& = ao} for some valid inequality e’z < ag
for Q(n). The inequality is said to induce the face. An even permutation K is a-tight (or
just tight if a is understood) if it is in the face induced by e’z < ag. A facet of Q(n) is a
maximal proper face of Q(n). A face of Q(n) is a facet if and only if it contains an affinely
independent set of (n — 1)* even permutations.

Let Az = 1 denote the system (1), (2) of equations. Q(n) is the solution set of a system
of the form Ax =1, A’z < ¥ for some A’ b’. Any such system must contain an inequality
inducing F for every facet F of Q(n) (and need not contain any others). Thus, to show
that Conjecture 1 is true, it is enough to exhibit sufficiently many facets of Q(n). Two
valid inequalities a’x < ag and bT'z < by for Q(n) are said to be equivalent if they induce
the same face. Clearly, 'z < ag and bTz < by are equivalent if there exist ¢ € R with
p >0 and y € R*™ such that (a?,a0) = u(b?,bo) + yT(4,1). It is known that, if a’z < ag
and bTz < by are facet-inducing, then the converse is true. A basis for A is a subset B of
E of size 2n — 1 indexing a linearly independent set of columns of A. It is easy to check
that, for any r,s € V (possibly equal) the set {rj : 7 € V}U{is : i € V} is a basis of
A. Given a basis B of A and any valid inequality a’2 < aq, there exists an equivalent
valid inequality b"2 < by such that b, = 0 for all ¢ € B. We say that such an inequality
bz < by is in B-reduced form. If a’x < aq is facet-inducing, then b7x < by is unique up
to multiplication by a positive scalar.

Here is some digraph notation. Let U, W be subsets of V. We write (U, W) to denote
{iye E:i1eU, je W} Foru€V, wemay abbreviate ({u}, W) to (u, W), and similarly
for (W, {u}). We write E(U) to denote (U,U). For any J C E, let V(.J) denote the set
{v € V : v is incident with some ¢ € J}.

Finally, for a vector y € R” and a subset F of E, we use y(F) to denote Y(y. : ¢ € F).
For y € R¥ and U, W subsets of V, we abbreviate y((U, W)) to y(U,W). (To illustrate
some of this notation, equation (1) could be written z(v,V) =1 (v € V).)

Mirsky’s Class of Inequalities

Mirsky [9] first introduced a class of valid inequalities for Q(n). Until very recently, Mirsky’s

class was the only known class of valid linear inequalities for Q(n) (other than inequalities



that are valid for P(n)). This class of inequalities can be described as follows. Let L be
an even permutation of V', and let wv € L. Then the Mirsky inequality determined by L
and wv 1s

(L) —3xy <n —3. (4)

It is easy to see that (4) is valid for Q(n). (If x is the characteristic vector of a permutation
K and uv € K, then @(L) —3zy = (L) =3 <n—3. fuv ¢ K, then |[KNL| <n-—2,
and equality can hold only if A is odd.) It is also easy to see that, if x is the characteristic
vector of an odd permutation of V, then there is an inequality of Mirsky type that it
violates. However, as observed in [1], Mirsky’s inequalities together with (1), (2), and (3)
do not define Q(n) for any n > 4. We show something stronger here.

Theorem 1 Ifn >4, no Mirsky inequality is facet-inducing for Q(n).

Proof. Let a’z < ag denote the Mirsky inequality determined by the even permutation
L and uwv € L. Suppose that the even permutation K of V is tight, that is, it satisfies
a’z < ag with equality. If uv € K, then we must have K = L. If uv ¢ K, then we
must have |K' N L| = n — 3, so there are three edges uv,ab,cd € L\K. Consider the set
M = L\{uv,ab,cd}. It consists of three directed paths together with a number (possibly
zero) of cycles. K is formed by adding to M three edges, none of them wv. It is easy to
see that there are exactly two ways to do this. Therefore, since there are (n;l) choices for
{ab, cd}, there are exactly (n—1)(n—2)+1 = n* —3n+3 tight even permutations. The size
of a set of affinely independent even permutations in the face induced by a2 < @ cannot
exceed this number, which is smaller (since n > 4) than (n — 1)2. Therefore, a’x < aq

does not induce a facet of Q(n). |

A Class of Facet-inducing Inequalities of Q(n)

