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Abstract

We characterize the class of integral square matrices M having the property that
for every integral vector ¢ the linear complementarity problem with data M, ¢ has
only integral basic solutions. These matrices, called principally unimodular matrices,
are those for which every principal nonsingular submatrix is unimodular. As a con-
sequence, we show that if M is rank-symmetric and principally unimodular, and ¢ is
integral, then the problem has an integral solution if it has a solution. Principal uni-
modularity can be regarded as an extension of total unimodularity, and our results
can be regarded as extensions of well-known results on integral solutions to linear
programs. We summarize what is known about principally unimodular symmetric
and skew-symmetric matrices.

Introduction

Let M be a V by V matrix, where V is a finite set. We call M principally unimodular
(PU) if every nonsingular principal submatrix of M is unimodular (that is, has determinant

+1). Principal unimodularity arises as a generalization of total unimodularity as follows:
0o A4

a matrix A is totally unimodular if and only if (j:AT 0

) i1s PU. Principally unimodular

matrices were introduced by Bouchet [1].

*Research partially supported by a grant from the Natural Sciences and Engineering Research Coun
cil of Canada.
TResearch partially supported by a Canadian Commonwealth Fellowship.



Totally unimodular matrices are of fundamental importance in combinatorial optimiza-
tion, due to the connection with integrality in linear programming. We will see that prin-
cipal unimodularity plays an analogous role with respect to the linear complementarity
problem, particularly in the case of “rank-symmetric” matrices.

A V by V matrix M is called rank-symmetric if rank (M[X,Y]) = rank (M[Y, X))
for all XY C V. Here M[X,Y] denotes the X by Y submatrix of M, that is, the
submatrix of M having rows indexed by elements of X and columns indexed by elements
of Y. We shall denote by M[X] the principal submatrix M[X, X]. Obviously symmetric
and skew-symmetric matrices are rank-symmetric. The first-order optimality conditions
for quadratic programming give rise to linear complementarity problems involving rank-
symmetric matrices that are neither symmetric nor skew-symmetric.

We give a terse treatment to the linear complementarity problem; for a detailed survey
of the problem see Cottle, Pang and Stone [5]. Let M be a V by V matrix, and let ¢ be a
column vector indexed by V. The linear complementarity problem, with respect to ¢, M,

1s to find column vectors w, z indexed by V satisfying:

w = Mz+q, (1)
Wyzy, = 0, (v eV) (2)
w,z > 0. (3)

We denote the above problem by (¢, M). Let w, z be column vectors indexed by V. We say
that (w,z) is complementary if (2) is satisfied, and that (w, z) is feasible for (¢, M) if (1)
and (3) are satisfied. A complementary feasible pair (w, z) for (q, M) is called a solution of
(¢, M). For a solution (w, z) of (¢, M), w is uniquely determined by z, so we occasionally
represent the pair (z,w) by z alone.

Suppose that M[X] is nonsingular, for some subset X of V. There is a unique pair of
vectors w’, z’ satisfying (1) such that w% = 0 and 2% = 0. Here vx denotes the restriction

. X
of the vector v to the set X, and X denotes V' \ X. The pair 2/, w’ is defined as follows:

e = —(M[X)Yqx, wy = 0,
A = 0, we = qx — M[X, X](M[X]) 'qx.

Then (w', ) is called a basic pair of (g, M) with respect to X. Note that w', 2z’ are not
necessarily nonnegative. A basic solution is a basic pair that ¢s nonnegative. Our main

theorem is the following.
Theorem 1 Let M be a V by V integral matriz. Then the following are equivalent:
(a) M is principally unimodular.

(b) For every integral vector q, all basic solutions of (q, M) are integral.



