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1 Introduction

The symmetric travelling salesman polytope STSP(V) is the convex hull of incidence
vectors of edge-sets of Hamiltonian cycles of the complete graph on node set V. A
description of this polytope by linear inequalities would essentially reduce the travelling
salesman problem to a linear program. While there are reasons to believe that we cannot
hope to obtain such a complete description, known partial descriptions of the polytope
have proved to be remarkably useful in cutting plane approaches to the problem. (See
[4, 9], for example.) A good deal of progress has been made in extending these partial
descriptions by finding new classes of facet-inducing inequalities, and in incorporating
this additional knowledge into the computational approaches.

In this paper we introduce a new class of valid inequalities for ST'SP(V), called ladder
inequalities. These inequalities differ from most of the inequalities discovered so far, in
that they are not of the usual “handle-tooth” variety. On the other hand, they arise
from a strengthening of certain inequalities of this type. A computational study in [4]
demonstrates use of ladder inequalities to improve the bounds of LP relaxations. We
prove that all ladder inequalities are facet-inducing. We also show that they all have
Chvatal rank exactly 2.

2 Preliminaries

Let V be any node set with n = |V| > 3. We deal with the undirected complete graph
K, = (V,E), and we write elements of E as (4,7) or ij. Note that ij = ji. For § CV,
let E(S) denote {ij € E :4,5 € S}. For S, T CV with SNT =0, let E(S: T) denote
{iye E:ie€S,j€T}. Foranyv eV, define §(v) to be E({v}: V\ {v}). For BC E
and = € RP, let x(B) denote Y(zi; : ij € B). Given ¢ € R¥, the (symmetric) travelling

salesman problem (TSP) can be stated as
(1)  minimize Y (¢ a5 :4) € E)
subject to
(La) Y (wi;:1<j3<mn,j#i)=2, 1€V,
(Lb) z(E(S))<|S|—-1, ScCV, 2<|5[<n—2;



(l.c) x>0, ij€E;

(1.d)  =x;; integer, ij € E.

Any feasible solution z° of (1) is the incidence vector of (the edge-set of) a Hamiltonian
circuit or tour of K,. We identify a tour (or more generally a path) of K, with its
edge-set or its node-sequence. The convex hull of feasible solutions to (1) is called an
STS polytope, and is denoted by by ST SP(V). The symmetric TSP is equivalent to the

linear program
min (Z (cijeijij € E) 1 a € STSP(V)) ,

and in order to apply the methods of linear programming, we would like to describe
it as an optimization subject to linear constraints. It is known ([6], for example) that
the affine hull of STSP(V) is just the set of solutions of the degree constraints (1.a),
and hence its dimension is (Z) — n. Therefore, an inequality az < ag that is valid for
STSP(V) is facet-inducing if and only if {& € STSP(V) : ax = ao} has dimension
(Z) — n — 1. Moreover, two such inequalities az < ag and bx < by are equivalent (that
is, induce the same face) if and only if there exist A € RY and a positive scalar Ay such
that (b,b9) = A(A,2)+ Ao(a, ag), where A is the node-edge incidence matrix of K,,, and 2
1s a vector of 2’s. One such class of inequalities consists of the nonnegativity constraints
(1.c). Another consists of the subtour elimination (SE) constraints (1.b).

Many of the known classes of valid inequalities arose from generalizations of the
comb inequalities, which we now describe. They were first defined by Chvétal [3] and
later generalized by Grotschel and Padberg [5]. Given a handle H C V and mutually

disjoint teeth T1,Ts, ..., Tors1 C V (k integer, k > 1) such that
TAHA0£T\H 1<j<2% 41

the associated comb inequality is

HB() + 3 #(B(T)) < [H] 4k + 3 (T3] —2).

It is proved in [5] that every comb inequality is facet-inducing for ST SP(V).



3 Ladder inequalities

Let H; and H, be mutually disjoint subsets of V called handles. Let T1,T5, ..., Tyypm be
pairwise disjoint proper subsets of V called teeth, where t > 2, m > 0, and ¢ + m 1s even
and at least 4. A tooth T} is degenerate if T;\ (H;U Hz) = (; otherwise it is nondegenerate.
Assume that 71,75, ..., T; are nondegenerate teeth and (if m > 1) that Tyiq,..., Tiim
are degenerate teeth. Assume also that T intersects only H;, T intersects only H,, and
Tw, k = 3,...,t + m, intersects both H; and H,. T and T are called pendent teeth;

the others are nonpendent. The ladder inequality associated with Hy, Hy, 11, ..., Tyipm 18
defined as follows:

2) e (B(H)) + 3 w(BT) + zm 2(B(T})) + o(E(Ty N H < Ty () Hy))
S+ 2 ST~ dy 1)+ Y 21T 2),

where d; denotes the number of handles intersected by tooth Tj.

Many of the known classes of valid inequalities for ST'SP(V) are generalizations of the
comb inequalities, and are determined by two families of node subsets, called handles and
teeth. These include clique tree inequalities [7], bipartition inequalities [1], and binested

inequalities [8]. However, in all of these classes the left hand side is of the form

Y az(E(H)) + ) Ba(E(T))).

