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1 IntroductionThe symmetric travelling salesman polytope STSP (V ) is the convex hull of incidencevectors of edge-sets of Hamiltonian cycles of the complete graph on node set V . Adescription of this polytope by linear inequalities would essentially reduce the travellingsalesman problem to a linear program. While there are reasons to believe that we cannothope to obtain such a complete description, known partial descriptions of the polytopehave proved to be remarkably useful in cutting plane approaches to the problem. (See[4, 9], for example.) A good deal of progress has been made in extending these partialdescriptions by �nding new classes of facet-inducing inequalities, and in incorporatingthis additional knowledge into the computational approaches.In this paper we introduce a new class of valid inequalities for STSP (V ), called ladderinequalities. These inequalities di�er from most of the inequalities discovered so far, inthat they are not of the usual \handle-tooth" variety. On the other hand, they arisefrom a strengthening of certain inequalities of this type. A computational study in [4]demonstrates use of ladder inequalities to improve the bounds of LP relaxations. Weprove that all ladder inequalities are facet-inducing. We also show that they all haveChv�atal rank exactly 2.2 PreliminariesLet V be any node set with n � jV j � 3. We deal with the undirected complete graphKn = (V;E), and we write elements of E as (i; j) or ij. Note that ij = ji. For S � V ,let E(S) denote fij 2 E : i; j 2 Sg. For S; T � V with S \ T = ;, let E(S : T ) denotefij 2 E : i 2 S; j 2 Tg. For any v 2 V , de�ne �(v) to be E(fvg : V n fvg). For B � Eand x 2 RE, let x(B) denote P(xij : ij 2 B). Given c 2 RE, the (symmetric) travellingsalesman problem (TSP) can be stated asminimize P (cijxij : ij 2 E)(1) subject to(1.a) P (xij : 1 � j � n; j 6= i) = 2; i 2 V ;(1.b) x(E(S)) � jSj � 1; S � V; 2 � jSj � n� 2;2



(1.c) xij � 0; ij 2 E;(1.d) xij integer, ij 2 E:Any feasible solution x0 of (1) is the incidence vector of (the edge-set of) a Hamiltoniancircuit or tour of Kn. We identify a tour (or more generally a path) of Kn with itsedge-set or its node-sequence. The convex hull of feasible solutions to (1) is called anSTS polytope, and is denoted by by STSP (V ). The symmetric TSP is equivalent to thelinear programmin �X (cijxij : ij 2 E) : x 2 STSP (V )� ;and in order to apply the methods of linear programming, we would like to describeit as an optimization subject to linear constraints. It is known ([6], for example) thatthe a�ne hull of STSP (V ) is just the set of solutions of the degree constraints (1.a),and hence its dimension is �n2� � n: Therefore, an inequality ax � a0 that is valid forSTSP (V ) is facet-inducing if and only if fx 2 STSP (V ) : ax = a0g has dimension�n2� � n � 1. Moreover, two such inequalities ax � a0 and bx � b0 are equivalent (thatis, induce the same face) if and only if there exist � 2 RV and a positive scalar �0 suchthat (b; b0) = �(A; �2)+�0(a; a0); where A is the node-edge incidence matrix of Kn, and �2is a vector of 2's. One such class of inequalities consists of the nonnegativity constraints(1.c). Another consists of the subtour elimination (SE) constraints (1.b).Many of the known classes of valid inequalities arose from generalizations of thecomb inequalities, which we now describe. They were �rst de�ned by Chv�atal [3] andlater generalized by Gr�otschel and Padberg [5]. Given a handle H � V and mutuallydisjoint teeth T1; T2; : : : ; T2k+1 � V (k integer, k � 1) such thatTj \H 6= ; 6= Tj nH; 1 � j � 2k + 1;the associated comb inequality isx(E(H)) + 2k+1Xj=1 x(E(Tj)) � jHj+ k + 2k+1Xj=1 (jTjj � 2):It is proved in [5] that every comb inequality is facet-inducing for STSP (V ).3



3 Ladder inequalitiesLet H1 and H2 be mutually disjoint subsets of V called handles. Let T1; T2; : : : ; Tt+m bepairwise disjoint proper subsets of V called teeth, where t � 2, m � 0, and t+m is evenand at least 4. A tooth Tj is degenerate if Tjn(H1[H2) = ;; otherwise it is nondegenerate.Assume that T1; T2; : : : ; Tt are nondegenerate teeth and (if m � 1) that Tt+1; : : : ; Tt+mare degenerate teeth. Assume also that T1 intersects only H1, T2 intersects only H2, andTk, k = 3; : : : ; t + m, intersects both H1 and H2. T1 and T2 are called pendent teeth;the others are nonpendent. The ladder inequality associated with H1;H2; T1; : : : ; Tt+m isde�ned as follows:2Xi=1 x(E(Hi)) + tXj=1 x(E(Tj)) + t+mXj=t+1 2x(E(Tj)) + x(E(T1 \H1 : T2 \H2))(2) � 2Xi=1 jHij+ t+m� 2 + tXj=1(jTjj � dj � 1) + t+mXj=t+1 2(jTjj � 2);where dj denotes the number of handles intersected by tooth Tj.Many of the known classes of valid inequalities for STSP (V ) are generalizations of thecomb inequalities, and are determined by two families of node subsets, called handles andteeth. These include clique tree inequalities [7], bipartition inequalities [1], and binestedinequalities [8]. However, in all of these classes the left hand side is of the formX�ix(E(Hi)) +X�jx(E(Tj)):The last term of the left hand side of the ladder inequalities does not �t this model. Infact, if that term is dropped, (2) becomes a special kind of bipartition inequality. Thesmallest ladder inequality (on 8 nodes) was introduced in [1] to illustrate a way in whicha bipartition inequality can fail to be facet-inducing.A general ladder inequality ax � a0 is presented in Figure 1(a). Nodes are numberedin such a way that the handles are H1 = f2k : k = 1; 2; : : : ; t+m�1g and H2 = f2k+1 :k = 1; 2; : : : ; t+m� 1g, and the pendent teeth T1 = f1; 2g and T2 = fh; 3g. The hollownodes w, u, g and g0 are optional; any of them may be present or absent. Any nodemay appear any number of times, at least once for each node 1,. . . ,7 and h. Additionalcopies of a node are called clones and will be discussed in Section 5. In the dashed box,we allow any even number (possibly zero) of additional nonpendent teeth to be present.4



