Optimal 3-terminal cuts and linear programming

William H. Cunningham?® and Lawrence Tang?

! Department of Combinatorics & Optimization, University of Waterloo, Waterloo,
ON, Canada, N2L 3G1
? Department of Mathematics, University of British Columbia, Vancouver, BC,

Canada V6T 1Y8

Abstract. Given an undirected graph G = (V, E) and three specified
terminal nodes t1,%2,t3, a S-cut is a subset A of E such that no two
terminals are in the same component of G\A. If a non-negative edge
weight c. is specified for each e € E, the optimal 3-cut problem is to
find a 3-cut of minimum total weight. This problem is NP-hard, and in
fact, is max-SNP-hard. An approximation algorithm having performance
guarantee g has recently been given by Calinescu, Karloff, and Rabani.
It is based on a certain linear programming relaxation, for which it is
shown that the optimal 3-cut has weight at most g times the optimal LP
value. It is proved here that g can be improved to %, and that this is

best possible. As a consequence, we obtain an approximation algorithm

12

for the optimal 3-cut problem having performance guarantee {7.

1 Introduction

Given an undirected graph G = (V, F) and k specified terminal nodes ¢4, ..., %,
a k-cut is a subset A of E such that no two terminals are in the same component
of G\ A. If a non-negative edge-weight ¢, is specified for each e € E, the optimal
k-cut problemis to find a k-cut of minimum total weight. This problem was shown
by Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [5] to be NP-
hard for k > 3. (Of course, it is solvable in polynomial time if k£ = 2.) They also

gave a simple polynomial-time algorithm having performance guarantee ﬂ%l,

times the

that is, it is guaranteed to deliver a k-cut of weight at most
minimum weight of a k-cut. Later, in [6], the same authors showed that for
k > 3 the problem is max-SNP-hard, which implies that, assuming P#NP, there
exists a positive ¢ such that the problem has no polynomial-time approximation
algorithm with performance guarantee 1 + €.

The present paper concentrates on the optimal 3-cut problem. From the
above remarks, it follows that this problem is max-SNP-hard, and the approxi-
mation algorithm of [6] has a performance guarantee of %. Recently, Calinescu,
Karloff, and Rabani [1] gave an approximation algorithm having a performance
guarantee of %. We give a further improvement that is based on their approach.

Chopra and Rao [3] and Cunningham [4] investigated linear programming
relaxations of the 3-cut problem, showing results on classes of facets and separa-
tion algorithms. Here are the two simplest relaxations. (By a T-path we mean the

edge-set of a path joining two of the terminals. By a wye we mean the edge-set

of a tree having exactly three nodes of degree one, each of which is a terminal.
For a set A, a subset B of A, and a vector z € R*, z(B) denotes ZjeB z;.)

minimize ZeEE Cee
(LP1) subject to
z(P) > 1, P a T-path
z. > 0,e € E.

minimize) . g cce

(LP2) subject to
z(P) > 1, P a T-path
z(Y) > 2,Y a wye
z. > 0,e € E.

It follows from some simple observations about shortest paths, and the equiva-
lence of optimization and separation, that both problems can be solved in poly-
nomial time. It was proved in [4] that the approximation algorithm of [5] delivers
a 3-cut of value at most % times the optimal value of (LP1). (In particular, the
minimum weight of a 3-cut is at most % times the optimal value of (LP1).) It
was conjectured that the minimum weight of a 3-cut is at most % times the
optimal value (LP2). The examples in Figure 1 (from [4]) show that this conjec-
ture, if true, is best possible. In both examples, the values of a feasible solution
z of (LP2) are shown in the figure. The weights ¢, are all 2 for the example on
the left. For the one on the right they are 1 for the edges of the interior triangle,
and 2 for the other edges. In both cases the minimum 3-cut value is 8, but the

given feasible solution of (LP2) has value 7.5.