The last term of the left hand side of the ladder inequalities does not fit this model. In
fact, if that term is dropped, (2) becomes a special kind of bipartition inequality. The
smallest ladder inequality (on 8 nodes) was introduced in [1] to illustrate a way in which
a bipartition inequality can fail to be facet-inducing.

A general ladder inequality az < ay is presented in Figure 1(a). Nodes are numbered
in such a way that the handles are Hy = {2k : k=1,2,....t+m—1} and H, = {2k+1:
E=1,2,...,t+m — 1}, and the pendent teeth 77 = {1,2} and T = {h,3}. The hollow
nodes w, u, g and ¢’ are optional; any of them may be present or absent. Any node
may appear any number of times, at least once for each node 1,...,7 and h. Additional
copies of a node are called clones and will be discussed in Section 5. In the dashed box,

we allow any even number (possibly zero) of additional nonpendent teeth to be present.
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Every nonpendent tooth may be either nondegenerate (if a node like g or ¢’ is present)
or degenerate (if there is no such node). In the latter case, the tooth is contained in the
union of the handles. Every coefficient a;; in the corresponding ladder inequality az < aq
1s determined by the total weight of all sets containing both nodes ¢ and j. The weights
for the degenerate teeth are 2. (For instance, if node g in Figure 1(a) does not exist,
then tooth {6,7} is degenerate and thus has weight 2.) All other weights are one. The
weights are not shown on the figure, to avoid overcrowding it. The fourth term on the
left hand side of inequality (2) is represented by a bipartite graph, reduced to a single
edge in Figure 1(a). Finally, the right hand side ao is as given in inequality (2). Part (b)
of Figure 1 will be explained in Section 4.

We now prove the validity of the ladder inequalities. For 7 = 1,2, let T, =T, \ H; and
H; = H; \ (UE'T).

Theorem 3.1 The ladder inequality (2) is valid for STSP(V).

PROOF: Add the following valid inequalities for ST SP(V), and divide the resulting
inequality by 3:
i) the comb inequality obtained by deleting H, and Ty,

(i
(i) the comb inequality obtained by deleting H,, Ty and H, N T; for j =3,...,t,
(iii) the sum of the degree constraints for each v € H,,

(iv) the sum of the degree constraints for each v € (T3 N Hy) U (T2 N Ha),

(v) the SE inequality for (U35T;) U H, U H,,

(vi) the sum of the SE inequalities for T; N Hy, j = 3,... ¢,

(vii) the sum of the SE inequalities for Tl, Ty and T N H,,

(viii) twice the sum of the SE inequalities for T; N Hy, j = 3,...,t + m,

(ix) twice the sum of the SE inequalities for T, j =t +1,...,t + m,

(x) twice the sum of the SE inequalities for T; N Hy, j =t +1,....t +m,

(

xi) twice the SE inequality for .

It is straightforward to check that for all edges e, the integer part of the coefficient of
z. in the resulting inequality is its coefficient in (2). The right hand side RHS is

1 tem t+m—2
RHS = 3 (|H1|+|T1| —2+4 > (|Ty| —2)+f)

i=3



7=3 Jj=t+1

tm t4+m—2
+ |H1|+|T1|—2+Z|T\Hzl—2+2 (1Tl -2)+ —5—

2 2 2 tm . .
+ g+ ST N |+ ST 0 He| + 5 (Z |T| + [Ha| + |Ha| - 1)

3=3

1< 1, . 1 1
+ 3 (L] -+ (B -1+ 5% - 1) + (T 0 Hf - 1)
7=3
2t 9 t+m 9 t+m 9 R
I TNE - )+ S Y (T -D+5 Y (TN H|- 1)+ (5] - 1)
j=3 j=t+1 j=t+1
2 t+m
= ZIHi|+t+m—2+Z(ITJ~I—dj—1)+ > 2Tl -2)+
i=1 =1 j=t+1

Rounding down each coefficient and the right hand side to the nearest integer, we obtain

the desired result. O

4 Primitive ladder inequalities

For any inequality az < ao, we define its support graph to be G, = (V, E,), where
= {e € E : a. # 0}. In this section, we consider a subclass of ladder inequalities
ax < ag which have a spanning support graph (that is, G, contains no isolated nodes)

and satisfy the following properties:
e |H;NT;| <1 for any pair H; and T},
o |T;\(HHUH,)|=1forj=1,...,t and
o [H;\ (USLPTy) [ < 1fori=1,2.

The inequalities in this class are called primitive ladder inequalities. Thus, Figure 1(a)
shows a general primitive ladder inequality if no node has any clone. (Hollow nodes may
be present or absent, and there may be any even number of teeth in the dashed box).