Every nonpendent tooth may be either nondegenerate (if a node like g or g0 is present)or degenerate (if there is no such node). In the latter case, the tooth is contained in theunion of the handles. Every coe�cient aij in the corresponding ladder inequality ax � a0is determined by the total weight of all sets containing both nodes i and j. The weightsfor the degenerate teeth are 2. (For instance, if node g in Figure 1(a) does not exist,then tooth f6; 7g is degenerate and thus has weight 2.) All other weights are one. Theweights are not shown on the �gure, to avoid overcrowding it. The fourth term on theleft hand side of inequality (2) is represented by a bipartite graph, reduced to a singleedge in Figure 1(a). Finally, the right hand side a0 is as given in inequality (2). Part (b)of Figure 1 will be explained in Section 4.We now prove the validity of the ladder inequalities. For i = 1; 2, let T̂i = Ti nHi andĤi = Hi n ([t+mj=1 Tj).Theorem 3.1 The ladder inequality (2) is valid for STSP (V ).PROOF: Add the following valid inequalities for STSP (V ), and divide the resultinginequality by 3:(i) the comb inequality obtained by deleting Ĥ2 and T2,(ii) the comb inequality obtained by deleting Ĥ2, T2 and H2 \ Tj for j = 3; : : : ; t,(iii) the sum of the degree constraints for each v 2 H2,(iv) the sum of the degree constraints for each v 2 (T1 \H1) [ (T2 \H2),(v) the SE inequality for ([t+mj=3 Tj) [ Ĥ1 [ Ĥ2,(vi) the sum of the SE inequalities for Tj \H1, j = 3; : : : ; t,(vii) the sum of the SE inequalities for T̂1, T2 and T2 \H2,(viii) twice the sum of the SE inequalities for Tj \H2, j = 3; : : : ; t+m,(ix) twice the sum of the SE inequalities for Tj, j = t+ 1; : : : ; t+m,(x) twice the sum of the SE inequalities for Tj \H1, j = t+ 1; : : : ; t+m,(xi) twice the SE inequality for T̂2.It is straightforward to check that for all edges e, the integer part of the coe�cient ofxe in the resulting inequality is its coe�cient in (2). The right hand side RHS isRHS = 13 0@jH1j+ jT1j � 2 + t+mXj=3 (jTjj � 2) + t +m� 22 1A5



+ 13 0@jH1j+ jT1j � 2 + tXj=3(jTj nH2j � 2) + t+mXj=t+1(jTjj � 2) + t +m� 22 1A+ 23 jH2j+ 23 jT1 \H1j+ 23 jT2 \H2j+ 13 0@t+mXj=3 jTj j+ jĤ1j+ jĤ2j � 11A+ 13 tXj=3(jTj \H1j � 1) + 13(jT̂1j � 1) + 13(jT2j � 1) + 13(jT2 \H2j � 1)+ 23 t+mXj=3 (jTj \H2j � 1) + 23 t+mXj=t+1(jTjj � 1) + 23 t+mXj=t+1(jTj \H1j � 1) + 23(jT̂2j � 1)= 2Xi=1 jHij+ t +m� 2 + tXj=1(jTjj � dj � 1) + t+mXj=t+1 2(jTjj � 2) + 23 :Rounding down each coe�cient and the right hand side to the nearest integer, we obtainthe desired result. 24 Primitive ladder inequalitiesFor any inequality ax � a0, we de�ne its support graph to be Ga = (V;Ea), whereEa = fe 2 E : ae 6= 0g. In this section, we consider a subclass of ladder inequalitiesax � a0 which have a spanning support graph (that is, Ga contains no isolated nodes)and satisfy the following properties:� jHi \ Tjj � 1 for any pair Hi and Tj,� jTj n (H1 [H2)j = 1 for j = 1; : : : ; t, and� jHi n �[t+mj=1 Tj� j � 1 for i = 1; 2.The inequalities in this class are called primitive ladder inequalities. Thus, Figure 1(a)shows a general primitive ladder inequality if no node has any clone. (Hollow nodes maybe present or absent, and there may be any even number of teeth in the dashed box).Note that any ax � a0 can be written in the following formlXi=1 !ix(E(Li)) + bx � a0;where the Li's are subsets of V . By complementing Li with respect to ax � a0, we meanadding to the inequality the multiples of degree constraints �!i2 x(�(v)) = �!i for all6



