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Totally unimodular matrices are of fundamental importance in combinatorial optimiza-tion, due to the connection with integrality in linear programming. We will see that prin-cipal unimodularity plays an analogous role with respect to the linear complementarityproblem, particularly in the case of \rank-symmetric" matrices.A V by V matrix M is called rank-symmetric if rank (M [X;Y ]) = rank (M [Y;X])for all X;Y � V . Here M [X;Y ] denotes the X by Y submatrix of M , that is, thesubmatrix of M having rows indexed by elements of X and columns indexed by elementsof Y . We shall denote by M [X] the principal submatrix M [X;X]. Obviously symmetricand skew-symmetric matrices are rank-symmetric. The �rst-order optimality conditionsfor quadratic programming give rise to linear complementarity problems involving rank-symmetric matrices that are neither symmetric nor skew-symmetric.We give a terse treatment to the linear complementarity problem; for a detailed surveyof the problem see Cottle, Pang and Stone [5]. Let M be a V by V matrix, and let q be acolumn vector indexed by V . The linear complementarity problem, with respect to q;M ,is to �nd column vectors w; z indexed by V satisfying:w = Mz + q; (1)wvzv = 0; (v 2 V ) (2)w; z � 0: (3)We denote the above problem by (q;M). Let w; z be column vectors indexed by V . We saythat (w; z) is complementary if (2) is satis�ed, and that (w; z) is feasible for (q;M) if (1)and (3) are satis�ed. A complementary feasible pair (w; z) for (q;M) is called a solution of(q;M). For a solution (w; z) of (q;M), w is uniquely determined by z, so we occasionallyrepresent the pair (z;w) by z alone.Suppose that M [X] is nonsingular, for some subset X of V . There is a unique pair ofvectors w0; z0 satisfying (1) such that w0X = 0 and z0X = 0. Here vX denotes the restrictionof the vector v to the set X, and X denotes V nX. The pair z0; w0 is de�ned as follows:z0X = �(M [X])�1qX ; w0X = 0;z0X = 0; w0X = qX �M [X;X](M [X])�1qX :Then (w0; z0) is called a basic pair of (q;M) with respect to X. Note that w0; z0 are notnecessarily nonnegative. A basic solution is a basic pair that is nonnegative. Our maintheorem is the following.Theorem 1 Let M be a V by V integral matrix. Then the following are equivalent:(a) M is principally unimodular.(b) For every integral vector q, all basic solutions of (q;M) are integral.2



Unfortunately it is not the case, for an integral PU-matrix M , that (q;M) has an integralsolution for every integral q for which (q;M) has a solution. Indeed, consider (q;M) whereM = 0BB@ 0 1 �10 0 20 0 0 1CCA ; q = 0BB@ �1�10 1CCA :Note that M is PU. Let z� = (0; 32 ; 12)T , and w� = (0; 0; 0)T ; then z�; w� is a solution to(q;M). However, for any solution (z;w) to (q;M), we have z2 � z3 � 1 � w1. Then, sincew; z � 0, we must have z2 > 0. So, by complementarity, w2 = 0, and 2z3�1 = 0. Thus z isnot integral. However, when M is required to be rank-symmetric, the situation is better.Theorem 2 Let M be a V by V rank-symmetric matrix, and let q be a column vectorindexed by V . If (q;M) has a solution, then (q;M) has a basic solution.As an immediate consequence of Theorems 1 and 2 we have the following result.Corollary 3 LetM be a V by V , integral, rank-symmetric, principally unimodular matrix,and let q be an integral column vector indexed by V . If (q;M) has a solution, then (q;M)has an integral solution. 2It is easy to prove that (a) implies (b) in Theorem 1, using elementary linear algebra.Proposition 4 Let M [X] be a unimodular submatrix of M 2 ZV�V , where X � V , andlet q 2 ZV . Then the basic pair of (q;M) corresponding to X is integral.Proof It su�ces to prove that M [X]�1 is integral, and this follows from the adjointformula for the inverse of a matrix. 