Let ¢, h be distinct vertices of G, and let R denote V\{¢,h}. Let o be an even permutation
of V. The triple (t,h, o) determines the following inequality:

> Taote) + D o) F 2 Tior) 1 — 2. (5)

veER vER vER
This inequality is in the form #(C) < n — 2 for some C C E with |C| = 3n — 6. It is
quite easy to see that for n > 5, each different choice of (¢, h,0) gives a different set C,
and hence a different inequality (5). Since there are n(n — 1) choices of ¢,k and $n! even
permutations, we get a family of %n(n — 1)n! different inequalities for n > 5. For n = 4,
however, the sets C are not all distinct; in fact, in this case, only 48 different inequalities

arise.

Theorem 2 Inequality (5) is valid for Q(n).

4



Proof. Let K be an even permutation of V' and let f, g, denote the values of the three
sums in (5) when x is replaced by the characteristic vector of K. Clearly, f < n — 2 and
g,h < 1. It follows that we need only consider the cases in which f is n — 2 or n — 3.
In the former case, 2,y = 1 for all v € R, and it follows that f = g = 0 and so (5) is
satisfied. (We did not need that A is even to make this conclusion.) Now suppose that
f =n—3. Then there is a unique v € R such that x,,,) = 0. If the inequality is violated,
then f = g = 1, from which it follows that z.,(:) = Zis(u) = 1. Therefore, K must be the
permutation obtained from o by multiplying it by the transposition (ut), and so K is odd,

a contradiction. |
Theorem 3 Ifn >4, inequality (5) induces a facet of Q(n).

Let o be a fixed even permutation of V. For any even permutation 7= of V with
characteristic vector = € R¥, it is easy to see that the vector y defined by y;; = Zig(j) 18
the characteristic vector of o o 7, the permutation mapping 7 to o(m(¢)). Moreover, the
transformation that takes z to y is linear and invertible. (Namely, o induces a permutation
of E, and the corresponding E X E permutation matrix is invertible.) These observations

are very useful for transforming valid inequalities.

Lemma 4 Let o be an even permutation of V, let a’x < ay and b'x < by be valid
inequalities for Q(n), and define & and b by a;; = a0y and by; = biy(j). Then

(a) @'z < ag is a valid inequality for Q(n);

(b) a'z

IA

ag s facet-inducing if and only if a’x < aqg is;

ao s equivalent to bTa < by if and only if a’x < ag is equivalent to b2 < bo.

IA

(c) alz

Proof. Let z be the characteristic vector of an even permutation m of V., and let y be

the characteristic vector of the (even) permutation o o 7. Then

alz = . in()Zi = D Gin(n(i)) = D @i¥ij < do,

ekl eV yEL

proving (a). Moreover, if y satisfies a’z < ag with equality, then z satisfies 'z < aqg
with equality. Therefore, the set of (characteristic vectors of) even permutations satisfying
a’x < ag with equality is mapped by an invertible linear transformation to a set of even
permutations satisfying ¢’z < ao with equality. It follows that a’z < aq is facet-inducing
if and only if aTx < ag is facet-inducing, proving (b). Now suppose that F, H, F, H are the
faces induced by a’2 < ag, bTx < by, 'z < ag, and Wy < bo, respectively. Then there is
an invertible linear transformation that maps F to F and also maps H to H. Therefore,

F = H if and only if ' = H, proving (c). 1



Proof of Theorem 3.
In view of part (b) of Lemma 4, it will be enough to prove the result for the case of

inequality (5) in which o is the identity permutation. So we want to prove that

Zwuu+2$ut+zl’tu§n—2 (6)
veER vER vER
induces a facet of Q(n).

We denote the inequality (6) by e’z < ag. Suppose that the face induced by e’z < ag
is contained in the face induced by the valid inequality b%z < by, where b # 0. We will show
that this containment cannot be proper, and hence that a’z < ag induces a facet. Notice
that a’x < ag is B-reduced with respect to the basis B = (h,V) U (V,h) of A. We may
assume that b7z < by is also B-reduced. Since the face induced by a2 < ag is contained
in the face induced b y b7z < by, every a-tight even permutation is also b-tight. Therefore,
if we have two a-tight permutations, then we get an equation involving the components of
b. Using this repeatedly we will show that b7 2 < by is a positive multiple of a’z < ag. It
is convenient to use J to denote {vv: v € R}.

