
The Optimal Path-Matching ProblemWilliam H. Cunningham and James F. GeelenDepartment of Combinatorics & OptimizationUniversity of WaterlooWaterloo, Ontario, Canada, N2L 3G1whcunnin@math.uwaterloo.cajfgeelen@jeeves.uwaterloo.caMarch, 1996Revised June, 1997AbstractWe describe a common generalization of the weighted matchingproblem and the weighted matroid intersection problem. In this con-text we establish common generalizations of the main results on thosetwo problems|polynomial-time solvability, min-max theorems, andtotally dual integral polyhedral descriptions. New applications ofthese results include a strongly polynomial separation algorithm forthe convex hull of matchable sets of a graph, and a polynomial-timealgorithm to compute the rank of a certain matrix of indeterminates.1 IntroductionGiven a graph G = (V;E); a perfect matching of G is a subset of edgessuch that each vertex of G is incident to exactly one edge of the subset.Tutte [19] gave a necessary and su�cient condition for the existence of aperfect matching. Later Edmonds [6], [7] gave polynomial-time algorithms todecide whether a given graph has a perfect matching, and (given a weightingof the edges) to �nd a perfect matching of maximum weight. He also gave1



a polyhedral description of the perfect matchings of G, by characterizingtheir convex hull as the solution set of a certain system of linear inequalities.Finally, Cunningham and Marsh [5] proved the total dual integrality of thesystem of inequalities.Given matroidsM1;M2 on the same set T , a common basis ofM1;M2 is asubset of T that is a basis in both matroids. Edmonds [9] gave a necessary andsu�cient condition for the existence of a common basis, and polynomial-timealgorithms to determine whether there exists a common basis and to �nd acommon basis of maximum weight. (In analyzing such \matroid algorithms",we regard each independence test as a single step of the algorithm.) He alsofound a totally dual integral polyhedral description of the common bases.Here we propose a common generalization of matching and matroid in-tersection, and establish common generalizations for the results mentionedabove. Let G = (V;E) be a graph and T1; T2 disjoint stable sets of G, that is,sets of mutually nonadjacent vertices. We denote V n(T1 [ T2) by R. Let Mibe a matroid on Ti, for i = 1; 2, and suppose that M1 and M2 have rank r.A basic path-matching is a collection of r vertex-disjoint paths, all of whoseinternal vertices are in R, linking a basis of M1 to a basis of M2, togetherwith a perfect matching of the vertices of R not in any of the paths. (Figure 1shows an example. Here we assume that the only basis of M1 is T1 and theonly basis of M2 is T2. The thick edges form a basic path-matching.) In the
2T TR1Figure 1: A basic path-matchingspecial case when R = V , a basic path-matching is nothing but a perfectmatching of G. In the special case when R = ;, and G consists of a perfectmatching joining copies T1; T2 of a set T , a basic path-matching corresponds2



to a common basis of M1 and M2. Another important special case occurswhen there are no special restrictions on G;T1; T2, but M1 and M2 are free,that is, Ti is a basis of Mi for i = 1 and 2. In this case we refer to a basicpath-matching as a perfect path-matching with respect to G;T1; T2. Perfectpath-matching is itself a nontrivial generalization of matching. With the ex-ception of matroid intersection, all of the applications of basic path-matchingthat we cite are actually special cases of perfect path-matching.The existence theoremGiven a graph G, we denote by odd(G) the number of components of Ghaving an odd number of vertices. For a subset S of vertices of G, G[S]denotes the subgraph of G induced by S. A pair of subsets D1 � T1 [ R,D2 � T2 [ R is called stable if no edge of G joins a vertex in D1nD2 to avertex in D2 or a vertex in D2nD1 to a vertex in D1. (To see where thename comes from, consider the special case in which R = ;.) The sets ofvertices contained in the ellipses of Figure 2 form a stable pair. We use r1; r2to denote the rank functions of M1;M2. We now state the main result onthe existence of basic path-matchings.
2

T R T1 Figure 2: A stable pairTheorem 1.1 There exists a basic path-matching with respect to G;M1;M2if and only if there does not exist a stable pair (D1;D2) for whichr1(T1 nD1) + r2(T2 nD2) + jRn(D1 [D2)j < r + odd(G[D1 \D2]):3



Proof of necessity in Theorem 1.1: Suppose that there exists a basicpath-matching K, and let (D1;D2) be a stable pair. We think of the pathsof K as being from T1 to T2. There are at least r � r1(T1nD1) paths of Kbeginning in D1 \ T1. Each of them has a �rst vertex not in D1. Since(D1;D2) is stable, that vertex must be in (R[T2)n(D1 [D2). Also, for eachodd component H of G[D1 \ D2], either an edge of a path of K leaves Hor a matching edge leaves H. In either case the other end of this edge isagain in (R[T2)n(D1[D2). Now we have identi�ed at least r� r1(T1nD1)+odd(G[D1 \ D2]) vertices of (R [ T2)n(D1 [ D2), and all of them must bedistinct. Moreover, at most r2(T2nD2) of them can be from T2. Therefore,r � r1(T1nD1) + odd(G[D1 \D2]) � jRn(D1 [D2)j+ r2(T2nD2):The result follows.The stable pair indicated in Figure 2 shows that there is no perfect path-matching in that example. Now we apply the existence theorem to derive theexistence theorems for matching and matroid intersection mentioned above.Matching. Tutte's Theorem [19] states that G = (V;E) has a perfectmatching if and only if there does not exist a subset S of V such that odd(G�S) > jSj. It is easy to see that the condition is necessary. Now suppose thatG has no perfect matching, and take R = V . Then by Theorem 1.1, thereexists a stable pair (D1;D2) such thatjV n(D1 [D2)j < odd(G[D1 \D2]):Now observe that, because (D1;D2) is stable, every odd component of G[D1\D2] is also an odd component of G[D1 [D2]. Therefore, odd(G[D1 \D2]) �odd(G[D1 [D2]). If we take S = V n(D1 [D2), it follows that odd(G�S) >jSj, as required.Matroid Intersection. Suppose that M1;M2 are matroids on T , each ofrank r. Edmonds' Matroid Intersection Theorem [9] states that there existsa common basis if and only if there does not exist a subset A of T suchthat r1(A) + r2(TnA) < r. It is easy to see that this condition is necessary.Now suppose that there does not exist a common basis. If we take G tobe a perfect matching joining copies T1; T2 of T , and R to be ;, then byTheorem 1.1 there exists a stable pair (D1;D2) such thatr1(T1 nD1) + r2(T2 nD2) < r:4