Unfortunately it is not the case, for an integral PU-matrix M, that (¢, M) has an integral
solution for every integral g for which (¢, M) has a solution. Indeed, consider (q, M) where

01
M=|00 2 |,q=| -1
00

Note that M is PU. Let z* = (0,2, 1), and w* = (0,0,0)7; then 2*,w" is a solution to
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(¢, M). However, for any solution (z,w) to (¢, M), we have z2 — z3 — 1 > w;. Then, since
w, z > 0, we must have z; > 0. So, by complementarity, w, = 0, and 2z3 —1 = 0. Thus z is

not integral. However, when M is required to be rank-symmetric, the situation is better.

Theorem 2 Let M be a 'V by V rank-symmetric matriz, and let q be a column vector
indezed by V. If (q, M) has a solution, then (q, M) has a basic solution.

As an immediate consequence of Theorems 1 and 2 we have the following result.

Corollary 3 Let M be a V by V, integral, rank-symmetric, principally unimodular matriz,
and let q be an integral column vector indexed by V. If (¢, M) has a solution, then (q, M)

has an integral solution. a
It is easy to prove that (a) implies (b) in Theorem 1, using elementary linear algebra.

Proposition 4 Let M[X] be a unimodular submatriz of M € ZV*V, where X C V, and
let ¢ € ZV. Then the basic pair of (g, M) corresponding to X is integral.

Proof It suffices to prove that M[X]™! is integral, and this follows from the adjoint

formula for the inverse of a matrix. O

Linear programming

Theorem 1 generalizes the following well-known theorem in integer programming. A poly-
hedron P C RY is integral if max(cfz : z € P) has an integral optimal solution whenever

it has an optimal solution.

Theorem 5 (Hoffman and Kruskal [8]) For A ¢ ZX*Y the following are equivalent
(a) A is totally unimodular.
(b) For every b € Z*, the polyhedron {x € RY : Az > b,z > 0} is integral. 0

Again, that (a) implies (b) is straightforward. To see the converse we need briefly to outline

the well-known connection with the LCP.



Let A€ Z¥*Y ¢ e Z¥ and b € Z*. We are interested in the following linear program-
ming problem (P) and its dual (D).

min Lz max bz,
(P) — sk, Az > b (D) - st ATz < ¢
21 2 0. Z9 2 0.

We define

0 —AT c
M_(A 0 ),andq—(_b).

Then z € RY is a solution of (¢, M) if and only if zy is optimal to (P) and zx is optimal
to (D).

If A is not totally unimodular, then M is not principally unimodular. Therefore, by
Theorem 1, there exist b € Z* and ¢ € ZY such that at least one of {x € RY : Az >
byr > 0} and {y € R* : ATy < ¢,y > 0} is not integral. If {z ¢ RY : Az > b,z > 0}
is not integral, then we are done. So we assume that {y € R¥ : ATy < ¢,y > 0} is not
integral. Thus, by an elementary result, there exists b € Z* such that the optimal value
of the linear programming problem (D) is not integral. Hence, by the duality theorem,
{z ¢ RY : Az > b,z > 0} is not integral. This proves Theorem 5.

Principal pivoting

Let M € RV*Y; suppose X C V and M[X] is nonsingular. Define matrices a, 3, 7, 8, and
M * X by
X X X X

X fa B X[ ot —a~13
M—7(7 5),andM*X—7(7a_l 5—naip )

The operation that converts M to M * X is called a principal pivot, and is well known in
the context of the linear complementarity problem.

Given the linear complementarity problem (g, M), we denote by (¢, M)* X the problem
(¢', M * X), where ¢’ is defined by

gy = —a " tqx, and q’y =qx — yalgx.

The following lemma shows that the problems (¢, M) and (¢, M) * X are essentially the

same; the proof follows directly from the definitions.

Lemma 6 (Cottle,Pang, and Stone [5]) Let M € RV*Y, g € RV, M[X] be a nonsin-
gular principal submatriz of M, and (w, z) be a solution of (¢, M). Define w', 2’ such that
wy = 2x, 2x = wx, wg = wx, and 2% = zx. Then (w',2') is a solution of (¢, M) * X. O



Let (w, z) be a solution to (g, M), and let (w’, ') be the corresponding solution to (g, M) *
X. It can be easily verified that (w, z) is a basic solution to (¢, M) if and only if (w’, 2’) is a
basic solution for (¢, M) X. Furthermore, nonnegativity, complementarity and integrality
are also preserved under such transformations.