Claim 1. b, = by = by + by for all v € R.

Proof of Claim 1. The permutations JU{tt, hh}, (J\{vv})U{vt, th, ho} and (J\{vv})U
{vh,ht,tv} are even and tight. Since b, = 0 for all ¢ € B, the result follows. |

Claim 2. b, = 0.

Proof of Claim 2. Let u, v be distinct elementsof R. Since JU{tt, hh} and (J\{uu,vo})U
{tv,vt, hu,uh} are even and tight, we have

buu + bvv + btt — bvt + btv — 2(buu + btt)7

where the second equality follows from Claim 1. Therefore, b,, = by, + by. Since u and v
could be interchanged, the result follows. |
Claim 3. There is a number « such that b,; = b, = o for all u,v € R.
Proof of Claim 3. The permutations (J\{vv})U{vt,th, hv} and (J\{uu})U {ut,th, hu}
are even and tight. The result now follows from Claims 1 and 2 and the fact that b, = 0
forallee B. 1
Claim 4. Let u,v be distinct elements of R. Then b,, = 0.
Proof of Claim 4. The permutation (J U {uv,vt,tu, hh})\{uu,vv} is even and tight.
This gives by, + 2a = 2a, so b, = 0. 1

Notice that, since J U {tt, hh} is even and tight, we now have by = (n — 2)a. We have
shown that b'a < by is oz(aT:L' < ag). Therefore, it induces the same face as a’z < ag, so
a’z < aq is facet-inducing. |l

To finish the proof of Conjecture 1, we need to show that distinct inequalities (5) induce

different facets of Q(n).

Theorem 5 For n > 5, inequalities of the form (5) induce tn(n — 1)n! different facets of
Q(n). Forn =4, they induce 48 distinct facets.
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Proof. Each inequality (5) can be written in the form x(C) < n—2, and it will be enough
to show that, for all n > 4, the inequalities for distinct sets C' induce distinct facets. Let
2(C) <n—2and 2(C’") <n—2 be two such inequalities, determined by choices ¢, h, o and
t',h' o’ respectively. We will show that, unless C' = C’, they are not equivalent.

In the subgraph induced by C’, there is a unique vertex r = h’ having indegree zero
and a unique vertex s = o/(h') having outdegree zero. Let B = (r, V) U (V,s). Then B is
a basis for A, and «(C’) < n — 2 is in B-reduced form. We will use the equations (1), (2)
to convert #(C) < n — 2 into an equivalent inequality in B-reduced form.

First, suppose that rs € C. Then we can rewrite 2(C) as

#(C\B) 4+ 2((CnB)\{rs}) + Tps
= 2(C\B) + S + DO + 1=
rj€C,g#s is€Castr J#s
=z(C\B) + >, (1-> zy) + D2 (1= zy) + 1= (1-> wy)
rj€C,g#s i£Er is€Castr J#s J#s i£Er

Therefore, a B-reduced inequality equivalent to #(C) < n — 2 has left-hand side

e(C\B)— Y D wij— > Dowi+y > wg (7)

r3€C,g#£s 1#r is€Ca#r j#s JFs i#r

It will be enough to show that (7) cannot be a positive multiple of x:(C’). We first prove
the following.
Claim. There exist u,v € V such that us,rv € C and uv ¢ C.
Proof of Claim. Since rs € C, we know that one of the following three cases holds: (a)
r € Rand s = o(r); (b) r =t and s = o(w) for some w € R; (¢) r € R and s = o(t).
Consider case (a). Then we can choose u = t,v = o(t). Now consider case (b). Then we
choose any p € R\{w} such that (t,0(p)) € C and o(p) # o(w), and take v = w and
v = o(p). Finally, in case (c), we choose some p € R\{r} such that (p,o(t)) € C, and take
v =o(r) and u = p. In every case it is easy to see that u,v have the desired properties.
|

Now it follows from the claim that x,, has coeflicient —1 in (7), and therefore that the
B-reduced form of ©(C') < n — 2 cannot be a positive multiple of x(C’) < n — 2. Finally,
we need to deal with the case in which rs ¢ C. In this case, the left-hand side of an
inequality in B-reduced form equivalent to x(C') < n — 2 is the same as (7) except that the
last double sum is missing. But then it will have fewer positive coefficients and/or more
negative coeflicients than «(C"’), unless the two double sums in the middle are both empty,
which happens only if C = C’. Hence if C # C’, then 2(C) < n — 2 cannot be equivalent
to x(C") <n—-2.1

One may wonder whether it is possible for one of the new inequalities (5) to be equiv-
alent to one of the non-negativity inequalities (3). We show below that it is not. For

completeness, we prove also that the non-negativity inequalities induce distinct facets of

Q(n).