We see from the stability of (D1;D2) that at least one end of any edge of Gis in T1 nD1 or in T2 nD2. Thus, if A denotes the subset of T correspondingto T1nD1, then r1(A) + r2(TnA) < r, as required.AlgorithmsThe main algorithmic result of this paper is the following.Theorem 1.2 There is a polynomial-time matroid algorithm to decide whetherthere exists a basic path-matching with respect to G;M1;M2.We have already mentioned that Edmonds also gave polynomial-timealgorithms for weighted versions of the matching and matroid intersectionproblems; we want to generalize these results, too. We need to be careful,however, to �nd an appropriate weighted generalization of the basic path-matching problem. The simplest choice, to consider the weight of a basicpath-matching to be the sum of the weights of its edges, leads to an NP-hard problem. For suppose that all edge-weights are 1, jT1j = jT2j = 1, andM1;M2 have rank 1. Then there exists a basic path-matching of weight jV j�1if and only if G has a hamiltonian path joining T1 to T2. Instead, we de�nethe weight of a basic path-matching to be the sum of the weights of the edgesof the paths plus twice the weights of its other edges. Notice that this choicehas the nice property that it does not favour putting edges into paths overputting them into the matching, and the resulting maximum-weight problemstill contains the weighted versions of the matching and matroid intersectionproblems.Theorem 1.3 There is a polynomial-time matroid algorithm to �nd (if thereis one) a maximum-weight basic path-matching with respect to G;M1;M2.PolyhedraThe algorithmic results will be derived as consequences of a polyhedral the-orem, which we now describe. First, we introduce some terminology andnotation. We use R to denote the set of real numbers. If B is a �nite set,a polyhedron in RB is a set of the form fx 2 RB : Ax � bg for some realmatrix A and vector b of appropriate dimensions. A polytope is a bounded5



polyhedron. We say that a polyhedron is integral if it is the convex hull ofits integral points. It is well-known that a polytope is the convex hull of a�nite set of points, and the minimal such set consists of its extreme points.For x 2 RB and C � B, we denote by x(C) the sum P(xj : j 2 C). For agraph G = (V;E) and a subset S of V , we denote by �(S) (or �G(S)) the setof edges of G that have exactly one end in S, and by 
(S) (or 
G(S)) theset of edges of G having both ends in S. If G is a digraph and S is a subsetof its vertices, we denote by ��(S) the set of arcs of G having tail in S andhead not in S, and by �+(S) the set of arcs of G having head in S and tailnot in S:Given a basic path-matching K, let K1 be the set of edges in the pathsand let K2 consist of the remaining edges of K. We de�ne the basic path-matching vector corresponding to K to be the vector  K 2 RE such that,for e 2 E,  Ke = 8><>: 1; if e 2 K12; if e 2 K20; if e 62 K:We denote the set of all basic path-matchings by K = K(G;M1;M2). Noticethat, given a weight vector c, the problem of �nding a maximum-weight basicpath-matching can be written as max(c K : K 2 K). The convex hull of allbasic path-matching vectors, conv(f K : K 2 Kg), is called the basic path-matching polyhedron. By a slight abuse of notation, we will sometimes denotethis polyhedron by conv(K). The maximum weight basic path-matchingproblem is equivalent to a linear programming problem over conv(K).Theorem 1.4 conv(K(G;M1;M2)) is the set of all x 2 RE satisfying:x(�(v)) = 2 (v 2 R) (1)x(�(S)) � r (T1 � S � T1 [ R) (2)x(�(S)) � 2 (S � R; jSj odd) (3)x(�(A)) � r1(A) (A � T1) (4)x(�(A)) � r2(A) (A � T2) (5)x(�(T1)) = r (6)x(�(T2)) = r (7)x � 0: (8)6



Theorem 1.4 is proved in Section 3. Here we apply it to matching andmatroid intersection. Edmonds [7] proved the following result on the polytopeof perfect matchings.Theorem 1.5 (Matching Polytope Theorem) The convex hull of inci-dence vectors of perfect matchings of a graph G = (V;E) is the set of allx 2 RE satisfying: x(�(v)) = 1 (v 2 V )x(�(S)) � 1 (S � R; jSj odd)x � 0:Now consider the special case of Theorem 1.4 in which T1 = T2 = ;.Then we get a description by linear inequalities of the convex hull of twicethe incidence vectors of perfect matchings of G. In the resulting description,the inequalities (2), (4), (5), (6), and (7) each collapse to a single redundantinequality. Dividing the right-hand sides of the remaining inequalities by 2,we obtain a description of the perfect matching polyhedron, and it is preciselythat of Theorem 1.5, as required.Edmonds [9] also proved the following polyhedral theorem on commonbases.Theorem 1.6 (Matroid Intersection Polyhedron Theorem) The con-vex hull of incidence vectors of common bases of two matroids M1;M2 on Twith rank functions r1; r2 is the set of all x 2 RT satisfying:x(A) � r1(A) (A � T )x(A) � r2(A) (A � T )x(T ) = rx � 0:Applying Theorem 1.4 in the case in which R = ; and G consists of aperfect matching joining T1 to T2, we get a description of the convex hullof incidence vectors of common bases of M1 and M2. In this description,inequalities (1) and (3) disappear, inequalities (2) are redundant, and in-equality (6) is the same as (7). Therefore, Theorem 1.6 also follows fromTheorem 1.4. 7