v 2 Li and !i2 x(�(v)) = !i for all v 2 V nLi. The resulting inequality is clearly equivalentto ax � a0 but has di�erent coe�cients. To facilitate the polyhedral proof, we need aunique representation of valid inequalities for STSP (V ). This representation is given bythe following lemma.Lemma 4.1 Let ax � a0 be any valid inequality for STSP (V ), and let h, u and v beany three distinct nodes in V . De�ne B � �(h) [ f(u; v)g. Then there is a unique (upto positive multiples) inequality cx � c0 that is equivalent to ax � a0 and satis�es ce = 0for all e 2 B.The lemma follows directly from Remark 4.2 in Gr�otschel and Padberg [5] by observingthat B corresponds to a basis of the column vectors in the node-edge incidence matrix.We call such a representation, cx � c0, an (h; uv)-canonical form, or an (h; uv)-canonicalinequality. An example of a ladder inequality in (h; 13)-canonical form cx � c0 is pre-sented in Figure 1(b). This can be obtained by complementing tooth T2. Note thatc31 = c3i = 0 for all i � 4 and even, c21 = c24 = c26 = 2, c52 = c51 = 1, etc. Note alsothat if g is absent, then c67 = 3.For any valid inequality bx � b0 for STSP (V ), a Hamiltonian cycle C on V is saidto be b-tight if b(C) = b0, where b(C) �Pe2C be.We now outline the polyhedral proof. In this proof, we will make reference to thegeneral primitive ladder inequality shown in Figure 1. In particular, we will use thenode labels (numbers 1,. . . ,6, and letters u;w; g; g0) as shown in that �gure. The hollownodes g, g0 may be assigned to nondegenerate teeth, f6; g; 7g and f4; g0; 5g, respectively,as needed in the proof. The other hollow nodes w and u represent the cases that somenode in a handle may not be contained in any tooth. Unless otherwise speci�ed, thestatements of the proof are true with and without any subset of hollow nodes.Let cx � c0 be the (h; 13)-canonical ladder inequality shown in Figure 1(b), and letfx � f0 be a facet-inducing (h; 13)-canonical inequality that dominates cx � c0, that is,such that, for all x 2 STSP (V ), cx = c0 implies fx = f0. Since fe = ce = 0 for all edgese in �(h), the star of h, any c-tight Hamiltonian path P , that is, c(P ) = c0, on V nfhg, isalso f -tight, that is, f(P ) = f0. (Indeed, path P can be converted, in a unique way, intoa c-tight cycle C by connecting its endnodes to node h, and thus f0 = f(C) = f(P ).)Therefore, it su�ces to compare pairs of c-tight paths on V n fhg: P and P 0, that is,7



compute f(P ) � f(P 0) = 0 to derive the coe�cients of fx � f0. Each comparison andits implication are denoted byP � P 0 =) \some expression":Note that the above implication may involve some obvious node (or tooth) permutationsand use earlier results on the f coe�cients. Such steps are iterated until fx � f0 isshown to be some multiple � of cx � c0. It then follows that cx � c0, hence ax � a0, isfacet-inducing.j j j j f fh 3 5 fufw 7f fg0 g���������� ���� ���� ���� ��(a) A ladder inequalityj j j j f f1 2 4 6 j j j j f fh 3 5 fufw 7f fg0 g���������� ���� ���� ���� $& %$(b) The ladder in (h; 13)-canonical formj j j j f f1 2 4 6
Figure 1: Ladder inequalities
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j j j f f jh 3 5 fu 70 f fg0 gP1j j j f f j1 2 fw 4 6@@@@ j j j f f jh 3 fu 5 7�
 f fg0 gP2� �j j j f f j1 2 4 fw 6
j j j f f jh 3 fu 5 7f fg0 gP3� �� �j j j f f j1 2 fw 4 6 j j j f f jh 3 5 fu 7f fg0 gP4� �j j j f f j1 2 4 6fwFigure 2: Four c-tight pathsFigure 2 and Figure 3 present 12 types of c-tight paths on V n fhg used in the proof.Each path may be represented by either the corresponding edge set or the sequence ofnodes.We are now in a position to prove the following result.Proposition 4.2 All primitive ladder inequalities are facet-inducing.PROOF: For simplicity, let \+" stand for set union and \�" for set di�erence. Let� � f23 and 
 � f12.Claim 1. fe = 0 for all e such that ce = 0.Proof: Since by de�nition f13 = 0, P1 � P1� (1; 3)+ (3; 6) =) f3i = f13 = 0 for all i � 4and even.Next, for any nondegenerate tooth, say, f6; g; 7g, let P 01 � P1 � (7; g) + (7; 6) =(312w4g05 � � � 76g).Then P 01 � P 01 � (1; 3) + (3; g) =) f3g = 0 for all g. If node w does not exist, weare done; else consider edge (3; w). Let P 001 � P1 � (2; w) + (2; 6) = (3126g7 � � � u5g04w).Then P 001 � P 001 � (1; 3) + (3; w) =) f3w = 0. 2Claim 2. fe = � for all e such that ce = 1.Proof: P2 � P2 � (2; 3) + (1; 5) =) f1i = � for all i � 5 and odd.9