Note that any az < ay can be written in the following form

Zwl )) + bz < ag,

where the L;’s are subsets of V. By complementing L; with respect to az < ag, we mean

adding to the inequality the multiples of degree constraints —%'z(d(v)) = —w; for all



v € Li and %z(d(v)) = w; for all v € V'\ L;. The resulting inequality is clearly equivalent
to ax < ag but has different coefficients. To facilitate the polyhedral proof, we need a
unique representation of valid inequalities for ST.SP(V'). This representation is given by

the following lemma.

Lemma 4.1 Let az < ag be any valid inequality for STSP(V), and let h, w and v be
any three distinct nodes in V. Define B = §(h) U {(u,v)}. Then there is a unique (up

to positive multiples) inequality cx < ¢y that is equivalent to ax < ag and satisfies ¢, = 0

for all e € B.

The lemma follows directly from Remark 4.2 in Grotschel and Padberg [5] by observing
that B corresponds to a basis of the column vectors in the node-edge incidence matrix.
We call such a representation, cx < ¢g, an (h, uv)-canonical form, or an (h, uv)-canonical
inequality. An example of a ladder inequality in (h,13)-canonical form cz < ¢y is pre-
sented in Figure 1(b). This can be obtained by complementing tooth T5. Note that
c31 = c3; = 0 for all ©+ > 4 and even, ¢y = ¢34 = cog = 2, 52 = ¢51 = 1, etc. Note also
that if g is absent, then cg7 = 3.

For any valid inequality bz < by for ST SP(V), a Hamiltonian cycle C on V is said
to be b-tight if b(C') = by, where b(C) = Y ¢ be.

We now outline the polyhedral proof. In this proof, we will make reference to the
general primitive ladder inequality shown in Figure 1. In particular, we will use the
node labels (numbers 1,...,6, and letters w,w, g,¢’) as shown in that figure. The hollow
nodes g, ¢’ may be assigned to nondegenerate teeth, {6, g, 7} and {4,¢',5}, respectively,
as needed in the proof. The other hollow nodes w and u represent the cases that some
node in a handle may not be contained in any tooth. Unless otherwise specified, the
statements of the proof are true with and without any subset of hollow nodes.

Let ca < ¢ be the (h,13)-canonical ladder inequality shown in Figure 1(b), and let
fz < fo be a facet-inducing (h, 13)-canonical inequality that dominates cx < co, that is,
such that, for all # € STSP(V), c& = ¢o implies fz = fo. Since f. = ¢. = 0 for all edges
e in §(h), the star of h, any c-tight Hamiltonian path P, that is, ¢(P) = ¢o, on V' \ {h}, is
also f-tight, that is, f(P) = fo. (Indeed, path P can be converted, in a unique way, into
a c-tight cycle C' by connecting its endnodes to node h, and thus fo = f(C) = f(P).)
Therefore, it suffices to compare pairs of c-tight paths on V' \ {h}: P and P’, that is,
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compute f(P) — f(P') = 0 to derive the coeflicients of fz < f;. Each comparison and

its implication are denoted by
P ~ P' — “some expression”.

Note that the above implication may involve some obvious node (or tooth) permutations
and use earlier results on the f coefficients. Such steps are iterated until fz < fy 1s
shown to be some multiple « of cx < ¢q. It then follows that cx < ¢g, hence ax < ag, is

facet-inducing.

@@ PP e o) (€@ @@ o o)
% % R %

@ (0 Welaic o) @ (o |ledla)io o)

(a) A ladder inequality (b) The ladder in (h,13)-canonical form

~

Figure 1: Ladder inequalities



Figure 2: Four c-tight paths

Figure 2 and Figure 3 present 12 types of c-tight paths on V' \ {h} used in the proof.
Each path may be represented by either the corresponding edge set or the sequence of
nodes.

We are now in a position to prove the following result.
Proposition 4.2 All primitive ladder inequalities are facet-inducing.

PROOF: For simplicity, let “+” stand for set union and “—7 for set difference. Let
a = faz and v = fio.

Claim 1. f. =0 for all e such that ¢, = 0.

Proof: Since by definition fi3 =0, Py ~ P —(1,3)4(3,6) = f5; = fis=0for all i > 4
and even.

Next, for any nondegenerate tooth, say, {6,¢,7}, let P, = P, — (7,9) + (7,6) =
(312w4g’5 - - - T6g).

Then P/ ~ P/ — (1,3) + (3,9) = f3, = 0 for all ¢g. If node w does not exist, we
are done; else consider edge (3,w). Let P/’ = P — (2,w) + (2,6) = (312647 - - - ubg'4w).
Then P/’ ~ P/ —(1,3) + (3,w) = f3, =0. O
Claim 2. f, = « for all ¢ such that ¢, = 1.

Proof: Py ~ Py —(2,3) + (1,5) = f1; = a for all ¢ > 5 and odd.
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Figure 3: Eight other c-tight paths

Pyp~ Py —(2,3) 4 (3,5) = fsi = afor all i > 5 and odd.

Py ~ Py —(2,3)+(2,5) = fa; = a for all ¢ > 5 and odd.

Py~ P3—(1,6) + (3,5) = f1; = a for all i > 4 and even.