It is also quite easy to prove the algorithmic results stated above fromTheorem 1.4.Proof of Theorems 1.2 and 1.3 from Theorem 1.4: By the equivalenceof optimization and separation|see Gr�otschel, Lov�asz, and Schrijver [13]|itis possible to optimize an arbitrary linear function over conv(K(G;M1;M2))in polynomial time if and only if it is possible to solve the separation problemfor the same polytope in polynomial time. (The separation problem for apolytope P � Rn is, given a point x̂ 2 Rn, either to determine that x̂ 2 Por to �nd a linear inequality ax � � that is violated by x̂ but satis�ed byevery point in P .) However, it is straightforward to show that the latter istrue for the polyhedron of Theorem 1.4. First, it is easy to check that a givenpoint x̂ 2 RE satis�es inequalities (1) and (8), since there are only a few ofthem. Henceforth, we may assume that x̂ � 0. Now inequalities (2) can bechecked by solving a minimum-cut problem. Inequalities (3) require a moresophisticated use of minimum-cut methods, but these can also be checked inpolynomial time; see Padberg and Rao [16]. Next, x̂ satis�es inequalities (4)and (6) if and only if the vector y 2 RT1 de�ned by yv = x̂(�(v)) is in theconvex hull of incidence vectors of bases of M1. Polynomial-time algorithmsfor the separation problem for this polytope are given in [13] and [2]. Theinequalities involving M2 can be handled similarly. This completes the proof.Note that the algorithms that result from these proofs use the ellipsoidmethod, and are not practical.Independent path-matchingsMany important results are formulated in terms of matchings of graphs(rather than perfect matchings), and in terms of common independent sets oftwo matroids (rather than common bases). There is an analogous theory forpath-matchings, which we describe here. In particular, we show how theseresults lead to a proof of Theorem 1.1.We begin as before with G;M1;M2, except that we no longer require thatM1 and M2 have the same rank. An independent path-matching with respectto G;M1;M2 is a setK of edges such that every component of G(V;K) havingat least one edge is a simple path from T1[R to T2[R, all of whose internalvertices are in R, and such that the set of vertices of Ti in any of these paths8



is independent in Mi, for i = 1 and 2. (Of course, any basic path-matchingis an independent path-matching.) The thick edges in Figure 3 form anindependent path-matching with respect to the free matroids M1;M2. It is
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T R T1Figure 3: An independent path-matchingeasy to see, in the case where R = ; and G consists of a perfect matchingof T1 to T2, that an independent path-matching corresponds to a commonindependent set of M1 and M2. In the case where R = V , we do not getsuch a simple correspondence to matchings of G, since there may be paths oflength more than 1 in G(V;K). However, let us de�ne the independent path-matching vector  K corresponding to K in the same way as before, namely,an edge of a one-edge component of G(V;K) having both ends in R gets anentry of 2, the other edges of K get entries of 1, and edges not in K getentries of 0. Also, we de�ne the weight of K with respect to a given weightvector c to be c K. Then in the case where R = V , it is easy to see that themaximum weight of an independent path-matching is twice the maximumweight of a matching, although there may be maximum-weight independentpath-matchings that do not arise directly from a single maximum-weightmatching. Finally, there is the important special case in which M1;M2 arefree; then we may refer to an independent path-matching with respect toG;M1;M2 as a path-matching with respect to G;T1; T2.The problem of �nding a maximum-weight independent path-matchingcan be reduced by a trick to the problem of �nding a maximum-weight basicpath-matching (in a di�erent graph with di�erent matroids). However, asmentioned above, there is something to be gained by attacking this problemmore directly. A main result is the following polyhedral description of theindependent path-matchings. We denote by K� = K�(G;M1;M2), the set ofall independent path-matchings with respect to G;M1;M2. (As before, we9



may abbreviate conv(f K : K 2 K�g) to conv(K�).)Theorem 1.7 conv(K�(G;M1;M2)) is the set of all x 2 RE satisfying:x(�(v)) � 2 (v 2 R) (9)x(
(S)) � jS \ Rj (T1 � S � T1 [R) (10)x(
(S)) � jS \ Rj (T2 � S � T2 [R) (11)x(
(S)) � jSj � 1 (S � R; jSj odd) (12)x(�(A)) � r1(A) (A � T1) (13)x(�(A)) � r2(A) (A � T2) (14)x � 0: (15)Theorem 1.7 is proved from Theorem 1.4 in Section 3. It is easy to derivefrom it the polyhedral theorems of Edmonds on matchings and commonindependent sets. We also call attention to the path-matching polyhedron,that is, the special case in which M1;M2 are free.Corollary 1.8 The convex hull of path-matchings determined by G;T1; T2 isthe set of all x 2 RE satisfying x 2 RE satisfying:x(�(v)) � 1 (v 2 T1 [ T2) (16)x(�(v)) � 2 (v 2 R) (17)x(
(S)) � jS \ Rj (T1 � S � T1 [R) (18)x(
(S)) � jS \ Rj (T2 � S � T2 [R) (19)x(
(S)) � jSj � 1 (S � R; jSj odd) (20)x � 0: (21)A system Ax � b of linear inequalities is totally dual integral if for ev-ery integral vector c for which the linear programming problem minimize(yb : yA = c; y � 0) has an optimal solution, it has an optimal solution thatis integral. (A fundamental theorem states that, if Ax � b is totally dualintegral and b is integral, then P = fx : Ax � bg is an integral polyhedron.)Cunningham and Marsh [5] proved that the system of inequalities describingthe convex hull of matchings is totally dual integral, and Edmonds [9] proved10