Theorem 6 Ifn > 4 and e € E, the inequality . > 0 is facet-inducing. Moreover, it is
not equivalent to any other inequality (3), nor to any inequality from (5).

Proof. Note that the transformation of Lemma 4 takes the inequality z;; > 0 to
Tiz(;y > 0. Hence, it suffices to show for any v € V' that —x,, < 0 induces a facet. We
convert this inequality into B-reduced form with B = (v, V)U(V,v). So the new inequality
a’z < ag has a. = 0 for all e € B and a. = —1 for all e ¢ B. Suppose the face induced
by a’x < ag is contained in the face induced by the valid inequality b7z < by. Thus, any
a-tight even permutation is also b-tight. Choose three distinct vertices 4,7,k in V' \ {v}.
Let J ={uu:u € V\{v,i,7,k}}. Then the following permutations are easily seen to be
even and tight: J U {jk, kj,vi,iv}, JU {1, jk,vj, kv}, and J U {it, kj,vj, kv}. It follows
that
bji + bjr = bii + bji = bi; + by;.

Therefore, bjr = by; = b = «a (say), and 2a = by — b(J). By symmetry, it follows
that b. = « for all e € E({i,j,k}). Repeating the process for other choices of ¢, 7,k (if
necessary ), we derive that b, = a for all e € B and by = a(n —2). So bTx < by is a multiple
of a’x < ag, which implies that x. > 0 induces a facet of Q(n).

Now we wish to show that, for any e € E the inequality . > 0 is not equivalent to
any other non-negativity inequality. By Lemma 4, we may assume that ¢ = {uv}, where
u # v. Each of the following permutations is even and does not contain e:
the identity permutation K;

(K\{uu,vv,pp}) U {vu,up, pv}, for any p € V\{u,v};
(K \{uu, pp, gq}) U {up, pq, qu}, for any p,q € V\{u,v} with p # ¢;

(E\{ww, pp, qq}) U {ug, qp, pu}, for any p,q € V\{u, v} with p # ¢.
Let f be an edge different from e. It is easy to check that one of the above permutations

contains f. Since it does not contain e, it follows that the face induced by z. > 0 is not
equal to the face induced by x; > 0.
Finally, let us show that no inequality (5) is equivalent to a non-negativity inequality.

By Lemma 4, it is enough to deal only with the inequality

vav—l'zxvt—l'zxtvgn_Q- (8)

vER vER vER

Each of the following permutations is even and satisfies (8) with equality:

the identity permutation K;

(K\{pp, 9q,tt}) U {pq, qt, tp}, for any p,q € R with p # ¢;

(K\{vv,tt,hh}) U {vt, th, hv}, for any v € R;

(K\{vv,tt,hh}) U {vh, bt tv}, for any v € R.

Let e be any edge. There is a permutation in the above list that contains e. It follows that

the face induced by (8) is different from the face induced by x. > 0, as required. 1



We give a brief description of the work of Hood and Perkinson [6] and relate it to our

work. They observe that the inequality

Z ij— X+ <n—1 (9)
1<i<j<n

is valid for Q(n). They show that it is facet-inducing for n > 6, and that it provides by
symmetry %(n — 1)In! distinct facets. The symmetries here are of two types. One is the
same as we have used, namely, for any even permutation o, replacing a;; by a;s(;). The
other is, for any permutation p such that p(1) = 1, replacing a;; by a,),(;). Although the
Hood-Perkinson class is larger, it is quite easy to see that it contains none of the facets
induced by the inequalities (5). Namely, it is shown in [6] that the facet induced by (9)
contains the characteristic vectors of exactly 2"~! — 1 even permutations, while it is easy to
check that for the facet induced by (6), the corresponding number is 2rn* — 8n + 9. These
two numbers cannot be equal for any integer n > 4, so the two classes have nothing in
common. Another distinction between the two classes, is that our class already provides
facets at n = 4, which is relevant because it leads to a characterization of the polytope in
that case.