P3; ~ P;—(1,6) + (5,6) = f;j = a for all i,j > 4 such that ¢ and j belong to both
different teeth and different handles.

If there is a nondegenerate tooth, {6, g, 7}, use three types of c-tight paths P5, Ps and
P;.

Ps~Ps—(1,9)+(2,3) = fi, = .
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Ps~Ps—(1,9)+(2,9) = fag = .

Po~Ps—(5,9)+(1,9) = fig=aforal i >5,i%#7and odd.

Pr~P;—(4,9)+ (1,4) = fiy = afor all ¢ >4, i # 6 and even.

If there are at least two nonpendent, nondegenerate teeth, say, {6,g,7} and {4, ¢’,5},
we define P = Ps — (4,9") +(4,5) — (5,9) + (9, 9") = (12w45¢’g67 - - - u3). Then we have

Po~Pe—(9,9)+ (1,9) = fog =

If all nodes in the handles are contained in the union of teeth, we are done. Otherwise,
do the following;:
(1) If node w exists, the values of f. for all edges e € é(w) such that ¢, = 1 are derived
as follows.

Py~ Py — (1L,w) 4 (1,4) = f1u = .

Let Py =P — (2,w) — (4,w) + (2,4) — (1,6) + (1, w) + (6, w) = (5g'421wbgT - - - u3)
and, if ¢’ exists, Py = Py — (4,9") + (4,5) = (¢'5421wbgT - - - u3).

P~ P;— (1L,w) 4+ (5, w) = fsw = fiw = @. S0 fry = a for all k > 5 and odd.

P} ~ Py — (Liw) + (¢',w) = fyw = f1w = .

When both w and u exist, construct Py’ = (ubg'421wbgT - - - 3).

Pl" ~ Py — (L,w) + (4, w) = fuw = f1w = .
(i) If node u exists, the values of f, for all edges e € §(u) such that c¢. = 1 are derived
as follows.

P3 ~ Py — (3,u) +(3,5) = fau = f35 = .

Py~ Py — (3,u) + (1,u) = fi1u = fau = .

Py~ Py — (Lu) + (2,4) = fou = f1u = .

For any nondegenerate tooth, (354¢'u7g6---21) ~ (¢'463u7¢6---21) = [y, =
fau = .

Let P = (12w4¢'5u3---7¢g6). P ~ P — (3,u) + (6,u) = fou = fou = @. SO fru = «
for all £ > 4 and even.

This completes the proof for Claim 2. O

Claim 3. f. =« for all e such that ¢, = 2.
Proof: Py ~ Py — (1,2) + (2,4) = fo; = v for all i > 4 and even.
To derive the remaining f, in the handles with ¢, = 2, we distinguish, for node w and

for node u, the cases with or without that node.

11



(1) If node w does not exist, then Ps ~ Ps — (4,6) + (2,4) = fi; = 7 for all distinct
1,7 > 4 and even. Otherwise, Ps includes w and we have

Py ~ Py — (4, w) 4 (2,4) = frw = v for all k > 4 and even.

Defining Py = Ps — (6,w) + (2,w) = (35¢’4w2lu - -- 7g6), we also have

Py~ P{ — (4,w) 4 (4,6) = fi; = 7 for all distinct 4,7 > 4 and even, and

Py~ Py = fow = fow =17
(ii) If node « does not exist, then Py ~ Py — (5,7) — (2,3) 4+ (2,4) 4+ (3,5) = fi; = ~ for
all distinct ¢,7 > 5 and odd. Otherwise, Py includes v and we have

Py~ Py —(2,3) — (5,u) +(2,4) + (3,5) = fru =y for all k > 5 and odd, and

P3 ~ Py — (u,v) — (1,6) + (5,v) + (1,u) = fsu = fuw = 7y, where (u,v) € P5, v > 7
and odd. This shows that f;; =« for all distinct ¢,7 > 5 and odd.

For any nondegenerate tooth {4, ¢’,5}, we have

Py ~ Pyg — (v,5) + (5,9") = fsy =, where v = u if u exists and v = 7 otherwise.

Pro ~ Pio—(2,4) + (4,9') = fag =17

Piy~Piu—(4,9)+ (4,5) = fis = fag =7

This completes the proof for Claim 3. O
Claim 4. v = 2a.
Proof: By Claims 1, 2 and 3, P, ~ P, = y=2a. O
Claim 5. For every degenerate tooth T', say T' = {4,5} (without ¢'), we have fi5 = 3.
Proof: Py~ Py = fis=2y—a=4a—a=3a. 0O

From Claims 1-5, it follows that f. = ac. for all e € E(V). The proof of Proposi-

tion 4.2 is complete. a

5 Lifting ladder inequalities

We have shown that all primitive ladder inequalities are facet-inducing for STS polytopes.
In this section, we show by node lifting and cloning that allladder inequalities are facet-
inducing. We begin with the following simple lemma on (h,uv)-canonical forms, which

is used in our proofs.