j j j f f jh 3 fu 5 7f fg0 g� ����P5j j j f f j1 2 4 fw 6 j j j j f fh 3 fu 5 7����f fg0 g� �P6 ��j j j j f f1 2 4fw 6
j j j jf fh 3 5fu 7f fg0 g� �HHHHP7 ��j j j jf f1 2 4 6fw j j j j f fh 3 5 7 fuf fg0 g�� �P8j j j j f f1 2 4 fw 6
j j j j f fh 3 5 fu 7f fg0 g� �P9j j j j f f1 2 4 6fw j j j j f fh 3 5 fu 7f fg0 g```````̀ � �P10j j j j f f1 2 4 6fw
j j j j f fh 3 5 7 fuf fg0 g� ��P11j j j j f f1 2 4 6fw j j j j f fh 3 5 7 fufg� �P12j j j j f f1 2 4 fw 6Figure 3: Eight other c-tight pathsP11 � P11 � (2; 3) + (3; 5) =) f3i = � for all i � 5 and odd.P2 � P2 � (2; 3) + (2; 5) =) f2i = � for all i � 5 and odd.P3 � P3 � (1; 6) + (3; 5) =) f1i = � for all i � 4 and even.P3 � P3 � (1; 6) + (5; 6) =) fij = � for all i; j � 4 such that i and j belong to bothdi�erent teeth and di�erent handles.If there is a nondegenerate tooth, f6; g; 7g, use three types of c-tight paths P5, P6 andP7.P5 � P5 � (1; g) + (2; 3) =) f1g = �. 10



P5 � P5 � (1; g) + (2; g) =) f2g = �.P6 � P6 � (5; g) + (1; g) =) fig = � for all i � 5, i 6= 7 and odd.P7 � P7 � (4; g) + (1; 4) =) fig = � for all i � 4, i 6= 6 and even.If there are at least two nonpendent, nondegenerate teeth, say, f6; g; 7g and f4; g0; 5g,we de�ne P 06 � P6 � (4; g0) + (4; 5)� (5; g) + (g; g0) = (12w45g0g67 � � � u3). Then we haveP 06 � P 06 � (g; g0) + (1; g) =) fgg0 = �:If all nodes in the handles are contained in the union of teeth, we are done. Otherwise,do the following:(i) If node w exists, the values of fe for all edges e 2 �(w) such that ce = 1 are derivedas follows.P4 � P4 � (1; w) + (1; 4) =) f1w = �:Let P 03 � P3 � (2; w)� (4; w) + (2; 4) � (1; 6) + (1; w) + (6; w) = (5g0421w6g7 � � � u3)and, if g0 exists, P 003 � P 03 � (4; g0) + (4; 5) = (g05421w6g7 � � � u3).P 03 � P 03 � (1; w) + (5; w) =) f5w = f1w = �: So fkw = � for all k � 5 and odd.P 003 � P 003 � (1; w) + (g0; w) =) fg0w = f1w = �:When both w and u exist, construct P 0003 � (u5g0421w6g7 � � � 3).P 0003 � P 0003 � (1; w) + (u;w) =) fuw = f1w = �:(ii) If node u exists, the values of fe for all edges e 2 �(u) such that ce = 1 are derivedas follows.P3 � P3 � (3; u) + (3; 5) =) f3u = f35 = �:P2 � P2 � (3; u) + (1; u) =) f1u = f3u = �:P8 � P8 � (1; u) + (2; u) =) f2u = f1u = �:For any nondegenerate tooth, (354g0u7g6 � � � 21) � (g0453u7g6 � � � 21) =) fg0u =f3u = �:Let P � (12w4g05u3 � � � 7g6). P � P � (3; u) + (6; u) =) f6u = f3u = �: So fku = �for all k � 4 and even.This completes the proof for Claim 2. 2Claim 3. fe = 
 for all e such that ce = 2.Proof: P4 � P4 � (1; 2) + (2; 4) =) f2i = 
 for all i � 4 and even.To derive the remaining fe in the handles with ce = 2, we distinguish, for node w andfor node u, the cases with or without that node.11



(i) If node w does not exist, then P8 � P8 � (4; 6) + (2; 4) =) fij = 
 for all distincti; j � 4 and even. Otherwise, P8 includes w and we haveP8 � P8 � (4; w) + (2; 4) =) fkw = 
 for all k � 4 and even.De�ning P 08 � P8 � (6; w) + (2; w) = (35g04w21u � � � 7g6), we also haveP 08 � P 08 � (4; w) + (4; 6) =) fij = 
 for all distinct i; j � 4 and even, andP8 � P 08 =) f2w = f6w = 
.(ii) If node u does not exist, then P9 � P9� (5; 7)� (2; 3) + (2; 4) + (3; 5) =) fij = 
 forall distinct i; j � 5 and odd. Otherwise, P9 includes u and we haveP9 � P9 � (2; 3)� (5; u) + (2; 4) + (3; 5) =) fku = 
 for all k � 5 and odd, andP3 � P3 � (u; v)� (1; 6) + (5; v) + (1; u) =) f5v = fuv = 
, where (u; v) 2 P3, v � 7and odd. This shows that fij = 
 for all distinct i; j � 5 and odd.For any nondegenerate tooth f4; g0; 5g, we haveP10 � P10 � (v; 5) + (5; g0) =) f5g0 = 
; where v = u if u exists and v = 7 otherwise.P10 � P10 � (2; 4) + (4; g0) =) f4g0 = 
:P11 � P11 � (4; g0) + (4; 5) =) f45 = f4g0 = 
:This completes the proof for Claim 3. 2Claim 4. 
 = 2�.Proof: By Claims 1, 2 and 3, P1 � P4 =) 
 = 2�. 2Claim 5. For every degenerate tooth T , say T = f4; 5g (without g0), we have f45 = 3�.Proof: P8 � P12 =) f45 = 2
 � � = 4� � � = 3�. 2From Claims 1{5, it follows that fe = �ce for all e 2 E(V ). The proof of Proposi-tion 4.2 is complete. 25 Lifting ladder inequalitiesWe have shown that all primitive ladder inequalities are facet-inducing for STS polytopes.In this section, we show by node lifting and cloning that all ladder inequalities are facet-inducing. We begin with the following simple lemma on (h; uv)-canonical forms, whichis used in our proofs.Lemma 5.1 Let cx � c0 be an (h; uv)-canonical facet-inducing inequality for STSP (V ).If an (h; uv)-canonical inequality fx � f0 satis�es f(P ) = f0 for all c-tight paths P on12