2Linear programmingTheorem 1 generalizes the following well-known theorem in integer programming. A poly-hedron P � RV is integral if max(cTx : x 2 P ) has an integral optimal solution wheneverit has an optimal solution.Theorem 5 (Ho�man and Kruskal [8]) For A 2 ZX�Y , the following are equivalent(a) A is totally unimodular.(b) For every b 2 ZX , the polyhedron fx 2 RY : Ax � b; x � 0g is integral. 2Again, that (a) implies (b) is straightforward. To see the converse we need brie
y to outlinethe well-known connection with the LCP. 3



Let A 2 ZX�Y , c 2 ZY and b 2 ZX. We are interested in the following linear program-ming problem (P ) and its dual (D).(P )�8>>><>>>: min cTz1s.t. Az1 � bz1 � 0: ; (D) �8>>><>>>: max bTz2s.t. ATz2 � cz2 � 0:We de�ne M =  0 �ATA 0 ! ; and q =  c�b ! :Then z 2 RV is a solution of (q;M) if and only if zY is optimal to (P ) and zX is optimalto (D).If A is not totally unimodular, then M is not principally unimodular. Therefore, byTheorem 1, there exist b 2 ZX and c 2 ZY such that at least one of fx 2 RY : Ax �b; x � 0g and fy 2 RX : ATy � c; y � 0g is not integral. If fx 2 RY : Ax � b; x � 0gis not integral, then we are done. So we assume that fy 2 RX : ATy � c; y � 0g is notintegral. Thus, by an elementary result, there exists b0 2 ZX such that the optimal valueof the linear programming problem (D) is not integral. Hence, by the duality theorem,fx 2 RY : Ax � b; x � 0g is not integral. This proves Theorem 5.Principal pivotingLet M 2 RV�V ; suppose X � V and M [X] is nonsingular. De�ne matrices �, �, 
, �, andM �X by M =  X XX � �X 
 � !; and M �X =  X XX ��1 ���1�X 
��1 � � 
��1� !:The operation that converts M to M �X is called a principal pivot, and is well known inthe context of the linear complementarity problem.Given the linear complementarity problem (q;M), we denote by (q;M)�X the problem(q0;M �X), where q0 is de�ned byq0X = ���1qX ; and q0X = qX � 
��1qX :The following lemma shows that the problems (q;M) and (q;M) � X are essentially thesame; the proof follows directly from the de�nitions.Lemma 6 (Cottle,Pang, and Stone [5]) Let M 2 RV�V , q 2 RV , M [X] be a nonsin-gular principal submatrix of M , and (w; z) be a solution of (q;M). De�ne w0; z0 such thatw0X = zX, z0X = wX , w0X = wX, and z0X = zX. Then (w0; z0) is a solution of (q;M) �X. 24



Let (w; z) be a solution to (q;M), and let (w0; z0) be the corresponding solution to (q;M)�X. It can be easily veri�ed that (w; z) is a basic solution to (q;M) if and only if (w0; z0) is abasic solution for (q;M)�X. Furthermore, nonnegativity, complementarity and integralityare also preserved under such transformations.We now consider the e�ect that principal pivoting has on subdeterminants.Theorem 7 Let M [X] be a nonsingular principal submatrix of M 2 RV�V . Then, forequicardinal subsets S; T of V ,det((M �X)[S; T ]) = �det(M [(X n T ) [ (S nX); (X n S) [ (T nX)])=det(M [X]):Before proving the theorem we discuss its consequences. It is clear from the de�nition thatprincipal pivoting preserves skew-symmetry. (It does not preserve symmetry.) Theorem 7shows that it also preserves rank-symmetry. Theorem 7 also implies, except for the sign, thefollowing theorem of Tucker. For sets A;B we de�ne A�B to be the symmetric di�erenceof A and B; that is, A�B = (A nB) [ (B nA).Theorem 8 (Tucker [10]) LetM [X] be a nonsingular principal submatrix ofM 2 RV�V .Then, for S � V , det((M �X)[S]) = det(M [X�S])=det(M [X]): 2Tucker's theorem implies that the properties of being principally unimodular, being positive(semi-) de�nite, and having positive principal minors are all preserved by principal pivoting.Proof of Theorem 7. Let Y = V nX, and let M be partitioned as follows:M =  X YX � �Y 