Lemma 5.1 Let cz < ¢y be an (h,uv)-canonical facet-inducing inequality for STSP(V).
If an (h,uv)-canonical inequality fo < fo satisfies f(P) = fo for all c-tight paths P on
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V\{h}, then f = ¢ and fo = co, up to a positive multiple.

PROOF: Assume that cx < ¢y and fz < fy satisfy the assumptions of the lemma.
Counsider any c-tight cycle C and let P = C \ §(h). Since P is a Hamiltonian path on
V\{h} and ¢(P) = ¢(C) = ¢y, we have f(P) = fo, implying f(C) = fo. Since cx < ¢ is
facet-inducing and both cz < ¢o and fo < f, are in (h, uv)-canonical form, this implies

f =cand fy = co, up to a positive multiple. a

We say that a valid inequality induces a nontrivial facet if it is not equivalent to either
a nonnegativity constraint . > 0 or a bound constraint < 1. The following two results
show how large classes of nontrivial facets can be obtained by node lifting.

The first theorem allows us to add isolated nodes, that is, nodes that are not in the
union of all handles and teeth, and therefore whose incident edges have zero coefficients
in the ladder inequality (1). Actually, this node lifting theorem applies to a broad class of
STSP facet-inducing inequalities, such as the well-known clique tree class. An inequality
ax < ag for STSP(V) is a 2-tooth inequality if it satisfies
(1) it is a nontrivial valid inequality for ST SP(V);

(i) a > 0;
(iii) there exist (at least) two disjoint teeth Ty = {t1, h1} and T> = {t3, h2} such that for
each i = 1,2, we have a;;, > 0, and ay,, = 0 for all v £ hy;

(iv) either ap,, > apyy, or ap, =0 for all v € V.

Many of the known valid inequalities have this property, including all primitive clique

tree, ladder and chain inequalities as well as many bipartition inequalities.

Theorem 5.2 (Adding an isolated node) Suppose that the 2-tooth inequality ax <
ag defines a nontrivial facet of STSP(V), and q ¢ V. Let a*z* < af be a lifted inequality
for STSP(V*), where V* = VU{q}, obtained by letting af = ao, a> = a. for alle € E(V)
and zero otherwise. Then a*x < af is facet-inducing for STSP(V*).

PROOF: Consider a facet-inducing 2-tooth inequality az < ay. Without loss of gener-
ality, we may assume that a;p, = 1. Define Y = {v € V\ {t1} : v = hy or a,, > 0}
and Z = V \ T1. Note that (i) implies that both Y and Z are nonempty. Since h; € Y
and t2 € Z\ Y, both Y and Z \ Y are nonempty subsets of V '\ {t1}. Let cz < ¢y be the
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(t1,t2h1)-canonical inequality obtained from az < ag by complementing T;. It is easily
verified that this inequality satisfies the following properties:

(P1) ¢ > 0 and the support graph G. = (V, E.) of cx < ¢y consists of the isolated node
t1 and a bi-clique structure induced by subsets Z and Y of V; that is, E. = E(Z)UE(Y),
where ZUY =V \{t:1},and Y\ Z = {h1 };

(P2) ¢, > 1for all e € E(Z);

(P3) cpyp > 1forallv € Y and ¢, =0 for all v € Z\ Y; and

(P4) cton, = 0; ctyn, > 1 and ¢y, = 1 for all v € Z )\ {ha}.

Let a*z < ay be as defined in the theorem. Conditions (i) and(ii) imply that a*z < aj
is valid for STSP(V*). Let ¢z < ¢ be the (t1,t2h1)-canonical inequality obtained
from a*z < af by complementing the tooth {¢;, h;}. Comparing this inequality with the
(t1,t2h1)-canonical inequality cx < ¢y, we observe that ¢& = ¢, for all e € E(V), that
con, = 0 and ¢, = 1 for all v € Z, and that ¢j = ¢o + 1.

Let fz < fy be any (t1,t2h1)-canonical facet-inducing inequality for ST SP(V*) that
dominates ¢*z < ¢. Let a = fg,.

Claim 1. f; =0and f,=aforalzec Z\Y.

Proof: We have assumed that az < ag, and thus cz < ¢y as well, is not equivalent to a
trivial inequality ., > 0. Therefore, for every z € Z \ Y, there exists a c-tight path P
on V' \ {t1} containing edge (z, h1). By (P3), c,n, = 0, and thus the edge e connecting
the endnodes of P satisfies ¢. = 0, for otherwise ¢(P U {e}\ {(z, h1)}) > co. This implies
by (P1) that path P has the form P = (w---zh;y) with ¢up, = 0 and v € Z \'Y. Let
P'= PU(q,u), P" = (hiqu---z) and note that both P’ and P” are ¢*-tight paths on
V).

(1) First, let z = t,. Comparing P’ with the ¢*-tight path (hiqu...ts) implies fy, =
e, = 0.

(ii) Next, comparing P” with (h1qz---u) yields f,, = fuu.