V n fhg, then f = c and f0 = c0, up to a positive multiple.PROOF: Assume that cx � c0 and fx � f0 satisfy the assumptions of the lemma.Consider any c-tight cycle C and let P � C n �(h). Since P is a Hamiltonian path onV n fhg and c(P ) = c(C) = c0, we have f(P ) = f0, implying f(C) = f0. Since cx � c0 isfacet-inducing and both cx � c0 and fx � f0 are in (h; uv)-canonical form, this impliesf = c and f0 = c0, up to a positive multiple. 2We say that a valid inequality induces a nontrivial facet if it is not equivalent to eithera nonnegativity constraint xe � 0 or a bound constraint x � 1. The following two resultsshow how large classes of nontrivial facets can be obtained by node lifting.The �rst theorem allows us to add isolated nodes, that is, nodes that are not in theunion of all handles and teeth, and therefore whose incident edges have zero coe�cientsin the ladder inequality (1). Actually, this node lifting theorem applies to a broad class ofSTSP facet-inducing inequalities, such as the well-known clique tree class. An inequalityax � a0 for STSP (V ) is a 2-tooth inequality if it satis�es(i) it is a nontrivial valid inequality for STSP (V );(ii) a � 0;(iii) there exist (at least) two disjoint teeth T1 = ft1; h1g and T2 = ft2; h2g such that foreach i = 1; 2, we have atihi > 0, and ativ = 0 for all v 6= hi;(iv) either ah1v � ah1t1 or ah1v = 0 for all v 2 V .Many of the known valid inequalities have this property, including all primitive cliquetree, ladder and chain inequalities as well as many bipartition inequalities.Theorem 5.2 (Adding an isolated node) Suppose that the 2-tooth inequality ax �a0 de�nes a nontrivial facet of STSP (V ), and q =2 V . Let a�x� � a�0 be a lifted inequalityfor STSP (V �), where V � = V [fqg, obtained by letting a�0 = a0, a�e = ae for all e 2 E(V )and zero otherwise. Then a�x � a�0 is facet-inducing for STSP (V �).PROOF: Consider a facet-inducing 2-tooth inequality ax � a0. Without loss of gener-ality, we may assume that at1h1 = 1. De�ne Y � fv 2 V n ft1g : v = h1 or ah1v > 0gand Z � V n T1. Note that (i) implies that both Y and Z are nonempty. Since h1 2 Yand t2 2 Z n Y , both Y and Z n Y are nonempty subsets of V n ft1g. Let cx � c0 be the13



(t1; t2h1)-canonical inequality obtained from ax � a0 by complementing T1. It is easilyveri�ed that this inequality satis�es the following properties:(P1) c � 0 and the support graph Gc = (V;Ec) of cx � c0 consists of the isolated nodet1 and a bi-clique structure induced by subsets Z and Y of V ; that is, Ec = E(Z)[E(Y ),where Z [ Y = V n ft1g, and Y n Z = fh1g;(P2) ce � 1 for all e 2 E(Z);(P3) ch1v � 1 for all v 2 Y and ch1v = 0 for all v 2 Z n Y ; and(P4) ct2h1 = 0; ct2h2 > 1 and ct2v = 1 for all v 2 Z n fh2g.Let a�x � a�0 be as de�ned in the theorem. Conditions (i) and(ii) imply that a�x � a�0is valid for STSP (V �). Let c�x � c�0 be the (t1; t2h1)-canonical inequality obtainedfrom a�x � a�0 by complementing the tooth ft1; h1g. Comparing this inequality with the(t1; t2h1)-canonical inequality cx � c0, we observe that c�e = ce for all e 2 E(V ), thatc�qh1 = 0 and c�qv = 1 for all v 2 Z, and that c�0 = c0 + 1.Let fx � f0 be any (t1; t2h1)-canonical facet-inducing inequality for STSP (V �) thatdominates c�x � c�0. Let � � fqt2.Claim 1. fqh1 = 0 and fqz = � for all z 2 Z n Y .Proof: We have assumed that ax � a0, and thus cx � c0 as well, is not equivalent to atrivial inequality xe � 0. Therefore, for every z 2 Z n Y , there exists a c-tight path Pon V n ft1g containing edge (z; h1). By (P3), czh1 = 0, and thus the edge e connectingthe endnodes of P satis�es ce = 0, for otherwise c(P [ feg n f(z; h1)g) > c0. This impliesby (P1) that path P has the form P = (u � � � zh1) with cuh1 = 0 and u 2 Z n Y . LetP 0 � P [ (q; u), P 00 � (h1qu � � � z) and note that both P 0 and P 00 are c�-tight paths onV � n ft1g.(i) First, let z = t2. Comparing P 0 with the c�-tight path (h1qu : : : t2) implies fqh1 =fh1t2 = 0.(ii) Next, comparing P 00 with (h1qz � � �u) yields fqz = fqu.(iii) Now, consider any other z 2 Z n Y , z 6= t2. If u = t2, then comparing P 0 and the c�-tight path (u : : : zqh1) yields fqz = � and Claim 1 is proved for node z. Else, u 6= t2 andwe may write P = (u � � � vt2s � � � zh1). By (P4), we have cvt2 = 1 or ct2s = 1 (or both). Ifcvt2 = 1, then comparing c�-tight paths (h1u � � � vqt2s � � � z) and (h1u � � � vqz � � � st2) yieldsfqz = fqt2 = �. If ct2s = 1, then comparing (u � � � vt2qs � � � zh1) and (t2v � � �uqs � � � zh1)14