 � !:Construct a copy ~V of V , and for Z � V , denote by ~Z the corresponding copy of Z. Nowde�ne M 0 to be  X Y ~X ~YX I 0 � �Y 0 I 
 � !:For equicardinal subsets R;C of V , we have detM [R;C] = �detM 0[V; ~C [ (V nR)]: Nowde�ne matrices D and B byD =  X YX ��1 0Y �
��1 I !; and B = DM 0 =  X Y ~X ~YX ��1 0 I ��1�Y �
��1 I 0 � � 
��1� !:Therefore det (B[V; ~C [ (V nR)]) = det (M 0[V; ~C [ (V nR)]) det (D)= �det (M [R;C])=det (M [X]): (4)5



Now swapping the columns Y and ~Y pairwise in B we get the matrix B 0, whereB0 =  X Y ~X ~YX I 0 ��1 ��1�Y 0 I �
��1 � � 
��1� !:Note that B 0[X [ Y; ~X [ ~Y ] can be obtained from M �X by multiplying the rows and thecolumns indexed by elements of X by �1. Hence corresponding subdeterminants of thetwo matrices are equal, up to sign. Therefore,det(B[V; ~C [ (V nR)]) = �det(B 0[V; (C \X) [ (V nR nX) [ ( ~C n ~X) [ ( ~X n ~R)])= �det(M �X[(R nX) [ (X n C); (C nX) [ (X nR)]): (5)The result is obtained by combining equations (4) and (5), and observing that principalpivoting is an involution. 2Elementary pivotsThe following result about pivoting is implied by the quotient formula for the Schur com-plement (Cottle et al. [5, page 76]).Proposition 9 Let M [X] be a nonsingular principal submatrix of M 2 RV�V , and let(M � X)[Y ] be a nonsingular principal submatrix of M � X. Then (M � X) � Y = M �(X�Y ). 2Suppose that M [X] is a nonsingular principal submatrix of M , and there exists X 0 � Xsuch that M [X 0] is nonsingular. Then, by Proposition 9, M �X = (M � X 0) � (X nX 0).We call a nonempty set X an elementary set of M if M [X] is nonsingular but there existsno proper nonempty subset X 0 of X such that M [X 0] is nonsingular. We call the pivottransforming M to M �X elementary if X is an elementary set of M . Thus any pivot isequivalent to a sequence of elementary pivots. Note that the elementary sets of a rank-symmetric matrix have cardinality one or two.Proposition 10 If X is an elementary set of M 2 RV�V , then every row and column ofM [X] contains exactly one nonzero entry.Proof Since M [X] is nonsingular, there is a permutation � of X such that mi�(i) 6= 0 forall i 2 X. Therefore, there exists a cyclic permutation �0 of a subset X 0 of X such thatmi�0(i) 6= 0 for all i 2 X 0. Choose �0 so that jX 0j is as small as possible. If some row orcolumn of M [X 0] has more than one nonzero entry, then there exist i; j 2 X 0 such thatmij 6= 0 and j 6= �0(i). From this we easily obtain a cyclic permutation on a proper subsetof X 0 that contradicts the choice of X 0. Therefore, M [X 0] is nonsingular, and, since X iselementary, X 0 = X. 26



Proofs of Theorems 1 and 2Proof of Theorem 1. It follows from Proposition 4 that (a) implies (b), so it remainsto prove that (b) implies (a). We will need the following result.Claim Let X be a subset of V , such that det(M [X]) = �1. Then, M �X is integral.Furthermore, if q; q0 is a pair of vectors such that (q0;M � X) = (q;M) � X, then q isintegral if and only if q0 is integral.SinceM [X] is unimodular and integral, M [X]�1 is unimodular and integral. Therefore,M �X is also integral. Thus, if q is integral, then q0 is integral. The converse follows sincepivoting is an involution. This proves the claim.Suppose that M is not PU, and let Y be a minimum cardinality subset of V such thatM [Y ] is not unimodular. Suppose that Y is not an elementary set of M . Since M [Y ] isnonsingular, there exists a subset Y 0 of Y , such that Y 0 is an