(iii) Now, consider any other z € Z\ 'Y, z # to. If w = t5, then comparing P’ and the ¢*-
tight path (u...zqh;) yields f,, = @ and Claim 1 is proved for node z. Else, u # t, and
we may write P = (u---vtas--- zhy). By (P4), we have ¢,, = 1 or ¢,, = 1 (or both). If
Cut, = 1, then comparing ¢*-tight paths (hyw---vgtas--- z) and (hyw---vgz - - - sts) yields
for = fotn = . If ¢, = 1, then comparing (w---vtaqs---zhy) and (t2v---ugqs---zhy)
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yields f,, = «, and therefore by (ii), f,. = fou = a. We have shown that f,, = « for all
z € Z\'Y and the proof of Claim 1 is complete. O

Claim 2. f,=aforalweZNY.

Proof: Since cx < ¢y 1s a nontrivial inequality, for any w € Z N'Y, there exists a c-tight
cycle C on V containing edge (¢1,w). Thus, there exists a c-tight path P = (w---s) on
V'\ {t1}, obtained by deleting from C the edges incident with ¢;. Note that, by (P2) and
(P3), cws > 1. By property (P4), path P must contain an edge (u, v) incident with ¢, and
with ¢,, = 1. (Otherwise, P would contain (hs,t2) and (¢2, h1) with c4,p, = 0, implying
that ¢ (P U {(w,s)} \ {(t2,h1)}) > co + 1, a contradiction.) Let P = (w...uv...s) and
P'=PU{(w,s)}\ {(u,v)}. Comparing P" and P yields ¢,s < 1 and therefore ¢, = 1.
Thus P’ is also a c-tight path on V'\ {#;}. Now comparing P'U{(q,u)} and P'U{(q,v)}
yields fou = foo = «, since t» € {u,v}. Finally, comparing the two c¢*-tight paths
(w---uqu---3) and (w---wqu---s), we obtain f,, = f,, = @ The proof of Claim 2 is

complete. O

Counsider the following inequality for ST SP(V),

(3) Z feiBe < fo—Oé-
ecE(V\{t1})
Denote this inequality by f:n < fo and observe that it is in (#1, sk )-canonical form.
Counsider any Hamiltonian path P on V' \ {¢;}, say P = (w...v). By property (P1), P
must have at least one endnode v in Z. Letting P* = (u...vq), we have fo > f(P*) =
f(P) + . This shows that inequality (3) is satisfied by any Hamiltonian path on V'\ {¢;}.
Furthermore, if P is c-tight on V'\ {¢;}, then P* is ¢*-tight, and therefore also f-tight, on
V*\ {t:}. That is, fo = f(P*) = f(P) + a. Thus, every c-tight path on V'\ {¢;} satisfies
(3) with equality. Since cx < ¢ is facet-inducing for STSP(V), Lemma 5.1 implies that,
with the appropriate positive multiple, ¢; = fo =fo—aand ¢ =c = fe = f. for all
e€ E(V\ {t:}).
Finally, from the c-tight path P = (w---uv - --s) in the proof of Claim 2, we obtain
two ¢*-tight paths (w---uqu---s) and (qw---wv---s). Since ¢, = 1, we have f,, = 1.

Therefore comparing these paths yields a« + 1 = 2a. So a = 1.
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This shows that fo = co+1 = ¢} and f. = ¢ for all e € E(V*), implying that c*z < ¢,
or equivalently a*z < ag, is facet-inducing for ST SP(V*). The proof of Theorem 5.2 is

complete. a

We remark that the above theorem is not only of theoretical interest but also of prac-
tical importance in polyhedral computations for the TSP. Since all facet-inducing 2-tooth
inequalities for small STS polytopes also induce facets for large STS polytopes by adding
1solated nodes, they can be effectively used as cutting planes for solving the large TSP’s.
Moreover, they have small support graphs, and thus require far less computer memory
to store. As a consequence, we may expect facet-inducing 2-tooth inequalities derived
from the study of small STS polytopes to play a role in the efficient solution of large
STS problems. Denis Naddef pointed out to us that an example arose in computation
for which ladder inequalities improved the LP bound. This example is discussed in detail
in [4].

To show that any ladder inequality is facet-inducing, we use the following node-cloning

result, which is an extension of Theorem 4.1 in Queyranne and Wang [10].

Theorem 5.3 (A suflicient condition for node cloning) Let w and q be any two
nodes such that w € V and ¢ ¢ V. Let V* = V U {q}. Assume that cx < co is a
nontrivial facet-inducing (w, pw)-canonical inequality for STSP(V) satisfying c. > 1 for
all e with ¢, # 0, and moreover the following condition:
Condition B(u, D;w): There exists a scalar w > 1 and a partition ({u}, D,U,U") of V
such that:

Bl. ¢. =0 foralle e E(D:U');

B2. 1<c¢ <w forallec E(D:U); and

B3. ¢. > w for all e € E(U).

Then the inequality '« < cf, defined by ¢y = co, c* = ¢, for alle € E(V) and ¢* =0
for all e € 6(q), is facet-inducing for STSP(V™).