the same thing for the convex hull of common independent sets of two ma-troids. (However, the system of inequalities appearing in Theorem 1.5 is nottotally dual integral.) These results generalize well-known min-max theoremscharacterizing the maximum cardinality of a matching and of a common in-dependent set. We prove in Section 4 that the system of Theorem 1.7 istotally dual integral. This theorem generalizes the similar results for match-ing and matroid intersection. It also can be used to prove a generalizationof the corresponding min-max formulas, which we now state.Theorem 1.9 The maximum over K 2 K�(G;M1;M2) of  K(E) is the min-imum over stable pairs (D1;D2) ofr1(T1nD1) + r2(T2nD2) + jRn(D1 [D2)j+ jRj � odd(G[D1 \D2]):We leave to the reader the exercise of obtaining from this theorem theTutte-Berge matching formula, and Edmonds' matroid intersection min-maxtheorem. We can now prove the existence result for basic path-matchings,Theorem 1.1.Proof of Theorem 1.1 from Theorem 1.9: We already showed that thecondition is necessary. Now suppose that there is no basic path-matching.Notice that this implies that the maximum ofP(xe : e 2 E) over independentpath-matching vectors x is less than jRj + r. It follows from Theorem 1.9that there exists a stable pair (D1;D2) such thatr1(T1nD1) + r2(T2nD2) + jRn(D1 [D2)j+ jRj � odd(G[D1 \D2]) < jRj+ r:So (D1;D2) is the required stable pair.2 ApplicationsIn this section we treat some further applications of path-matchings.Disjoint pathsSuppose that we are given a graph G0 = (V 0; E 0) whose vertex-set is parti-tioned into sets T 01; T 02; R with jT 01j = jT 02j = k. We wish to �nd, if possible,11



k vertex-disjoint paths of G0 from T 01 to T 02. This is, of course, a standardproblem, for which Menger's Theorem gives a characterization, and network
ow methods give e�cient algorithms. Our purpose here is just to show thatit can be transformed into a perfect path-matching problem.Here is the construction. Form a new graph G by adding, for every r 2 R,vertices r1; r2 and edges rr1; rr2; r1r2 and put T1 = R1 [ T 01, T2 = R2 [ T 02,where Ri denotes fri : r 2 Rg. Then there is a perfect path-matching of Gwith respect to T1; T2 if and only if the desired paths exist in G0. Thus theexistence of a polynomial-time algorithm for the disjoint paths problem is aconsequence of Theorem 1.2.We can also use the construction to derive Menger's Theorem from Theo-rem 1.1. Menger's Theorem states that the disjoint paths exist if there existsno set S that separates T 01 from T 02 in G0 and has size less than k. (A setof vertices separates T 01 from T 02 if it meets every path from T 01 to T 02.) It iseasy to show that the condition is necessary. Now suppose that G0 does notcontain the desired paths. Then there exists a stable pair (D1;D2) of G suchthat jD1 \ T1j+ odd(G[D1 \D2]) > jT2nD2j+ jRn(D1 [D2)j: (22)For every r 2 D1 \D2, r1 =2 D1 and r2 =2 D2. For every such r, delete r fromD1 and add r1 to D1. Then we get a new stable pair with D1 \D2 = ; andstill satisfying (22). NowS = (T 01nD1) [ (T 02nD2) [ (Rn(D1 [D2))separates T 01 from T 02 in G0, and a calculation shows that jSj < k, provingMenger's Theorem.Rank in the matching matroidAnother application of the maximum path-matching formula occurs whenT1 = ;. Then the maximum value of a path-matching is the maximum in-tersection of a matchable set with R. This is the rank of R in the \matchingmatroid" determined by G. This matroid was introduced by Edmonds andFulkerson [10]. The following formula for the rank of R is well known, al-though it was not explicitly stated in [10]. We use the notation oddT (H) forthe number of odd components of H, each having all of its vertices containedin T . This result can be derived from the min-max theorem by a methodsimilar to ones used above, and we leave this to the reader.12



Theorem 2.1 Let G = (V;E) be a graph and R a subset of V . The maxi-mum size of a subset of R covered by a matching of G is the minimum overS � V of jRj � jSj+ oddR(G[V nS])The Tutte matrixLet G0 = (V 0; E 0) be a graph, and let xe; e 2 E 0 be distinct variables. LetA = (aij) be a V 0 by V 0 skew-symmetric matrix such that aij = �xe ifij = e 2 E 0, and aij = 0 otherwise. We call A the Tutte matrix of G0,even though it is not quite unique. Given subsets I; J of V 0, both of size k,we want to determine whether the submatrix A[I; J ] is nonsingular, that is,whether its determinant is nonzero (as a polynomial), or more generally, todetermine its rank. (Edmonds [8] seems to have been the �rst to emphasizesuch algorithmic questions. For example, he proposed the problem of �ndinga polynomial-time algorithm to compute the rank of a matrix whose entriesare multivariate polynomials with integral coe�cients.) This problem is inNP, because it is not di�cult to show that A is nonsingular if and onlyif there exist (small) rational values for the variables so that the resultingrational matrix is nonsingular. (This observation is the basis for a well-knownapproach that provides a randomized polynomial-time algorithm.) However,it is not obvious that it is in co-NP , let alone that there is a polynomial-timedeterministic algorithm.There are two important special cases where satisfactory results havebeen available. If I \ J = ;, then each xe occurs at most once in A[I; J ],so A[I; J ] is nonsingular if and only if there is at least one nonzero term inthe expansion of its determinant. This property can be tested by solving abipartite matching problem. Also, if I = J , then A[I; J ] is nonsingular if andonly if G[I] has a perfect matching. (The latter fact, which is not obvious butcan be proved by elementary methods, played an important role in Tutte'soriginal paper [19].) We generalize this fact, as follows. De�ne G = (V;E)to be the graph obtained from G0 by deleting the vertices not in I [ J andthe edges having both ends in InJ and those having both ends in JnI. Thefollowing result can be proved by elementary methods; see [11] or [4].Theorem 2.2 The rank of A[I; J ] is the maximum of  K(E) over path-matchings K with respect to G; InJ; JnI.13