A Description of Q(4)

In the case n = 4 we can prove that the inequalities (5) are all we need to add to the
system (1), (2), (3) to get a complete description for Q(n).

Theorem 7 Ifn =4, Q(n) is the set of all solutions to the system (1), (2), (3), and (5).

It should be pointed out that standard computer software for dealing with polyhedra,
for example, Avis’s Irs [7], is perfectly capable of computing the complete list of facets of
Q(n) for n = 4 and 5. In view of this, it may not be clear why we have included a proof
of Theorem 7. One reason is that we believe that our proof has some intrinsic interest.
Another is that, because Q(4) is far from full-dimensional, the output of the computer
program does not directly provide a proof. It reveals that the dimension is nine, and gives
sixty-four facet-inducing inequalities. One 1s then left with the task of convincing oneself
that these inequalities are equivalent to the much more attractive system of Theorem 7.

Our proof follows a method used previously [3]. In particular, we need the following

elementary fact, which is proved there.

Lemma 8 Let Py, Py, P3 be bounded polyhedra in R™ of equal dimension, and suppose that
P, C Py, C P3. Then there exists a point & € Po\Py and an extreme point 2° of Py such
that T is in the convex hull of Py U {z°}.

Proof of Theorem 7. Let P, = Q(4), let P, be the set of solutions of (1), (2), (3), and (5),
and let Ps = P(4). Then P, C P, C P, and they have equal dimension. If P; = P,, we are

9



done, so suppose otherwise. Then all the conditions of Lemma 8 are satisfied. Hence there

is a point 7 satisfying (1), (2), (3), and (5) but not in Q(4), permutations z° z!, ... z*

and positive numbers X, ..., \r such that 20 is an odd permutation and z', ..., z* are

even permutations, 377 5 A; = 1 and

k
Tr = Z )\]‘J}]. (10)
J=0
Given 7, we may choose a collection X = {2/ : j = 1,... k} of even permutations and

the expression (10) for # such that Ag is as small as possible.

By transforming by an even permutation, as in Lemma 4, we can assume that z° is
the permutation {12,23,34,41}. Then 2° violates the instances of (5) indicated below,
where for each inequality, written in the form x(C) < 2, we give the set C. (Note that
there are really two kinds of inequalities here. The first four are equivalent under repeated
application of the permutation (1234) and the same is true of the other four.)

O, = {12,13,23,24,32, 34}

O, = {41,42,12,13,21, 23}

Oy = {34,31,41,42, 14, 12};

Oy = {23,24,34,31,43,41}:

Cs = {12, 14,22, 23,33, 34}

Cs = {41,43,11,12,22, 23}

Oy = {34,32,44,41, 11,12}

Cs = {23,21,33,34, 44,41},

We make the following observation: For any C;, since z°(C;) > 2 but z(C;) < 2, it
follows that there exists some 27 € X such that 2/(C;) < 2. (For otherwise, 2 > z(C;) =
Moa?(C;) + 2(1 — Xg) > 2, a contradiction.) For a given C;, the list of all possible choices
for 27 satisfying #/(C;) < 2 is given below, and is easily verified. Here, < K means that
x is the characteristic vector of K.

Cp: 4% {11,22,33,44}, 3% « {14,42,21,33), 43 « {14,43,31,22);

Oy 3% {11,22,33,44}, 3% « {14,43,31,22), &' « {24,43,32,11};

Oy 3% {11,22,33,44}, 3 « [24,43,32, 11}, #° « {13,32,21,44};

Cp 3% {11,22,33,44), 35 « {13,32,21,44), 4 « {14,42,21,33);

Cs: 46 {13,31,24,42), 3 « {24,43,32, 11}, #° « {13,32,21,44};

Co: 46 {13,31,24,42), 3% « {13,32,21,44), 4 « {14,42,21,33);

Oy 4 {13,31,24,42), 3% « {14,42,21,33), 43 « {14,43,31,22);

Cy: 46 {13,31,24,42}, 3% « {14,43,31,22), &' « {24,43,32,11}.