Fig. 1. Bad examples for (LP2)

Recently, Calinescu, Karloff, and Rabani [1] gave a new linear programming
relaxation. Although their approach applies to any number % of terminals, we
continue to restrict attention to the case when & = 3. They need to assume that G
be a complete graph. (Of course, if any missing edges are added with weight zero,
the resulting 3-cut problem is equivalent to the given one, so this assumption

is not limiting.) The relaxation is based on the following observations. First,
every minimal 3-cut is of the form (R, Rz, R3), where t; € R; for all ¢. Here,
where R is a family of disjoint subsets of R, B(R) denotes the set of all edges
of G joining nodes in different members of the family. Since ¢ > 0, there is an
optimal 3-cut of this form. Second, the incidence vector z of a minimal 3-cut
is a kind of distance function, that is, it defines a function d(v,w) = 4, on
pairs of nodes of G which is non-negative, symmetric, and satisfies the triangle
inequality. Finally, with respect to d the distance between any two terminals
is 1, and the sum of the distances from any node v to the terminals is 2. The
resulting linear-programming relaxation is:

minimize ZeEE Cee
(LP3) subject to
Tow =1L, 0,w €T, v£w
ZvET Tyw =2, wEV
Tyy +$vw — Lyw Z 07 Uy U, W € V
z. >0, e € E.

This relaxation is at least as tight as (LP2). To see this, suppose that (af-
ter adding missing edges to make G complete), we have a feasible solution z
to (LP3). Then for any path P of G joining u to v, 2(P) > x4y, by applying
the triangle inequality. It follows that z(P) > 1 for any T-path P. Moreover,
any wye Y is the disjoint union of paths Pj, P>, P; from some node v to the
terminals. It follows that =(Y') > > .1 #yw = 2. Thus every feasible solution
of (LP3) gives a feasible solution of (LP2) having the same objective value. The
first example of Figure 1 shows that the optimal value of (LP3) can be strictly
greater than the optimal value of (LP2). On the other hand, the second example
shows that there is no hope to prove in general that the the minimum weight of
a 3-cut is less than % times the optimal value of (LP3).

It was proved in [1] that the minimum weight of a 3-cut is at most %
the optimal value of (LP3). As a consequence, an approximation algorithm for
the optimal 3-cut problem having a performance guarantee of % was derived. (It
is clear that (LP3) can be solved in polynomial time, since it is of polynomial
size.) However, it was left open whether this result could be strengthened; the
second example of Figure 1 shows an example for which the minimum weight of
a 3-cut can be as large as 16/15 times the optimal value of (LP3), and this is
the worst example given in [1]. (To see that z of that example does extend to a
feasible solution of (LP3), we simply define z on each missing edge uv to be the
minimum length, with respect to lengths z., of a path from u to v.)

times

In this paper it is shown that the minimum weight of a 3-cut is at most %

times the optimal value of (LP3), and that this is best possible. (This result has
been obtained independently by Karger, Klein, Stein, Thorrup, and Young [7].)
As a consequence we obtain an approximation algorithm for the optimal 3-cut
problem having a performance guarantee of %

2 Triangle embeddings

Calinescu, Karloff, and Rabani [1] introduced an extremely useful geometric
relaxation, which they showed was equivalent to the linear-programming re-
laxation (LP3). Let A denote the convex hull of the three elementary vectors
el = (1,0,0), e = (0,1,0), and e = (0,0,1) in R3. By a triangle embedding
of G we mean a mapping y from V into A such that y(t;) = ¢! for i = 1,2,3.
A triangle embedding y determines a vector z € RF as follows. For each edge
uv, let 4, be one-half the L; distance from y(u) to y(v). It is easy to see
that this z is a feasible solution to (LP3). Conversely, a feasible solution z
of (LP3) determines a triangle embedding y as follows. For each node v, let
y(v) = (1 — Ttyos 1 — Tepe, 1 — thy;)-

Given a triangle embedding y we can obtain z as above, and then use z to
obtain a triangle embedding 1/. It is easy to see that y = ¢'. It is not true, on
the other hand, that every feasible solution of (LP3) arises in this way from a
triangle-embedding. However, it is “almost true”. The following result is implicit
in [1], and we include a proof for completeness.