PROOF: Let d € D, and let fo < f; be a (u,gd)-canonical inequality that dominates
e < ¢y and defines a facet of ST SP(V™).
Claim 1. f,, =0 for allv € U'U D.
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Proof: Consider any nodes v € D and v’ € U’. Note ¢, = 0 by (B1). Since cz < ¢
1s not equivalent to any z, > 0, there is a c-tight cycle C on V', thus a c-tight path
P=C\d(u)=(s---vv'---t)on V\{u} containing (v,v’). Let P" = PU{(s,t)}\{(v,v")}.
Since 0 < ¢(P) — ¢(P') = ¢y — Cst, P’ is also c-tight. Comparing P’ U {(q,v)} and
P"U{(q,v")} yields f,, = fy. Since fuq = 0, the claim follows.

Claim 2. f,, = 0for all v € U.

Proof: Consider any node v € U. Let C’ be a c-tight cycle on V containing wv. Then
P =C"\é(u) = (v---v) is the c-tight path on V' \ é(u). If ' € U’ U D then construct
two c-tight paths as in (i) to show that f, = 0. Otherwise v € U. In this case P’
has the form (v---rs---v') where r € U and s € D. (Note that P’ contains no edge
eo € E(D : U'), since otherwise ¢(P'U{(vv")}\ {eo}) > co, a contradiction.) By (B2) and
(B3), P" = P'U{(r,v)} \ {(r,s)} is a c-tight path on V' \ é(u). Comparing P" U {(g,v)}
and P"U {(q,s)} yields f,, = f;s = 0. So Claim 2 also holds.

Finally, consider any c-tight cycle C on V. Clearly C* = CU{(q,u), (g, v)} \ {(u,v)},
where (u,v) € C N d§(u), is a Hamiltonian cycle on V* satisfying ¢*(C*) = ¢fy, and hence
is f-tight. Further using the above claim, we have f(C) = f(C*) = fo. Since cx < ¢
defines a facet, by Lemma 5.1, we have f. = ¢, for all e € E(V) and fy = co. a

Theorem 5.4 All ladder inequalities are facet-inducing.

PROOF: Let bz < by be any ladder inequality. Clearly, there exists a corresponding
facet-inducing primitive ladder inequality o’z < af obtained by discarding all isolated
nodes in Gy and shrinking each nonempty set H; N Tj, T; \ (H1 U Hs) and H; \ (U;":'TTj)
into a singleton set. If G, contains s isolated nodes, we apply Theorem 5.2 s times
to a’z < aj to obtain a facet-inducing ladder inequality axz < ay with G, containing
s 1solated nodes. To clone any other node u, we consider ax < ag as being a general
facet-inducing ladder inequality for STSP(V). Recall that V* = V U {q}. We need
to show that the inequality a“z < aj, obtained by replacing {u} with {u,q}, is also
facet-inducing for STSP(V*). Let cx < ¢o and ¢z < ¢} be their respective (u,vw)-
canonical inequalities. Then c*z < ¢ 1s exactly the inequality obtained in Theorem 5.3
from cx < ¢p. Thus, to show that ez < af is facet-inducing, it is enough to check that
cx < ¢g satisfies the conditions of Theorem 5.3 for each of the following cases. (Note that

by symmetry, the following also applies to the cases with respect to H;.)
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Case 1: w € Ty \ Hy. Counstruct cz < ¢y by complementing T, as in Figure 1(b). Then,
cx < ¢ satisfies the required conditions and B(w,T> N Hy; 1).
Case 2: uw € T; \ (Hy U Hy), 3 < j <t. Construct cz < ¢y by complementing T;. Then,
cx < ¢ satisfies the required conditions and B(u,T; N Ha; 1).
Case 3: uw € Hy \ (U;":'TTJ) Construct cz < ¢y by complementing Hs. Then, cz < ¢
satisfies the required conditions and B(wu,T> N Hs; 1).
Case 4: w € Hy,NT;. 3 > 3. Construct cz < ¢o by complementing Hy and T;. Then,
cx < c¢o satisfies the required conditions and B(w,T; \ (Hy U Hy);1) if 3 < 5 < ¢; or
B(u, T;NHy;2)ift+1<j<t+m.
Case 5: u € Hy N'T,. Construct cx < ¢y by complementing Hs, Ty and then adding the
degree constraints —x(d(s)) = —2 for all s € S = T1 N H;. Then, cz < ¢ satisfies the
required conditions and B(u,T> \ Hs;1). (Note that U = V' \ (T2 U Hy U (T1 N Hy)) in
the partition ({u}, D,U,U").)

The proof is complete. a

6 The Chvatal rank of ladder inequalities

Let P be a rational polyhedron in RZ, that is, P = {& : Az < b}, where A and b are
rational, and let P; denote the convex hull of the integral points in P. Define P° to be P
and for 7 > 1, P* to be the set of points satisfying all integral inequalities az < ay derived
from P~! by the following rounding procedure: For any finite set of m (say) inequalities
Cx < d valid for P*™! and A € R such that AC is integral, take a = AC and ag = |Ad].
So each P? contains Pr and P° D P! D ... D Pi These definitions were introduced by
Chvétal [3], and the rounding procedure is closely related to the cutting plane methods
of Gomory. It can be proved that each P? is itself a polyhedron, and that there is an
integer k, depending on P, such that P* = Pr. (See Chvétal [3] for details.)