elementary set of M . By ourchoice of Y , M [Y 0] is unimodular. By the claim, it su�ces to prove the theorem for M �Y 0.Now jY 0�Y j < jY j, and so by Theorem 8 with X = Y 0 and S = Y�Y 0, (M � Y 0)[Y�Y 0]is not unimodular. Thus, inductively, we may assume that Y is an elementary set.We will create an integral vector q so that the basic solution (w; z) of (q;M), withrespect to the set Y , is feasible but not integral. To be basic, (w; z) must satisfy thefollowing equations M [Y ]zY + qY = 0 (6)M [Y ; Y ]zY + qY = wY : (7)By Proposition 10, every row and column of M [Y ] contains exactly one nonzero element.Therefore, every row and column of M [Y ]�1 contains exactly one nonzero element. Fur-thermore, since M [Y ] is integral but not unimodular, M [X]�1 contains some non-integralentries. Thus, it is easy to �nd an integral qY such that the unique solution zY to equa-tion (6) is both nonnegative and not integral. Given this zY , we can choose an integral qYsu�ciently large so that the solution wY to equation (7) is nonnegative. Hence we have anintegral q, and a nonintegral basic solution (w; z) to (q;M), as required. 2Proof of Theorem 2. LetM = (mij) be a rank-symmetric matrix, let (w; z) be a solutionto (q;M), and denote by X the support of z (that is, the set fv 2 V : zv 6= 0g). We provethe result by induction on jXj; if jXj = 0, then (w; z) is basic. Let Y = fv 2 V : wv = 0g.Note that, by complementarity, X is a subset of Y .Suppose that M [Y;X] = 0. In particular, we have M [X] = 0. Choose some x 2 X.Now de�ne a new vector z0 by �xing z0v = zv for all v 2 V � x, and decreasing z0x as far aspossible, while maintaining z0 feasible to (q;M). Let w0 = Mz0 + q. Since M [X] = 0 andz0X = 0, we have w0X = qX; w0X = M [X;X]z0X + qX :However, since wX = 0, we have qX = 0. Therefore, (w0; z0) is complementary, and hence7



(w0; z0) is a solution to (q;M). If z0x = 0, then z0 has a smaller support than z, so theresult follows inductively. Therefore, we may assume that z0x > 0. Since we cannot reducez0x further while maintaining feasibility to (q;M), there exists y 2 V such that w0y = 0,and mxy > 0. Hence, by replacing (w; z) by (w0; z0), and rede�ning Y accordingly, we getM [X;Y ] 6= 0.Choose x 2 X, and y 2 Y such that mxy 6= 0. If mxx 6= 0, then we take y = x. Nowde�ne S to be fx; yg. Since M is rank-symmetric, M [S] is nonsingular. Recall that (q;M)has a basic solution if and only if (q;M) � S has a basic solution. Now de�ne z0; w0 suchthat z0S = wS ; w0S = zS; z0S = zS ; w0S = wS:Then, by Proposition 6, (z0; w0) is a solution to (q;M) � S. However, since S � Y andS \X 6= ;, z0 has a smaller support than z. Therefore, the result follows by induction. 2RemarksWe hope that the results of this paper give some mathematical-programming motivationfor the study of principally unimodular matrices, in particular, of PU-matrices that arerank-symmetric. The construction that shows that principal unimodularity extends totalunimodularity involves a symmetric or skew-symmetric matrix. Therefore, results on eitherthe class of symmetric or skew-symmetric PU-matrices would provide results on the classof totally unimodular matrices. For example, one might ask whether important knownfacts on totally unimodular matrices can be generalized to either of these two classes ofPU-matrices. We summarize here what is known and not known at present in this direction.First, we mention that there is an interesting subclass of the skew-symmetric PU-matrices, other than those arising from the totally unimodular matrices. It arises fromorientations of circle graphs; see Bouchet [1]. Up to now, no such subclass of symmetricPU-matrices is