Theorem 1. Let z be a feasible solution of (LP3), let y be the triangle embedding
determined by x and let ©' be the feasible solution of (LP3) determined by y.
Then ' <z, and if is an optimal solution of (LP3), so is z'.

Proof. First, observe that the second statement is a consequence of the first and
the non-negativity of ¢. Now let uv € E. Both y(u) and y(v) have component-
sum 1. Therefore, y(u) — y(v) has component-sum zero, and so one-half of the
L, distance between y(u) and y(v) is the sum of the non-negative components
of y(u) — y(v). Hence we may assume, perhaps by interchanging v with v and
relabelling the terminals, that one-half of the L; distance between y(u) and y(v)
is the sum of the first two components of y(u) — y(v). Therefore,

() — y()ll = 12(w) 2 (0) + () — 1 0)
=1— 2y, — (1 — 2pt,) + 1 — Tup, — (1 — Tos,)
= (2 - :Butg) - (2 - :ths)

S Lyvs

as required.
O
The approximation algorithm of Calinescu, Karloff, and Rabani uses the
following ideas. Suppose that (LP3) is solved, and an optimal solution z* that
arises from a triangle embedding is found. For a number o between 0 and 1 that
is different from z;, for every v € V and » € T, and an ordering r,s,t of T,
define R, ={v eV :z;, <a}, R, ={veV\R, : 2}, <a}, Ry = V\(R, UR,).
We call the 3-cut S(R;, R;s, R:) uniform (with respect to this z*). It is easy to
see that there are O(n) uniform 3-cuts. The algorithm of [1] simply chooses the
uniform 3-cut having minimum weight. It is proved to have weight at most %
times the minimum weight of a 3-cut.

We consider a slight generalization of the notion of uniform 3-cut. Let «, o
be two numbers chosen as « was above, and let 7, s,¢ be an ordering of T'. Define
R.={veV:z, <a}, Ry ={v € V\R, : 2%, <a'}, Rt = V\(R; UR;). We
call the 3-cut B(R,, R,, R:) flat (with respect to this z*). Clearly, every uniform
3-cut is flat. It is easy to see that there are O(n?) flat 3-cuts. Our approximation
algorithm simply chooses the flat 3-cut having minimum weight. We will show
that it has weight at most % times the weight of an optimal 3-cut. This result
is based on a tight analysis of the bound for the optimal 3-cut problem given by
(LP3).

3 Linear programming again

It is easy to check that if the optimal value of (LP3) is zero, then there is a 3-cut
of weight zero. Therefore, we may assume that the optimal value is positive. So
our problem may be restated as finding the best upper bound, over all choices
of G and ¢, for the minimum weight of a 3-cut divided by the optimal value
of (LP3). By multiplying ¢ by an appropriate positive number, we may assume
that the minimum weight of a 3-cut is 1. It is now more convenient to prove
the best lower bound on the value of (LP3). Surprisingly, we can use a different
linear programming problem to do this.

Assume that G is fixed, and that an optimal solution z* of (LP3) is also
fixed. Then the problem of finding the worst optimal value can be stated as:

minimize) g cc T}

(P) subject to
e(S)>1, Sasd-cut
ce >0, ec E.

Note that the variables are the weights ¢! It may seem that the hypothesis that
G and z* are known is very strong, but it turns out that we can assume that
there are not many choices for them. First, we may assume that z* is rational,
since 1t 1s an optimal solution of a linear-programming problem having rational
data. Therefore, there exists a positive integer ¢ such that ¢z* is integer-valued.
Second, we may assume that z* arises from a triangle-embedding y*, and 1t
is easy to see that qy* is integral, as well. Therefore, we can think of y* as
embedding the nodes of G into a finite subset A, of A, consisting of those
points y € A for which gy is integral. We define the planar graph G, = (A, Ey)
by uv € E, if and only if the L; distance between u and v is 2 Figure 3 shows
Go; the numbers there are explained later. For nodes u,v of G, we denote by
dg(u, v) the least number of edges of a path in Gy from u to v. (It is easy to see
that dy(u,v) = £ times the L; distance from to v.)