We now consider the effect that principal pivoting has on subdeterminants.

Theorem 7 Let M[X] be a nonsingular principal submatriz of M € RV*V. Then, for
equicardinal subsets S, T of V,

det((M * X)[S,T]) = £ det(M[(X \ T) U (S \ X), (X \ S)U (T \ X)])/ det(M[X]).

Before proving the theorem we discuss its consequences. It is clear from the definition that
principal pivoting preserves skew-symmetry. (It does not preserve symmetry.) Theorem 7
shows that it also preserves rank-symmetry. Theorem 7 also implies, except for the sign, the
following theorem of Tucker. For sets A, B we define AAB to be the symmetric difference
of A and B; that is, AAB = (A\ B)U (B \ A).

Theorem 8 (Tucker [10]) Let M[X] be a nonsingular principal submatriz of M € RV
Then, for S CV,
det((M * X)[S]) = det(M[XAS])/ det(M[X]). O

Tucker’s theorem implies that the properties of being principally unimodular, being positive

(semi-) definite, and having positive principal minors are all preserved by principal pivoting.

Proof of Theorem 7. Let Y =V \ X, and let M be partitioned as follows:
XY

X fa B
M_Y('r 5)'

Construct a copy V of V., and for Z C V, denote by Z the corresponding copy of Z. Now
define M’ to be

XY XY
X(TIT 0 «a p
Y\ 0O I v 4/
For equicardinal subsets R, C' of V, we have det M[R, C] = + det M'[V,C U (V \ R)]. Now
define matrices D and B by

X Y X Y X Y

1 -1 -1
D:X o4 B 0 ,andB:DM':X o4 3 0 I o4 ﬁ;l
Y \ —a I —ya I 0 éd—~va'p

Therefore

det (B[V,CU(V\ R)]) = det(M'[V,CU(V\ R)])det (D)
— +det (M[R,C])/ det (M[X]). (4)
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Now swapping the columns Y and Y pairwise in B we get the matrix B’, where

XY X Y
B — X(1 0 a™t a™'p
Y \0 I —yat §—qaTip )’

Note that B[ X UY, XU }7] can be obtained from M % X by multiplying the rows and the
columns indexed by elements of X by —1. Hence corresponding subdeterminants of the

two matrices are equal, up to sign. Therefore,

det(B[V,CU(V\ R)]) = +det(B'[V.(CNX)U((V\R\X)U(C\X)U(X\R))
= +det(M« X[(R\X)U(X\C),(C\X)U(X\R)]). (5

The result is obtained by combining equations (4) and (5), and observing that principal

pivoting is an involution. O

Elementary pivots

The following result about pivoting is implied by the quotient formula for the Schur com-
plement (Cottle et al. [5, page 76]).

Proposition 9 Let M[X] be a nonsingular principal submatriz of M € RV, and let
(M« X)[Y] be a nonsingular principal submatriz of M « X. Then (M * X)*Y = M
(XAY). O

Suppose that M[X] is a nonsingular principal submatrix of M, and there exists X' C X
such that M[X'] is nonsingular. Then, by Proposition 9, M * X = (M * X') % (X \ X').
We call a nonempty set X an elementary set of M if M[X] is nonsingular but there exists
no proper nonempty subset X’ of X such that M[X'] is nonsingular. We call the pivot
transforming M to M x X elementary if X i1s an elementary set of M. Thus any pivot is
equivalent to a sequence of elementary pivots. Note that the elementary sets of a rank-

symmetric matrix have cardinality one or two.

Proposition 10 If X is an elementary set of M € RV | then every row and column of

MI[X] contains exactly one nonzero entry.