Note that the above observation implies that, for every 7, X contains at least one of the

&3>
&3>

&3>
&3>

&3>
&3>

permutations in the list for C;. Now we consider two cases.
Case 1. Both #! and #° are in X.

10



Let y',y% y? y* be the permutations {12,23,31,44}, {23,34,42,11}, {13,34,41,22},
and {12,24,41, 33}, respectively. Each 3’ is an even permutation and

2:1:0—|—:J?:1—|—:J?:6:y1—|—y2—|—y3—|—y4.

Case 2. One of 2! or 2° is not in X.

Then X must include both % and #°, or both 22 and 2*. The two cases are symmet-
rical, so we consider the first. Let y', y? y*, y* denote the permutations {12,23, 31,44},
{23,32,14,41}, {12,21,34,43}, and {13, 34,41,22}, respectively. Notice that each ' is an

even permutation, and that
9220 + 23445 =y + y? + ¢® + .

In either case, we can add a (sufficiently) small positive multiple of the derived equation
to (10). The resulting expression for @ will have all of the required properties, but will
have a smaller A\g, a contradiction. This completes the proof. |

Theorem 7 can be strengthened, as follows.

Theorem 9 For n = 4, the system consisting of any 7 of the 8 equations (1), (2), the
16 inequalities (3), and the 48 distinct inequalities (5), is a minimal system of linear

inequalities describing Q(n).

Proof. It well known and easy to show that any set of 2n — 1 of the 2n equations (1), (2)
implies all of them, but no smaller set does. Moreover, in view of Theorems 3, 5, and 6,
each of the inequalities in the system is facet-inducing, and no two of them induce the

same facet. It follows that the description is minimal. ||

The Membership Problem

The description of (n) appears to be complicated in general. Therefore, we can expect
that it may not be easy in general to test a given point in R for membership in Q(n). In
fact, Brualdi and Liu [4] conjectured that there does not exist a polynomial-time algorithm
to solve this membership problem. Note that there is a connection between this second
conjecture and Conjecture 1. Namely, due to the polynomial-time solvability of linear
programming, its truth would imply the truth of Conjecture 1. More precisely, it would
imply the truth of a version of Conjecture 1 which requires also that the lengths of the
coefficients in the linear inequalities be polynomially-bounded. It would also imply that
(Q(n) cannot be the projection of a polytope T'(n) in dimension f(n), such that T'(n) has a
polynomial-size description by linear inequalities. Whether such a “compact description”
of Q(n) exists, is unknown.

While proving the non-existence of a polynomial-time algorithm for the membership
problem seems hopeless, an easier question to answer may be whether the problem is A/P-

hard. To our knowledge, this remains open. Actually, there is some weak evidence pointing
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in the direction of solvability of the membership problem, which we now summarize. By a
fundamental result of Grotschel, Lovasz, and Schrijver (see [5]), the membership problem
is solvable in polynomial time if there is a polynomial-time algorithm for the optimization
problem: “Given ¢ € R¥ find the maximum of ¢’z over z € Q(n).” A special case of the
optimization problem is the case in which ¢ is {0, 1}-valued, and we want to know whether
the maximum is n.

The latter problem can be stated more simply as follows: Given a digraph H = (V, E'),
determine whether E’ contains an even permutation. (E’ is just {ij € E : ¢;; = 1}.) This
problem is equivalent to several other interesting problems, including that of determining
whether a given digraph has a directed cycle of even length, and determining whether
a given bipartite graph has a Pfaffian orientation. These problems have been solved by
Robertson, Seymour, and Thomas [10], based on a characterization due independently to
themselves and McCuaig [8].

This problem and the more general optimization problem above, are examples of pairs
of problems that occur commonly in combinatorial optimization. Suppose we are given a
family of subsets of a set E, such as the family of even permutations of G = (V, E). The
optimization problem is, given a weighting of the elements of E. to find the maximum,
over all members of the family, of the total weight of that member. The feasibility problem
is, given a subset of E. to decide whether it contains a member of the family. If the
optimization problem is efficiently solvable, then so is the feasibility problem. In fact,
families for which the converse is known to fail are rather rare. (This may reflect the
current lack of knowledge more than the actual state of affairs.) Since the feasibility
problem for the family of even permutations is solvable, there is at least some hope that
the optimization problem over @(n) is solvable, and hence that the membership problem

18, too.
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