Theorem 2. Let G,c be a 3-cut instance, let z* be a rational-valued optimal
solution of (LP3), with corresponding triangle-embedding y*, and let ¢ be a pos-
itive integer such that qz* is integral. Then there is a 3-cut instance on graph G
with nodeset A, and edge-weights ¢ such that:

8 8
Y \/\ 8
8 8
8 8
0 0
8 /o\ 2 2 O\ 8
2 2 2 2
1 2 2 1
°/ 0 o\ /o 0 0 \10
10 8 8 8 8 8 8 8 10
Fig.2. Gg

(a) & defined by g2y, = dg(u,v) for all uww € E is a feasible solution of (LP3)
(for G, ¢), and é < cx*;

(b) The optimal 3-cut value for G, ¢ is at least that for G, c;

(¢) ée=0 foralle ¢ E,;

(d) For every flat 3-cut of G with respect to T, there is a flat 3-cut of G with
respect to ™ having no larger weight.

Proof. We use the mapping y* from V to A,, and we assume that z* arises
from y*. Suppose that two nodes u, v of G are mapped to the same point of A,
by y*. Form G’ by identifying v with v and, where multiple edges are formed,
replacing the pair by a single edge whose weight is their sum. Then every 3-cut
of G’ determines a 3-cut of G having the same weight, so the minimum weight of
a 3-cut of G’ is at least the minimum weight of a 3-cut of G. Moreover, z* also
determines a triangle-embedding of G’, so there is a feasible solution of (LP3)
for G’ having value cz*. Finally, every flat cut of G’ gives a flat cut of G of the
same weight. Thus the theorem is true for G if it is true for G’, and so we may
assume that y* is one-to-one.

Now suppose that y* is not onto, that is, that there is an element z of A,
such that y*(v) # z for all v € V. We can form a graph G’ from G by adding
a node v and an edge uv of weight zero for every u € V. It is easy to see that
the minimum weight of a 3-cut of G’ is the same as that of G. Also, if we map
the new node to z, we get a triangle embedding of G’, and it corresponds to a
feasible solution of (LP3) on G’ having value equal to cz*. Finally, every flat
cut of G’ corresponds to a flat cut of G of the same weight. So the theorem is

true for G if it is true for G'. It follows that we may assume that y* is onto.
Therefore, we may assume that V = Ay, and that y* is the identity mapping.

Now suppose that there exists uv € E\E,, such that ¢,, = ¢ > 0. Let P be
the edge-set of a path in G4 from u to v such that |P| = dy(u, v). Decrease ¢y,
to zero, and increase c. by € for all e € P. We denote the new ¢ by ¢’. Then,
since every 3-cut using e uses an edge from P, the minimum weight of a 3-cut
with respect to ¢’ is not less than that with respect to ¢. (Similarly, every flat
3-cut has value with respect to ¢’ not less than that with respect to ¢.) Now
dz* = ca* —edy(u, v) + edy(u, v) = cz*. This argument can be repeated as long
as there is such an edge wuwv.

O

It is a consequence of the above theorem that it is enough to study the 3-
cut problem on graphs G, with z} = Lforallec E,. (That is, to obtain the
best bound on the ratio of the optima(i welght of a 3-cut to the optimal value
of (LP3), it suffices to analyze such graphs and weights.) In particular, for each
positive integer g, we are interested in the optimal value of the following linear
programming problem.

. . . 1
minimize 7 ZeEE Ce

(Py) subject to
c(S) > 1, S a 3-cut of G,
cc >0, ec E,
The dual problem is
maximize M zs
(Dy) subject to

ZeES S %7 ec Eq
zs > 0, S a 3-cut of Gy.

We actually solved these problems numerically for several values of ¢, and then
were able to find solutions for general g.