From Theorems 2.2 and 1.2 we get immediately the following consequence.Corollary 2.3 There is a polynomial-time algorithm to determine the rankof a given submatrix of the Tutte matrix.We can combine Theorem 2.2 with the min-max theorem Theorem 1.9 toobtain a formula for the rank of A[I; J ]. However, this formula is not reallynew. It can be proved directly using a linear-algebra method of Lov�asz [14].His proof, which can be found in [11], predates our polyhedral proof, alsoin [11], and our generalization, which �rst appeared in [4].Theorem 2.4 The rank of A[I; J ] is equal to the minimum over all stablepairs (I 0; J 0) of G with respect to InJ; JnI ofjInI 0j+ jJnJ 0j+ jI 0 \ J 0j � odd(G[I 0 \ J 0]): (23)The matchable set polyhedronA matchable set of a graph is a set of vertices forming the ends of the edgesof some matching. The matchable set polyhedron Q(G) of a graph G is theconvex hull of incidence vectors of matchable sets of G. This polyhedronwas introduced by Balas and Pulleyblank [1], who gave a nice description bylinear inequalities. (We will not need that description here.)There are several ways to obtain a polynomial-time algorithm for theseparation problem for Q(G). The easiest method to describe brie
y goesas follows. We use the equivalence of separation and optimization, so it isenough to show that there is a polynomial-time algorithm to optimize anylinear function cx over Q(G). One way to do this, is to reduce the problemto a weighted matching problem, by de�ning edge weights c0uv = cu + cv forany edge uv. The resulting algorithm for the separation problem is basedon the ellipsoid method, and so is not combinatorial, and is not stronglypolynomial. There does exist a polynomial-time combinatorial algorithm forthe separation problem; see [3]. However, that algorithm uses scaling, and isnot strongly polynomial. Here we describe a strongly polynomial algorithm,based on the results of this paper. In fact, it was this problem that originallyled to the formulation of problems on path-matchings.14



Let A be a V by V matrix, and let F denote fI � V : A[I; I] isnonsingularg. (If A is the Tutte matrix of G, then F is the family of match-able sets of G.) Let A0 = (A;I), where I is a jV j by jV j identity matrix. Wesuppose that the columns of I are indexed by V 0 = fv0 : v 2 V g, and for anysubset J of V we de�ne J 0 to be fv0 : v 2 Jg. It is easy to see that A[J; J ] isnonsingular if and only if B = J [ (V 0nJ 0) indexes a column basis of A0. (Ofcourse, there are column bases of A0 that are not of this form.) Let B consistof the sets B � V [ V 0 such that B indexes a column basis of A0. Then Bis the family of bases of a matroid N on V [ V 0. Theorem 2.5 below is thekey observation. Its proof uses Edmonds' Matroid Intersection PolyhedronTheorem 1.6. We use the following notation: Given a vector x 2 RV , de�nex0 2 RV 0 by x0j0 = xj for all j 2 V .Theorem 2.5 Given x 2 RV , de�ne y 2 RV[V 0 by y = (x; 1 � x0). Then xis a convex combination of incidence vectors of elements of F if and only ify is a convex combination of incidence vectors of elements of B.Proof: First, suppose that x is a convex combination P�ixi of incidencevectors xi of members Ci of F . Then for each i, Ci [ (V 0nC 0i) is a basis ofN1. Let yi be its incidence vector. Then y = P�iyi, as required.Now suppose that y is a convex combination of incidence vectors of ele-ments of B. De�ne a matroid N2 = (V [ V 0;B2) by B2 = fB � V [ V 0 : B =C [ (V 0nC 0) for some C � V g. Then y is a convex combination of incidencevectors of bases of N2. (There are many ways to show this. One is to ob-serve that the coe�cient matrix of the system yi + yi0 = 1; y � 0 is totallyunimodular.) Hence by Theorem 1.6, y is a convex combination P�iyi ofincidence vectors yi of common bases Bi of N and N2. But a common basisof N and N2 is of the form C[(V 0nC 0) where C 2 F , so for each i, the vectorxi, de�ned to be yi restricted to V , is the incidence vector of a member ofF . Therefore, since x = P�ixi, we are done.It follows from Theorem 2.5 that we can use a separation algorithm forthe convex hull of incidence vectors of elements of B to determine whether agiven vector x is in the convex hull of incidence vectors of elements of F . (Inthe alternative case when x is not in the polytope, we also need to be able to�nd a violated valid inequality, but clearly an inequality ax+ b(1 � x0) � �translates into an inequality (a � b)x � � + �, where � is the sum of thecomponents of b.) There is a strongly polynomial matroid algorithm for15



the former problem [2]. If we want to apply it to the special case whereA is the Tutte matrix of a graph G, then we need an algorithm to decidewhether a given subset of V [ V 0 is independent in the matroid N . But it iseasy to see that a subset P [ Q0 is independent if and only if the submatrixA[V nQ;P ] has rank jP j, so we can use the algorithm of Corollary 2.3. Thelatter algorithm is strongly polynomial, so we have a strongly polynomialseparation algorithm for the matchable set polytope.Remark Theorem 2.5 is the basis for a separation algorithm for \lineardelta-matroid polyhedra".3 Proofs of polyhedral theoremsIn this section we prove Theorem 1.4, and then we use Theorem 1.4 to proveTheorem 1.7. An important step in the proof of Theorem 1.4 is the proofof the following key fact: If the inequalities (3) are omitted from the list ofinequalities, the resulting polyhedron P 0 is integral. This fact is interesting inits own right; it generalizes both the matroid intersection polyhedron theoremand the \fractional matching polyhedron theorem". Moreover, its proof isthe only part of the proof of Theorem 1.4 that uses a new idea.Theorem 3.1 The set of solutions of (1), (2), and (4){(8) is an integralpolytope.Proof: Let P 0 denote the polytope that is claimed to be integral. Let~G = (V; ~E) denote the digraph obtained from G by replacing each edge by apair of oppositely directed arcs. We de�ne a matroid N1 on ~E, as follows. Aset A is a basis of N1 if and only if� No arc in A has its tail in T2;� Each vertex in R is the tail of exactly one arc in A;� Each vertex in T1 is the tail of at most one arc in A;� The set of elements of T1 that are tails of arcs in A is a basis of M1.(N1 is a matroid because it is the direct sum of matroids of rank at most oneand a matroid obtained from M1 by making parallel copies of its elements.)16