yields fqu = �, and therefore by (ii), fqz = fqu = �. We have shown that fqz = � for allz 2 Z n Y and the proof of Claim 1 is complete. 2Claim 2. fqw = � for all w 2 Z \ Y .Proof: Since cx � c0 is a nontrivial inequality, for any w 2 Z \ Y , there exists a c-tightcycle C on V containing edge (t1; w). Thus, there exists a c-tight path P � (w � � � s) onV n ft1g, obtained by deleting from C the edges incident with t1. Note that, by (P2) and(P3), cws � 1. By property (P4), path P must contain an edge (u; v) incident with t2 andwith cuv = 1. (Otherwise, P would contain (h2; t2) and (t2; h1) with ct2h1 = 0, implyingthat c (P [ f(w; s)g n f(t2; h1)g) � c0 + 1, a contradiction.) Let P � (w : : : uv : : : s) andP 0 � P [ f(w; s)g n f(u; v)g. Comparing P 0 and P yields cws � 1 and therefore cws = 1.Thus P 0 is also a c-tight path on V n ft1g. Now comparing P 0 [f(q; u)g and P 0[f(q; v)gyields fqu = fqv = �, since t2 2 fu; vg. Finally, comparing the two c�-tight paths(w � � � uqv � � � s) and (u � � �wqv � � � s), we obtain fqw = fqu = �. The proof of Claim 2 iscomplete. 2Consider the following inequality for STSP (V ),Xe2E(V nft1g) fexe � f0 � �:(3)Denote this inequality by f̂x � f̂0 and observe that it is in (t1; t2h1)-canonical form.Consider any Hamiltonian path P on V n ft1g, say P = (u : : : v). By property (P1), Pmust have at least one endnode v in Z. Letting P � � (u : : : vq), we have f0 � f(P �) =f̂(P )+�. This shows that inequality (3) is satis�ed by any Hamiltonian path on V nft1g.Furthermore, if P is c-tight on V nft1g, then P � is c�-tight, and therefore also f -tight, onV � n ft1g. That is, f0 = f(P �) = f̂ (P )+�. Thus, every c-tight path on V n ft1g satis�es(3) with equality. Since cx � c0 is facet-inducing for STSP (V ), Lemma 5.1 implies that,with the appropriate positive multiple, c0 = f̂0 = f0 � � and c�e = ce = f̂e = fe for alle 2 E(V n ft1g).Finally, from the c-tight path P = (w � � �uv � � � s) in the proof of Claim 2, we obtaintwo c�-tight paths (w � � �uqv � � � s) and (qw � � �uv � � � s). Since cuv = 1, we have fuv = 1.Therefore comparing these paths yields � + 1 = 2�. So � = 1.15



This shows that f0 = c0+1 = c�0 and fe = c�e for all e 2 E(V �), implying that c�x � c�0,or equivalently a�x � a�0, is facet-inducing for STSP (V �). The proof of Theorem 5.2 iscomplete. 2We remark that the above theorem is not only of theoretical interest but also of prac-tical importance in polyhedral computations for the TSP. Since all facet-inducing 2-toothinequalities for small STS polytopes also induce facets for large STS polytopes by addingisolated nodes, they can be e�ectively used as cutting planes for solving the large TSP's.Moreover, they have small support graphs, and thus require far less computer memoryto store. As a consequence, we may expect facet-inducing 2-tooth inequalities derivedfrom the study of small STS polytopes to play a role in the e�cient solution of largeSTS problems. Denis Naddef pointed out to us that an example arose in computationfor which ladder inequalities improved the LP bound. This example is discussed in detailin [4].To show that any ladder inequality is facet-inducing, we use the following node-cloningresult, which is an extension of Theorem 4.1 in Queyranne and Wang [10].Theorem 5.3 (A su�cient condition for node cloning) Let u and q be any twonodes such that u 2 V and q 62 V . Let V � � V [ fqg. Assume that cx � c0 is anontrivial facet-inducing (u; pw)-canonical inequality for STSP (V ) satisfying ce � 1 forall e with ce 6= 0, and moreover the following condition:Condition B(u;D;!): There exists a scalar ! � 1 and a partition (fug;D;U;U 0) of Vsuch that:B1. ce = 0 for all e 2 E(D : U 0);B2. 1 � ce � ! for all e 2 E(D : U); andB3. ce � ! for all e 2 E(U).Then the inequality cux � cu0, de�ned by cu0 = c0, cue = ce for all e 2 E(V ) and cue = 0for all e 2 �(q), is facet-inducing for STSP (V �).PROOF: Let d 2 D, and let fx � f0 be a (u; qd)-canonical inequality that dominatescux � cu0 and de�nes a facet of STSP (V �).Claim 1. fqv = 0 for all v 2 U 0 [D. 16