Theorem 3. For g > 4 the optimal value of (Py) and of (D) is equal to

%""m, if¢=0 mod 3
flo)=1 &+ op ifq=1 mod 3

%—1—117(1—1217, if q=2 mod 3

Moreover, there is an optimal solution of (Dy) for which zg is positive only if S
is a flat 3-cut.

It is easy to see that Theorems 2 and 3 have the following consequence. This
result has been proved independently by Karger et al. [7], whose approach is
somewhat different, but also uses a linear programming analysis of triangle-

embedding.

Theorem4. For any 3-cut instance, the minimum weight of a 3-cut is at most
% times the optimal value of (LP3), and the constant % 1s best possible. a

4 An improved approximation algorithm

Algorithm

1. Find a rational-valued optimal solution z* of (LP3).
2. Find the triangle embedding y* determined by z*.
3. Return the flat 3-cut of minimum weight.

As pointed out before, the first step can be performed in polynomial time. The
polynomial-time algorithms for linear programming can be modified to return a
rational-valued optimal solution, and one of polynomial size. The second is easy.
So is the third step, using the observation made earlier that there are only O(n?)

flat 3-cuts of G.

Theorem 5. The above algorithm returns a 3-cut of weight at most % times
the minimum weight of a 3-cut.

Proof. We may assume that the optimal value of a 3-cut is 1, so it is enough
to prove that the algorithm delivers a 3-cut of weight at most % Let z* be a
rational-valued optimal solution for (LP3), and let ¢ be a common denominator
for the components of z*, such that ¢ is a multiple of 3. Consider an optimal

solution z* of (D) as given by Theorem 3. Then
12,
Z HZS Z 17
s
and z% > 0 only if § is a flat 3-cut. Therefore
min ¢(8) < Z Bz* c(S)
< 117°s

2¥>0
s s

12 .
=1 ZZSC(S)

s

IA
|
&
3]

IA
|

5 Proof of Theorem 3

To prove Theorem 3, it is enough to give feasible solutions of (P,) and of (D)
having objective value f(g). For simplicity, we will actually do something weaker.
For the case when ¢ = 0 mod 3, we give a feasible solution of (P,) having objec-
tive value f(g), and a feasible solution to (D) using only variables corresponding

to flat 3-cuts having objective value % Although this does not quite prove The-
orem 3, it is enough to prove Theorems 4 and 5, since a common denominator
for the components of z* can always be chosen to be a multiple of 3.

First, we describe our feasible solution to (P;). Consider Figure 2 which shows
Go. Let ¢, be the number next to edge e, or 1 if no number appears. It is easy to
see that the minimum value of a 3-cut is 40, so ¢ = ¢/ /40 is a feasible solution to
(Py). Its objective value is the sum of the components of ¢’ divided by 9, which
is Z—S.

Here is the general construction (when ¢ is a multiple of 3) for an optimal
solution of (P,). If ¢ = 3m, divide A, into three “corner triangles” of side m
together with the “middle hexagon”. Put ¢, = 3m+1 for all edges incident with
the terminals. Put ¢, = 2m + 2 for all other edges on the boundary of A,. Put
¢, = m—1 for each edge e in a corner triangle that is parallel to an outside edge
and distance 1 from it. Put ¢, = 1 for all other edges in the middle hexagon
(including its boundary). Put ¢, = 0 for all other edges.

It is easy to convince oneself that the minimum weight of a 3-cut with respect
to ¢’ is 4(3m + 1), and hence that ¢ = ¢//4(3m + 1) is a feasible solution to (Py).
Here is a sketch of a proof. (The ideas come, essentially, from the result of
Dahlhaus, et al. [5], showing that there is a polynomial-time algorithm to solve
the optimal multiterminal cut problem when G is planar and the number of
terminals is fixed.) Any minimal 3-cut of G, has the form B(R1, R2, R3). There
are two kinds of such 3-cuts, corresponding to the case in which there is a pair
1,7 for which there is no edge joining a node in R; to a node in R;, and the
one where this is not true. The minimum value of a 3-cut of the first type is
simply the sum of the weights of two cuts, each separating a terminal from the
other two. In the case of G4 with ¢’ described above, to show that any such cut
has weight at least 4(3m + 1), it is enough to show (due to the symmetry of
¢’) that any cut separating one terminal from the other two has weight at least
2(3m+ 1). This is done by exhibiting an appropriate flow of this value from one
terminal to the other two.