We de�ne M2 similarly, interchanging \head" with \tail" and T1 with T2.It follows from Theorem 1.6, the common basis polytope theorem, that thepolytope Q � R~E de�ned to be the set of all y satisfying(Q) 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: y(��(v)) = 0; (v 2 T2)y(�+(v)) = 0; (v 2 T1)y(��(v)) = 1; (v 2 R)y(�+(v)) = 1; (v 2 R)y(��(A)) � r1(A); (A � T1)y(�+(A)) � r2(A); (A � T2)y(��(T1)) = ry(�+(T2)) = ry � 0has only integral extreme points.We de�ne a function � : R ~E ! RE, by: �(y)vw = yvw + ywv, for vw 2 E.Let �(Q) denote f�(y) : y 2 Qg. It is easy to see that �(Q) is an integralpolyhedron. (Namely, if x 2 �(Q), then x = �(y) for some y 2 Q. Now ycan be expressed as a convex combination of integral points in Q, and so bylinearity of �, x is a convex combination of their images, which are integralpoints of �(Q).) So we can complete the proof by proving the following.Claim P 0 = �(Q).Given x 2 �(Q), choose y 2 Q with x = �(y). For any S such thatT1 � S � T1 [ R, we havex(�(S)) = y(��(S)) + y(�+(S))� y(��(S))� y(�+(S))=Xv2S(y(��(v))� y(�+(v))) = r;so x satis�es (2). It is straightforward to check that x also satis�es the otherinequalities de�ning P 0, so �(Q) � P 0.Now, suppose that x 2 P 0. Let L denote the set of all paths in G from avertex in T1 to a vertex in T2 and having internal vertices only from R. Forvw 2 E, we denote by Lvw the set of paths in L that use the edge vw. Bythe Max-
ow Min-cut Theorem, there exists a nonnegative vector � 2 RL,such that �(L) = r, and, for vw 2 E, �(Lvw) � xvw: Let f 2 R ~E be the17



(T1; T2)-
ow in ~G, corresponding to the path-
ow �. That is, for vw 2 ~E,fvw = P�L where the sum is over L 2 Lvw such that v precedes w on L.Now, de�ne a vector y 2 R~E, such that, for vw 2 ~E,yvw = fvw + 12(xvw � (fvw + fwv)):It is easily veri�ed that y 2 Q, and �(y) = x. Thus, x 2 �(Q), so P 0 � �(Q),and we are done.Remark One might expect that adding to (Q) the inequalities y(��(S)) � 1and y(�+(S)) � 1 for all S � R such that jSj is odd, also results in an integralpolyhedron. This is false.Our proof of Theorem 1.4 follows a technique that was used previously inproofs of Edmonds' description of the perfect matching polyhedron (Theo-rem 1.5); see Schrijver [17] or Green-Kr�otki [12]. The proof uses Theorem 1.5,but could easily be modi�ed to avoid doing so.Proof of Theorem 1.4: Let P (G;M1;M2) � RE (or simply P ) denote thepolyhedron de�ned by the inequalities (1){(8). Clearly, conv(K) � P . Toprove the opposite inclusion, it su�ces to prove that P is integral. (Namely,an integral vector x satisfying (1), (4), (5), (6), and (7) must determine a setof r disjoint paths joining pairs of vertices in T1 [ T2, together with disjointcircuits and edges in G[R]. Moreover, the vertices in Ti that are ends ofpaths must form a basis of Mi for i = 1 and 2. Because of inequalities (2),the paths must go from T1 to T2, and because of inequalities (3), the circuitsmust all be even. If there are no circuits, then x is a basic path-matchingvector, and if there are some even circuits, then x is the average of two suchvectors.)We prove that P is integral by induction on the number of vertices of G;the result is obviously true when G has just one vertex. Let x0 2 RE be anextreme point of P . If x0 does not satisfy with equality any of the inequal-ities (3) for which jSj � 3, then by Theorem 3.1, x0 is integral. Otherwise,there exists S � R such that jSj � 3, jSj is odd, and x0(�(S)) = 2.Denote by G1 the graph G � S, that is, the graph obtained from G bydeleting the edges in 
(S) and shrinking the vertices in S to a single vertexwhich we call S. Let x1 denote the restriction of x0 to G1. Let P1 denoteP (G1;M1;M2), and let K1 denote K(G1;M1;M2). It is easily veri�ed that18



x1 2 P1. Then, by induction, conv(K1) = P1. Thus there exists a nonnegativevector �1 2 RK1 such that �1(K1) = 1 andx1 = XK2K1 �1K K:Let U = V nS. LetG2 denote G�U , let K2 denote the set of perfect matchingsof G2, and let x2 denote the restriction of x0 to G2. It is easily veri�ed, usingthe Perfect Matching Polyhedron Theorem 1.5, since x2(�(v)) = 2 for allvertices v of G2, that that there exists a nonnegative vector �2 2 RK2 suchthat �2(K2) = 1 and x2 = XK2K2 �2K K:In what follows, when we speak of a basic path-matching in G or in G1,we mean with respect to the matroids M1;M2. We will show explicitly thatx0 can be expressed as a convex combination P(�K K : K 2 K). Begin withall �K = 0, and do the following until �1 = 0. Consider L 2 K1 such that�1L > 0. Either there exist two edges e0; e00 2 L that are incident with thevertex S of G1, or there exists a matching edge e0 of L that is incident to S.In the latter case, we take e0 = e00. Now, x2e0 = x1e0 > 0, and so there existsJ 0 2 K2 containing e0 such that �2J 0 > 0. Similarly, there exists J 00 2 K2containing e00 such that �2J 00 > 0. (An example is shown in Figure 4, where Lis drawn with thin lines, J 0nfe0g is drawn with thick solid lines, and J 00nfe00gis drawn with thick dashed lines.) Let K = L[J 0[J 00. Note that J 0[J 00 may
’’e
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Figure 4: Combining solutionscontain circuits of even length, so K is not necessarily a basic path-matching19