Proof: Consider any nodes v 2 D and v0 2 U 0. Note cvv0 = 0 by (B1). Since cx � c0is not equivalent to any xe � 0, there is a c-tight cycle C on V , thus a c-tight pathP � Cn�(u) = (s � � � vv0 � � � t) on V nfug containing (v; v0). Let P 0 � P[f(s; t)gnf(v; v0)g.Since 0 � c(P ) � c(P 0) = cvv0 � cst, P 0 is also c-tight. Comparing P 0 [ f(q; v)g andP 0 [ f(q; v0)g yields fqv = fqv0. Since fqd = 0, the claim follows.Claim 2. fqv = 0 for all v 2 U .Proof: Consider any node v 2 U . Let C 0 be a c-tight cycle on V containing uv. ThenP 0 � C 0 n �(u) = (v � � � v0) is the c-tight path on V n �(u). If v0 2 U 0 [D then constructtwo c-tight paths as in (i) to show that fqv = 0. Otherwise v0 2 U . In this case P 0has the form (v � � � rs � � � v0) where r 2 U and s 2 D. (Note that P 0 contains no edgee0 2 E(D : U 0), since otherwise c(P 0[f(vv0)gnfe0g) > c0, a contradiction.) By (B2) and(B3), P 00 � P 0 [ f(r; v0)g n f(r; s)g is a c-tight path on V n �(u). Comparing P 00 [ f(q; v)gand P 00 [ f(q; s)g yields fqv = fqs = 0. So Claim 2 also holds.Finally, consider any c-tight cycle C on V . Clearly C� = C [f(q; u); (q; v)gnf(u; v)g,where (u; v) 2 C \ �(u), is a Hamiltonian cycle on V � satisfying cu(C�) = cu0 , and henceis f -tight. Further using the above claim, we have f(C) = f(C�) = f0. Since cx � c0de�nes a facet, by Lemma 5.1, we have fe = ce for all e 2 E(V ) and f0 = c0. 2Theorem 5.4 All ladder inequalities are facet-inducing.PROOF: Let bx � b0 be any ladder inequality. Clearly, there exists a correspondingfacet-inducing primitive ladder inequality a0x � a00 obtained by discarding all isolatednodes in Gb and shrinking each nonempty set Hi \ Tj, Tj n (H1 [H2) and Hi n �[t+mj=1 Tj�into a singleton set. If Gb contains s isolated nodes, we apply Theorem 5.2 s timesto a0x � a00 to obtain a facet-inducing ladder inequality ax � a0 with Ga containings isolated nodes. To clone any other node u, we consider ax � a0 as being a generalfacet-inducing ladder inequality for STSP (V ). Recall that V � = V [ fqg. We needto show that the inequality aux � au0, obtained by replacing fug with fu; qg, is alsofacet-inducing for STSP (V �). Let cx � c0 and cux � cu0 be their respective (u; vw)-canonical inequalities. Then cux � cu0 is exactly the inequality obtained in Theorem 5.3from cx � c0. Thus, to show that aux � au0 is facet-inducing, it is enough to check thatcx � c0 satis�es the conditions of Theorem 5.3 for each of the following cases. (Note thatby symmetry, the following also applies to the cases with respect to H1.)17



Case 1: u 2 T2 nH2. Construct cx � c0 by complementing T2, as in Figure 1(b). Then,cx � c0 satis�es the required conditions and B(u; T2 \H2; 1).Case 2: u 2 Tj n (H1 [H2), 3 � j � t. Construct cx � c0 by complementing Tj. Then,cx � c0 satis�es the required conditions and B(u; Tj \H2; 1).Case 3: u 2 H2 n �[t+mj=1 Tj�. Construct cx � c0 by complementing H2. Then, cx � c0satis�es the required conditions and B(u; T2 \H2; 1).Case 4: u 2 H2 \ Tj. j � 3. Construct cx � c0 by complementing H2 and Tj. Then,cx � c0 satis�es the required conditions and B(u; Tj n (H1 [ H2); 1) if 3 � j � t; orB(u; Tj \H1; 2) if t+ 1 � j � t+m.Case 5: u 2 H2 \ T2. Construct cx � c0 by complementing H2, T2 and then adding thedegree constraints �x(�(s)) = �2 for all s 2 S � T1 \ H1. Then, cx � c0 satis�es therequired conditions and B(u; T2 n H2; 1). (Note that U = V n (T2 [H2 [ (T1 \H1)) inthe partition (fug;D;U;U 0).)The proof is complete. 26 The Chv�atal rank of ladder inequalitiesLet P be a rational polyhedron in RE, that is, P = fx : Ax � bg, where A and b arerational, and let PI denote the convex hull of the integral points in P . De�ne P 0 to be Pand for i � 1, P i to be the set of points satisfying all integral inequalities ax � a0 derivedfrom P i�1 by the following rounding procedure: For any �nite set of m (say) inequalitiesCx � d valid for P i�1 and � 2 Rm+ such that �C is integral, take a = �C and a0 = b�dc.So each P i contains PI and P 0 � P 1 � � � � � P i. These de�nitions were introduced byChv�atal [3], and the rounding procedure is closely related to the cutting plane methodsof Gomory. It can be proved that each P i is itself a polyhedron, and that there is aninteger k, depending on P , such that P k = PI . (See Chv�atal [3] for details.)The (Chv�atal) rank of an inequality ax � a0 valid for PI is the least i such thatax � a0 is valid for P i. It is a measure of the complexity of the derivation of theinequality by the above procedure. Suppose that we take P to be a subtour polytope,that is, the solution set of (1.a), (1.b) and (1.c). Then PI is STSP (V ), and it is of interestto classify facet-inducing inequalities by their rank. Of course, the non-negativity andSE inequalities have rank 0. It is well known that comb inequalities have rank 1 [2].18