The second type of 3-cut corresponds to the union of three paths in the
planar dual of Gy, such that the three paths begin at the same face triangle
and end with edges that are on different sides of the outside face. Finding a
minimum-welght such 3-cut can be accomplished by, for each choice of the face
triangle, solving a shortest path problem. Therefore, to show that any 3-cut of
the second type has ¢’-weight at least 4(3m+ 1), one shows that, for each choice
of face triangle, there is an appropriate “potential” on the faces of G|,.

To compute the objective value of this feasible solution (Py), note that there
are 6 edges e having ¢, = 3m+1, 3(3m—2) edges e having ¢, = 2m+2, 6(m—1)
edges e having ¢, = m — 1, and 9m? edges e having ¢, = 1. From this we get
that the total ¢’-weight of all the edges is 3m(11m+ 12). To obtain the objective
value of the resulting ¢ in (Py), we divide by 4(3m + 1)(3m), and this gives f(q)
for ¢ = 3m.

Now we need to show a feasible solution of (D,) having objective value %
This requires a weighting of the flat 3-cuts of G4. We assign positive dual vari-

ables to two kinds of 3-cuts. For each integer 7, 1 < j < m and each choice of two
terminals r, s we consider the (uniform) 3-cut S(R (5), Rs(5), V\(R: () URs(j4)))
where, for ¢t = 7,5, Ry (j) = {v € V; : dg(t,v) < j}. There are 3m such 3-cuts S,
and for each of them we set z5 = %. Notice that these variables contribute to the
left-hand side of the main constraint of (Dy) only for certain edges, namely, those
that are contained in the corner triangles and are parallel to one of the two sides
of A that meet at that corner. For each of these edges, the total contribution is
exactly 1/2q.

5 5 5
5 5 5 5
5 3 3 5
5 3 3 3 5
5 3 1 3 5
5 3 1 1 3 5
5 3 1 1 3 5
5 3 1 3 5
5 3 3 3 5
5 3 3 5
5 5 5 5
5 5 5

Fig. 3. Feasible solution of (D)

The weights assigned to the second type of flat cut are determined by a
weighting of the face triangles of G, that are contained in the middle hexagon.
See Figure 3, where such a weighting of the face triangles is indicated for Gg. Let
us use the term row in the following technical sense. It is defined by a straight
line through the centre of a face triangle and parallel to one of its three sides.
When we speak of the face triangles in the row, we mean all of the face triangles
that are intersected by the line. When we speak of the edges in the row, we
mean all of the edges that are intersected by the line. Notice that in the figure,
the sum of the weights of the face triangles in each row is the same, namely 35.
It is obvious how to extend this pattern to find a weighting with this property
for any ¢ = 3m. Then the sum of the weights of the face triangles in any row is
4m? — 1.

Given a face triangle, consider the set of all edges in the three rows containing
the triangle. It is possible to choose two flat 3-cuts of G, whose union is this

set, and whose intersection is a single edge, or is the set of edges of the face
triangle. (There is more than one way to do this.) For each of these two 3-cuts,
assign a weight equal to the weight of the triangle divided by 2¢(4m? —1). (Note
that a 3-cut S may be assigned weight by two different face triangles; these
weights are added to form the variable zs.) Now consider the constraint of (D)
corresponding to an edge e. The contribution of the variables just defined to the
left-hand side of the constraint, is at most the sum of the weights of the face
triangles in rows containing the edge. If the edge is in the middle hexagon, or is in
a corner triangle and is not parallel to one of the edges incident with the corner,
then it gets contributions from triangles in two different rows, and otherwise,
it gets contributions from triangles in one row. Therefore, the contribution for
the first type of edge is at most (4m? — 1)/(4m? — 1)g = %. For the second type

of edge the total contribution is at most half this, that is, at most %. But the
second group of edges consists precisely of the ones that get a contribution from
the dual variables assigned to the uniform 3-cuts, and that contribution is zl
So the total contribution of all of the dual variables to the left-hand side of the
constraint of (D) corresponding to any edge e is at most %, 80 we have defined
a feasible solution of (Dg).