in G; however, K is the union of two basic path-matchings K 0;K 00 (possiblyequal) of G. If K 0 = K 00, then take " to be the minimum of �1L; �2J 0 ; increase�K0 by " and decrease �1L and �2J 0 by ". If K 0 6= K 00, then take " to be theminimum of 12�1L; �2J 0 ; and �2J 00 ; increase �K0 and �K00 by ", decrease �1L by2" and decrease �2J 0 and �2J 00 by ".Thus we can obtain x0 as a convex combination of path-matching vectorsof basic path-matchings in G. However, x0 is an extreme point of P , andso cannot be expressed as a convex combination of other elements of P .Therefore, x0 is a basic path-matching vector, and hence is integral.Remark It can be deduced from the proof that any basic path-matchingproblem on a bipartite graph can be reduced to a matroid intersection prob-lem.As a consequence of Theorem 1.4, we get a second description of conv(K).Corollary 3.2 conv(K(G;M1;M2)) is the set of solutions of:x(�(v)) = 2 (v 2 R) (24)x(
(S)) � jS \Rj (T1 � S � T1 [ R) (25)x(
(S)) � jSj � 1 (S � R; jSj odd) (26)x(�(A)) � r1(A) (A � T1) (27)x(�(A)) � r2(A) (A � T2) (28)x(�(T1)) = r (29)x(�(T2)) = r (30)x � 0: (31)Proof: It is clear that the above inequalities are valid for conv(K(G;M1;M2)).Now suppose that x 2 RE satis�es all of them. Given a subset S of T1 [ Rsuch that T1 � S, we havex(�(S)) = Xv2S x(�(v))� 2x(
(S))= 2 jS \Rj + r � 2x(
(S))� 2 jS \Rj + r � 2 jS \Rj= r;so x satis�es (2). A similar argument shows that x satis�es (3). Trivially, xalso satis�es (1) and (5){(8). Therefore, by Theorem 1.4, x 2 conv(K), asrequired. 20



The independent path-matching polytopeWe now prove Theorem 1.7 as a consequence of Corollary 3.2. For the specialcase of the Matching Polyhedron Theorem, the proof reduces to one due toSchrijver [18].Proof of Theorem 1.7: It is clear that inequalities (9){(15) are validfor conv(K�). Now suppose that x 2 RE satis�es all of these inequalities.Create a copy ~v of each v 2 V , and for S � V , denote by ~S the correspondingcopy of S. Similarly, for a subset F of E, denote by ~F the set f~v ~w : vw 2 Fg.Now construct a graph G0 = (V 0; E 0) such that V 0 = V [ ~V and E 0 =E[ ~E[fv~v : v 2 V g, and let T 01 = T1[ ~T2, T 02 = T2[ ~T1, and R0 = R[ ~R. Let~Mi denote a copy of Mi on the set ~Ti for i = 1 and 2. Let M 01 be the directsum of M1 with ~M2, and M 02 be the direct sum of M2 with ~M1. In whatfollows, we use K� to denote K�(G;M1;M2) and K to denote K(G0;M 01;M 02).Claim If z0 2 conv(K) and z is the restriction of z0 to E, then z 2 conv(K�).It su�ces to prove the claim when z0 is an extreme point. Thus, assumethat z0 =  L for some L 2 K. Let K = L \ E, and let F be the setof matching edges of K that are not matching edges of L. Then, clearly,z = 12( K +  KnF ). Hence, z 2 conv(K�), which proves the claim.By the claim, we can prove the theorem by constructing x0 2 conv(K),such that x is the restriction of x0 to E. By the Matroid Polyhedron Theo-rem [9], the vector t = (x(�(v)) : v 2 T1) is a convex combination of incidencevectors of independent sets of M1. Therefore, there exists, for each v 2 T1,a number yv � x(�(v)) such that (yv : v 2 T1) is a convex combination ofincidence vectors of bases of M1. (To get y, we simply extend to a basis eachof the independent sets in the expression for t, and use the same coe�cients.)We similarly de�ne yv for v 2 T2, using M2 instead of M1. Now we de�nex0 2 RE0 by:� for vw 2 E, x0vw = xvw, and x0~v ~w = xvw;� for v 2 R, x0v~v = 2 � x(�G(v));� for v 2 T1 [ T2, xv~v = yv � x(�G(v)).By Corollary 3.2, conv(K) is de�ned by (24){(31) (applied to G0). The proofwill be �nished if we can show that x0 satis�es all of these inequalities. We21



show that it satis�es inequalities (25) and (26); it obviously satis�es theothers.Let S 0 � T 01[R0 such that T 01 � S 0. De�ne S;U � V such that S 0 = S[ ~U .Thus T1 � S � T1 [R and T2 � U � T2 [R. Thenx0(
G0(S 0))= x(
(S)) + x(
(U)) + 2 jS \ U j � Xv2S\U x(�(v))= x(
(S)) + x(
(U))� 2x(
(S \ U))� x(�(S \ U)) + 2 jS \ U j (32)� x(
(SnU)) + x(
(UnS)) + 2 jS \ U j (33)� j(SnU) \ Rj+ j(UnS) \Rj + 2 jS \ U j (34)= jS \ Rj+ jU \Rj= jS 0 \R0j ;where we get (33) from (32) by nonnegativity, and we get (34) from (33) byinequalities (10) and (11). Thus x0 satis�es the inequalities (25).Now, let S 0 � R0 such that jS 0j is odd. De�ne S;U � V by S 0 = S [ ~U .Thus S;U � R, and exactly one of jSj ; jU j is odd. Therefore exactly one ofjSnU j ; jUnSj is odd. Then, by the inequalities (12) and (9),x(
(SnU)) + x(
(UnS)) � jSnU j+ jUnSj � 1: (35)Now, x0(
G0(S 0))= x(
(S)) + x(
(U)) + 2 jS \ U j � Xv2S\T x(�(v))= x(
(S)) + x(
(U))� 2x(
(S \ U))� x(�(S \ U)) + 2 jS \ U j (36)� x(
(SnU)) + x(
(UnS)) + 2 jS \ U j (37)� jSnU j+ jUnSj � 1 + 2 jS \ U j (38)= jSj+ jU j � 1= jS 0j � 1;where we get (37) from (36) by nonnegativity, and we get (38) from (37) byinequality (35). Therefore, x0 satis�es the inequalities (26).22