From this and our proof for the validity of the ladder inequalities, it follows that eachladder inequality has rank at most 2.In the remainder of this section, we prove that each ladder inequality has rank atleast 2, hence exactly 2. There is an apparently \obvious" technique for proving that anintegral inequality ax � a0, which is valid for PI , cannot be obtained from inequalitiesof rank 0 by the rounding procedure. Namely, we show that there is no solution � to�A = a; � � 0; �b < a0 + 1:By the duality theorem of linear programming, this is equivalent to showing that thereis �x 2 P with a�x � a0 + 1. However, there is a di�culty with this argument. It maybe that there are inequalities of which ax � a0 is a non-negative combination, that areobtainable by rounding, although ax � a0 itself is not. This di�culty does not disappeareven if we know that ax � a0 is facet-inducing for PI , since it still may have an equivalentform that is obtainable by rounding.An instructive example that arises from the 6-node TSP is the following inequality:ax = x12 + x13 + x23 + 2x14 + 2x25 + 2x36 + x45 + x46 + x56 � 8 = a0:This inequality is facet-inducing for STSP (V ) with jV j = 6. In fact, it is equivalent toa comb inequality with handle f1; 2; 3g and teeth f1; 4g; f2; 5g; f3; 6g. Hence it has rank1. However, the point �x = 12a satis�es (1.a), (1.b) and (1.c) with a�x = 9 = a0 + 1.Actually, this di�culty was overlooked in some previous papers [1, 2], where it wasclaimed using the above argument that certain inequalities have rank at least two. Theseresults are correct, but their proofs contain gaps that can be �lled by the following resultfrom [11]. Let Gx = g be the equality system for PI , that is, the linearly independentequations whose solution set is the a�ne hull of PI .If G is written (GB; GN ) such that GB is a nonsingular square matrix, we say that avalid inequality ax � a0 for PI is an integral B-canonical form if a = (aB; aN) with aB = 0and all components of aN being relatively prime integers. Notice that for every rationalvalid inequality, there is a unique integral B-canonical form to which it is equivalent.Proposition 6.1 Let ax � a0 be an integral B-canonical form that is facet-inducing forPI , and suppose that G�1B G is integral. Then ax � a0 has Chv�atal rank at most 1 if andonly if z(a) � maxfax : x 2 Pg < a0 + 1. 19



For the STSP case, the equality system Gx = g consists of the degree constraints(1.a). Consider the integral B-canonical form of Lemma 4.1. It is easy to see that, forany column gpq of GN , the vector G�1B gpq, that is, the vector d that satis�es GBd = gpqhas components 0, �1, +1. Namely, the +1 and �1 components alternate on the edgesof the unique odd-length edge-simple path in B joining p to q. Hence Proposition 6.1can be applied.We are now in a position to prove the main result of this section.Theorem 6.2 The ladder inequality (2) has Chv�atal rank two.PROOF: From the proof of Theorem 3.1, it follows that every ladder inequality cx � c0has Chv�atal rank at most two. We now show that it has Chv�atal rank at least two. To doso, we �rst construct its (h; 13)-canonical form ax � a0 where, as in Section 4 and Figure1(a), nodes h 2 T2 nH2, 1 2 T1 nH1 and 3 2 H2 \ T2. Hence by Proposition 6.1, we justneed to construct a feasible solution �x to the subtour polytope satisfying a�x � a0 + 1.For j = 3; : : : ; t+m, let Pj be a Hamiltonian path on Tj that saturates both Tj \H1and Tj \H2 with the endpoints v1j 2 Tj \H1 and v2j 2 Tj \H2. Let P2 be a Hamiltonianpath on V n ([t+mj=3 Tj) that saturates Ti n Hi, Hi \ Ti, Ĥi for i = 1; 2 with endpointsv1 2 H1 and v2 2 H2. De�ne the edge setP1 � ([t+mj=2 Pj) [ f(vij+i�1; vij+i) 2 E(Hi) : i = 1; 2; j is even and 4 � j � t+m� 2g;and node sets S1 � fv1; v13; v1t+mg, S2 � fv2; v23; v24g. Then P1 is a path system with allnodes in S1 [ S2 of degree 1 and all other nodes of degree 2. Now de�ne �x 2 RE by�xe = 1 for all e 2 P1, �xe = 12 for all e 2 E(S1) [ E(S2) and �xe = 0 otherwise. It is easilyveri�ed, using the (h; 13)-canonical form ax � a0 of the ladder inequality, that we havea�x = a0 + 1. 2References[1] S.C. Boyd and W.H. Cunningham, \Small travelling salesman polytopes," Mathe-matics of Operations Research 16 (1991) 259-271.[2] S.C. Boyd and W.R. Pulleyblank, \Optimizing over the subtour polytope of thetravelling salesman problem," Mathematical Programming 49 (1991) 163-187.20
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