Now the objective value of this solution can be computed as follows. There

are 3m variables corresponding to uniform 3-cuts, each given value %. Therefore,

the contribution to the objective function of variables of this type is f’z—mm = %.
The contribution of the other variables is the sum of over the 2m horizontal
rows in the middle hexagon, of the total weight of a row divided by g(4m? — 1).

Therefore, it is

2
2m(4m? — 1)/q(4m? — 1) = 3
Therefore, the objective value of our feasible solution to (Dy) is

L2_u
5=

1
4 12°

6 Remarks

Since the constant % is best possible in Theorem 4, it is natural to ask whether
it is best possible in Theorem 5. Note, however, that the family of examples that
we use to show the tightness of the LP bound, all have the property that there
is a flat 3-cut that is optimal. Therefore, these examples are not at all bad for
the approximation algorithm. However, it seems likely that % is indeed best
possible in Theorem 5. For several values of ¢ Kevin Cheung [2] has constructed
examples in which the optimal solution of (LP3) has denominator ¢, and the
approximation algorithm returns a 3-cut of value at least f(l—q) times the optimal
value of (LP3). Actually, his examples seem to be the first that show that our
approximation algorithm does not always return an optimal solution. In fact,
no such example seems to have been known even for the simpler algorithm of

Calinescu et al. [1].

All of the results of Calinescu et al. [1] quoted above for & = 3 are special cases
of their results for general k. They give a linear-programming relaxation that
generalizes (LP3), and a corresponding generalization of the notion of triangle-
embedding, an embedding into a (k — 1)-dimensional simplex in which the ter-
minals are mapped to the extreme points. They show that the optimal value of a
k-cut is at most 3’“2—;2 times the optimal value of this linear-programming prob-
lem. As a result, they obtain an approximation algorithm for the optimal k-cut
problem having performance guarantee 3’“2;2. The recent paper [7], which has
most of our results for £ = 3, also has results for k£ > 3, improving the bounds
given by [1]. For example, [7] gives bounds of 1.1539 for k¥ = 4 and 1.3438 for
all & > 6. The problem of giving a tight analysis for k > 3, as we now have for

k = 3, remains open.

Acknowledgment. We are grateful to Gruia Célinescu, Joseph Cheriyan, Kevin
Cheung, and Levent Tuncel for conversations about this work.

References

1. G. Calinescu, H. Karloff, and Y. Rabani: An improved approximation algorithm
for MULTIWAY CUT Proceedings of Symposium on Theory of Computing, ACM,
1998.

2. Kevin Cheung, private communication, 1999.

3. 8. Chopra and M.R. Rao, “On the multiway cut polyhedron”, Networks 21(1991),
51-89.

4. W.H. Cunningham, “The optimal multiterminal cut problem”, in: C. Monma and
F. Hwang (eds.), Reliability of Computer and Communications Networks, American
Math. Soc., 1991, pp. 105-120.

5. E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, “The
Complexity of multiway cuts”, extended abstract, 1983.

6. E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, “The
Complexity of multiterminal cuts”, SIAM J. Computing, 23(1994), 864-894.

7. D. Karger, P. Klein, C. Stein, M. Thorrup, and N. Young, “Rounding algorithms
for a geometric embedding of minimum multiway cut,” Proceedings of Symposium
on Theory of Computing, ACM, 1999, to appear.

This article was processed using the BTEX macro package with LLNCS style