The (Chvatal) rank of an inequality axz < ag valid for P; is the least ¢ such that
ar < ap is valid for P*. It is a measure of the complexity of the derivation of the
inequality by the above procedure. Suppose that we take P to be a subtour polytope,
that is, the solution set of (1.a), (1.b) and (1.c). Then Pris STSP(V), and it is of interest
to classify facet-inducing inequalities by their rank. Of course, the non-negativity and

SE inequalities have rank 0. It is well known that comb inequalities have rank 1 [2].
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From this and our proof for the validity of the ladder inequalities, it follows that each
ladder inequality has rank at most 2.

In the remainder of this section, we prove that each ladder inequality has rank at
least 2, hence exactly 2. There is an apparently “obvious” technique for proving that an
integral inequality az < ag, which is valid for P;, cannot be obtained from inequalities

of rank 0 by the rounding procedure. Namely, we show that there is no solution A to
AM=a, A>0, Ab<ay+1.

By the duality theorem of linear programming, this is equivalent to showing that there
1s & € P with az > ap + 1. However, there 1s a difficulty with this argument. It may
be that there are inequalities of which az < ag is a non-negative combination, that are
obtainable by rounding, although az < ag itself is not. This difficulty does not disappear
even if we know that az < ag 1s facet-inducing for Py, since it still may have an equivalent
form that is obtainable by rounding.

An instructive example that arises from the 6-node TSP is the following inequality:
ar = T13 + T13 + Tag + 2214 + 2Ta5 + 2236 + Tas + Tas + 56 < 8 = ao.

This inequality is facet-inducing for STSP(V) with |V| = 6. In fact, it is equivalent to
a comb inequality with handle {1, 2,3} and teeth {1,4}, {2,5},{3,6}. Hence it has rank
1. However, the point & = fa satisfies (1.a), (1.b) and (1.c) with az =9 = ag + 1.

Actually, this difficulty was overlooked in some previous papers [1, 2|, where it was
claimed using the above argument that certain inequalities have rank at least two. These
results are correct, but their proofs contain gaps that can be filled by the following result
from [11]. Let Gz = g be the equality system for Pr, that is, the linearly independent
equations whose solution set is the affine hull of P;.

If G is written (Gp,Gn) such that Gp is a nonsingular square matrix, we say that a
valid inequality ax < ag for P;is an integral B-canonical form if a = (ap,an) with ag = 0
and all components of ay being relatively prime integers. Notice that for every rational

valid inequality, there is a unique integral B-canonical form to which it is equivalent.

Proposition 6.1 Let ax < ag be an integral B-canonical form that is facet-inducing for
Pr, and suppose that G5'G is integral. Then ax < ay has Chvdtal rank at most 1 if and
only if z(a) = max{az : x € P} < apg+ 1.
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For the STSP case, the equality system Gz = g consists of the degree constraints
(1.a). Consider the integral B-canonical form of Lemma 4.1. It is easy to see that, for
any column g,, of Gy, the vector Gg'g,,, that is, the vector d that satisfies Ggd = g,,
has components 0, —1, +1. Namely, the +1 and —1 components alternate on the edges
of the unique odd-length edge-simple path in B joining p to gq. Hence Proposition 6.1
can be applied.

We are now in a position to prove the main result of this section.

Theorem 6.2 The ladder inequality (2) has Chudtal rank two.

PROOF: From the proof of Theorem 3.1, it follows that every ladder inequality cz < ¢
has Chvatal rank at most two. We now show that it has Chvatal rank at least two. To do
s0, we first construct its (h, 13)-canonical form az < ag where, as in Section 4 and Figure
1(a), nodes h € To \ Hy, 1 € T1 \ H; and 3 € H, NT,. Hence by Proposition 6.1, we just
need to construct a feasible solution # to the subtour polytope satisfying az > ag + 1.

For j =3,...,t+m, let P; be a Hamiltonian path on T} that saturates both T; N H;
and T; N H, with the endpoints v;. € T; N H, and v;‘? € T; N Hy. Let P be a Hamiltonian
path on V' \ (UL5'T;) that saturates T; \ H;, H; N T;, H; for i = 1,2 with endpoints
vy € H; and vy € Hy. Define the edge set

P = (U;‘:;Pj) U {(v§+i_1,v;~+i) € E(H;):i=1,2; jiseven and 4 < j <t+m — 2},

and node sets 51 = {v1,v3,v;,,,}, S2 = {vs,v3,v}. Then P is a path system with all

nodes in Sy U S5 of degree 1 and all other nodes of degree 2. Now define Z € RP by
T.=1forall e € P, Z. = % for all e € E(S1) U E(S2) and &, = 0 otherwise. It is easily
verified, using the (h, 13)-canonical form az < ag of the ladder inequality, that we have

ar = ag + 1. O
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