Proof Since M[X] is nonsingular, there is a permutation o of X such that m;, # 0 for
all 1 € X. Therefore, there exists a cyclic permutation ¢’ of a subset X’ of X such that
Mgy 7 0 for all i € X'. Choose o' so that |X'| is as small as possible. If some row or
column of M[X'] has more than one nonzero entry, then there exist 7,7 € X’ such that
m;; # 0 and j # o'(¢). From this we easily obtain a cyclic permutation on a proper subset
of X' that contradicts the choice of X’. Therefore, M[X'] is nonsingular, and, since X is
elementary, X' = X. O



Proofs of Theorems 1 and 2

Proof of Theorem 1. It follows from Proposition 4 that (a) implies (b), so it remains
to prove that (b) implies (a). We will need the following result.

Claim  Let X be a subset of V, such that det(M[X]) = £1. Then, M = X is integral.
Furthermore, if q,q" is a pair of vectors such that (¢, M * X) = (q, M) = X, then q is
integral if and only if q' is integral.

Since M[X] is unimodular and integral, M[X]™! is unimodular and integral. Therefore,
M « X is also integral. Thus, if ¢ is integral, then ¢’ is integral. The converse follows since
pivoting is an involution. This proves the claim.

Suppose that M is not PU, and let Y be a minimum cardinality subset of V' such that
M][Y] is not unimodular. Suppose that Y is not an elementary set of M. Since M[Y] is
nonsingular, there exists a subset Y’ of Y, such that Y’ is an elementary set of M. By our
choice of Y, M[Y'] is unimodular. By the claim, it suffices to prove the theorem for M xY".
Now |[Y'AY| < |Y]|, and so by Theorem 8 with X =Y and S = YAY', (M = Y')[YAY"]
is not unimodular. Thus, inductively, we may assume that Y is an elementary set.

We will create an integral vector ¢ so that the basic solution (w,z) of (¢, M), with
respect to the set Y, is feasible but not integral. To be basic, (w,z) must satisfy the

following equations

M[Y]Zy—l-qY =0 (6)

M[Y,Y]Zy—l-q? = Wy. (7)

By Proposition 10, every row and column of M[Y] contains exactly one nonzero element.

~1 contains exactly one nonzero element. Fur-

-1

Therefore, every row and column of M[Y]
thermore, since M[Y] is integral but not unimodular, M[X]™* contains some non-integral
entries. Thus, it is easy to find an integral gy such that the unique solution zy to equa-
tion (6) is both nonnegative and not integral. Given this zy, we can choose an integral gy
sufficiently large so that the solution wy to equation (7) is nonnegative. Hence we have an

integral ¢, and a nonintegral basic solution (w, z) to (¢, M), as required. O

Proof of Theorem 2. Let M = (m;;) be a rank-symmetric matrix, let (w, z) be a solution
to (¢, M), and denote by X the support of z (that is, the set {v € V : 2z, # 0}). We prove
the result by induction on |X|; if | X| = 0, then (w, z) is basic. Let Y = {v € V : w, = 0}.
Note that, by complementarity, X is a subset of Y.

Suppose that M[Y, X] = 0. In particular, we have M[X] = 0. Choose some = € X.
Now define a new vector 2’ by fixing z, = z, for all v € V — z, and decreasing 2, as far as
possible, while maintaining z’ feasible to (¢, M). Let w' = Mz’ + q. Since M[X] = 0 and

z =

% = 0, we have

wiX’ = 4x, w/f: M[YvX]ZfX —I_QY‘

However, since wx = 0, we have gx = 0. Therefore, (w’,2’) is complementary, and hence

7



(w',2') is a solution to (¢, M). If z, = 0, then 2’ has a smaller support than z, so the
result follows inductively. Therefore, we may assume that z, > 0. Since we cannot reduce
z,, further while maintaining feasibility to (g, M), there exists y € V such that w; = 0,
and mg, > 0. Hence, by replacing (w, z) by (w’, z'), and redefining Y accordingly, we get
MIX. Y] #0.