known.A key observation concerning the recognition of totally unimodular matrices is thatthe essence of the problem is to recognize whether there is any totally unimodular matrixhaving the same support. The reason is that, given the support of a totally unimodularmatrix, it is easy to construct a totally unimodular matrix that has that support, and it isalmost unique. Namely, a result of Camion [3] states that two totally unimodular matriceshaving the same support can be obtained one from the other by a sequence of row andcolumn negations. Similar results hold for the two classes of PU-matrices. It is proved byGeelen [6,7] that two \connected" symmetric PU-matrices having the same support can beobtained one from the other by a sequence of operations of the following form: negatinga row and the corresponding column, and negating the whole matrix. (These operationsobviously preserve principal unimodularity and symmetry.) Connectedness refers to theabsence of a block decomposition, and it is easy to extend this result to a statementabout all symmetric PU-matrices. For skew-symmetric matrices the situation is trickier.8



It is proved in [7,2] that two \3-connected" skew-symmetric PU-matrices having the samesupport can be obtained one from the other by a sequence of operations as above. Wedo not de�ne the notion of the 3-connectivity here, but it is true that if a matrix lacks3-connectivity then there exists a decomposition that reduces questions about principalunimodularity to such questions about smaller matrices.There are two famous characterizations of totally unimodular matrices, or equivalently,of regular matroids. They are the excluded minor theorem of Tutte [11] and the decom-position theorem of Seymour [9]. Tutte's theorem has been generalized to the class ofsymmetric PU matrices (Geelen [6,7]), but not to the class of skew-symmetric ones. Sey-mour's theorem, which underlies the polynomial-time recognition algorithms for totallyunimodular matrices, has not been generalized to either class of PU matrices, and there isno known polynomial-time recognition algorithm for either class. We are optimistic thatmany of the open problems implicit in these remarks can be solved.The �rst-order optimality conditions for a quadratic program give a linear comple-mentarity problem (q;M), where M has the form � D A�AT 0 � for some symmetric matrixD. While M is not symmetric, it can be made symmetric by negation of certain rows.Therefore testing principal unimodularity of such matrices is equivalent to testing princi-pal unimodularity of symmetric matrices, which remains unsolved. However, for a convexquadratic program, M has the additional property of being positive semide�nite. Chan-drasekaran, Kabadi, and Sridhar [4] give a polynomial-time algorithm for testing principalunimodularity of the matrices arising from convex quadratic programming.Acknowledgment. We are grateful to J.-S. Pang for helpful conversations.References1. A. Bouchet, \Unimodularity and circle graphs", Discrete Math. 66(1987), 203-208.2. A. Bouchet, W.H. Cunningham, and J.F. Geelen, \Principally unimodular skew-symmetric matrices", submitted for publication.3. P. Camion, \Caract�erisation des matrices unimodulaires", Cahiers Centre EtudesRech. Op�er. 5(1963), 181{190.4. R. Chandrasekaran, S. Kabadi, and R. Sridhar, \Integer solution for linear comple-mentarity problem", submitted for publication.5. R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem,Academic Press, 1992.6. J.F. Geelen Matchings, Matroids, and Unimodular Matrices, doctoral thesis, Univer-sity of Waterloo, 1995. 9
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