Choose ¢ € X, and y € Y such that m,, # 0. If m,, # 0, then we take y = . Now
define S to be {z,y}. Since M is rank-symmetric, M[S] is nonsingular. Recall that (¢, M)
has a basic solution if and only if (¢, M) * S has a basic solution. Now define z’, w’ such
that

o o I o o
Zg = Wsg, Wg = 253, Zg—ZS, wg—ws.

Then, by Proposition 6, (2/,w’) is a solution to (¢, M) * S. However, since S C Y and
SN X #0, 2 has a smaller support than z. Therefore, the result follows by induction. O

Remarks

We hope that the results of this paper give some mathematical-programming motivation
for the study of principally unimodular matrices, in particular, of PU-matrices that are
rank-symmetric. The construction that shows that principal unimodularity extends total
unimodularity involves a symmetric or skew-symmetric matrix. Therefore, results on either
the class of symmetric or skew-symmetric PU-matrices would provide results on the class
of totally unimodular matrices. For example, one might ask whether important known
facts on totally unimodular matrices can be generalized to either of these two classes of
PU-matrices. We summarize here what is known and not known at present in this direction.

First, we mention that there is an interesting subclass of the skew-symmetric PU-
matrices, other than those arising from the totally unimodular matrices. It arises from
orientations of circle graphs; see Bouchet [1]. Up to now, no such subclass of symmetric
PU-matrices is known.

A key observation concerning the recognition of totally unimodular matrices is that
the essence of the problem is to recognize whether there is any totally unimodular matrix
having the same support. The reason is that, given the support of a totally unimodular
matrix, it is easy to construct a totally unimodular matrix that has that support, and it is
almost unique. Namely, a result of Camion [3] states that two totally unimodular matrices
having the same support can be obtained one from the other by a sequence of row and
column negations. Similar results hold for the two classes of PU-matrices. It is proved by
Geelen [6,7] that two “connected” symmetric PU-matrices having the same support can be
obtained one from the other by a sequence of operations of the following form: negating
a row and the corresponding column, and negating the whole matrix. (These operations
obviously preserve principal unimodularity and symmetry.) Connectedness refers to the
absence of a block decomposition, and it is easy to extend this result to a statement

about all symmetric PU-matrices. For skew-symmetric matrices the situation is trickier.



It is proved in [7,2] that two “3-connected” skew-symmetric PU-matrices having the same
support can be obtained one from the other by a sequence of operations as above. We
do not define the notion of the 3-connectivity here, but it is true that if a matrix lacks
3-connectivity then there exists a decomposition that reduces questions about principal
unimodularity to such questions about smaller matrices.

There are two famous characterizations of totally unimodular matrices, or equivalently,
of regular matroids. They are the excluded minor theorem of Tutte [11] and the decom-
position theorem of Seymour [9]. Tutte’s theorem has been generalized to the class of
symmetric PU matrices (Geelen [6,7]), but not to the class of skew-symmetric ones. Sey-
mour’s theorem, which underlies the polynomial-time recognition algorithms for totally
unimodular matrices, has not been generalized to either class of PU matrices, and there is
no known polynomial-time recognition algorithm for either class. We are optimistic that
many of the open problems implicit in these remarks can be solved.

The first-order optimality conditions for a quadratic program give a linear comple-

_AT
D. While M is not symmetric, it can be made symmetric by negation of certain rows.

mentarity problem (g, M), where M has the form < b ‘g > for some symmetric matrix

Therefore testing principal unimodularity of such matrices is equivalent to testing princi-
pal unimodularity of symmetric matrices, which remains unsolved. However, for a convex
quadratic program, M has the additional property of being positive semidefinite. Chan-
drasekaran, Kabadi, and Sridhar [4] give a polynomial-time algorithm for testing principal

unimodularity of the matrices arising from convex quadratic programming.
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