4 Total dual integralityBy the Independent Path-Matching Polyhedron Theorem 1.7, the polyhedronde�ned by inequalities (9){(15) has integral extreme points. Therefore, forany objective function c 2 RE, the linear programming problem (P ) belowhas an integral optimal solution(P ) 8><>: max cTxsubject to(9)� (15):Given a partition T1; T2; R of the vertices of G, we de�ne
1 = fS : T1 � S � T1 [ Rg;
2 = fS : T2 � S � T2 [ Rg;
12 = fS � R : jSj is oddg;
01 = fS : S � T1g;
02 = fS : S � T2g:Let 
 = 
1[
2[
12, and 
0 = 
01[
02. For a set S 2 
, de�ne f(S) 2 f0; 1gsuch that f(S) = 1 exactly when S 2 
12. For a set S 2 
0, de�ne g(S) tobe r1(S) if S � T1, and to be r2(S) otherwise. For variables y 2 RV , z 2 R
,and w 2 R
0, the dual (D) of (P ) is given by(D) 8>>>>>>>><>>>>>>>>: minXv2R 2yv +XS2
(jS \Rj � f(S))zS + XA2
0 g(A)wAsubject toyu + yv + XS2
u;v2S zS + XA2
0uv2�(A)wA � cuv (uv 2 E)y � 0; z � 0; w � 0:We will prove that, whenever c is integral, there exists an integral optimalsolution to (D). In other words, we will show that the system of inequal-ities (9){(15) is totally dual integral; see Schrijver [18]. Cunningham andMarsh [5] proved that the system of inequalities in Edmonds' characteriza-tion of the matching polyhedron is totally dual integral, and Edmonds [9]proved that the system of inequalities in his description of the matroid in-tersection polyhedron is totally dual integral. Our theorem generalizes these23



theorems. Our proof uses ideas from Schrijver's proof [17] of the matchingresult and from Edmonds' proof of the matroid intersection result.Let S be a collection of subsets. We call S a laminar family if, for eachS; T 2 S, either S � T , T � S or S \ T = ;. We call S a chain if, for eachS; T 2 S, either S � T or T � S.Theorem 4.1 For all integral c, there exists an integral optimal solution(y; z; w) to (D) such that supp(z) is laminar, and supp(w)\
01 and supp(w)\
02 are chains.Proof: It su�ces to prove the theorem for nonnegative c. Suppose that theresult fails, and let G;M1;M2; c form a counterexample with jV j+ jEj+c(E)as small as possible. For each edge e of G, ce � 1, since otherwise we candelete e.Claim 1 For every optimal solution (y; z; w) to (D), y = 0.Let F denote the set of independent path-matchings that attain the opti-mum of (P ). Suppose that there exists v 2 R such that  K(�(v)) = 2 for eachK in F . We decrease the weight of each edge incident with v by 1 to get c0.Then, by our choice of c, there exists an integral optimal solution (y0; z0; w0)to (D), with respect to c0, with the required properties. By increasing y0v by1, we obtain an integral optimal solution to (D), with respect to c, havingthese properties, and this is a contradiction. So, for all v 2 R, there existsK 2 F such that  K(�(v)) < 2. Thus, by complementary slackness, yv = 0,proving Claim 1.Claim 2 There exists an optimal solution to (D) such that supp(z) islaminar.Let (y; z; w) be an optimal solution to (D) that minimizesP(zS jSj jV nSj :S 2 
). Suppose that supp(z) is not laminar, and let S;U 2 supp(z) suchthat jSnU j ; jUnSj ; jS \ U j > 0. By a simple case analysis, we �nd thateither SnU and UnS are both in 
, or S \ U and S [ U are both in 
. Weconsider these cases separately.Case 1: SnU and UnS are both in 
. Let " be the minimum of zS and zU .We construct z0 2 R
 from z by decreasing zS and zU by ", and increasingzSnU and zUnS by ". Now, construct y0 2 RV , by increasing yv by " for allv 2 S \ U . One easily checks that (y0; z0; w) is an optimal solution to (D).However, y0 6= 0, which contradicts Claim 1.24



Case 2: S \ U and S [ U are both in 
. Let " be the minimum of zSand zU . We construct z0 2 R
 from z by decreasing zS and zU by ", andincreasing zS\U and zS[U by ". One easily checks that (y; z0; w) is an optimalsolution to (D), and that the choice of (y; z; w) is contradicted. This provesClaim 2.Now choose (y; z; w) as in Claim 2, so that P(wAjAjjV nAj : A 2 
0) isminimized. Suppose that there exist A;B 2 supp(w) such that AnB andBnA are both nonempty, with A;B 2 
01 or A;B 2 
02. Let " be theminimum of wA and wB. We construct w0 2 R
0 from w by decreasingwA and wB by ", and increasing wA\B and wA[B by ". One easily checks,using the submodularity of the rank functions, that is, g(A) + g(B) � g(A[B) + g(A \ B), that (y; z; w0) is an optimal solution to (D), and that thechoice of (y; z; w) is contradicted. Therefore, there exists an optimal solution(y; z; w) of (D) such that y = 0, supp(z) is laminar, and supp(w) \ 
01 andsupp(w) \ 
02 are chains.We know that (D) has an optimal solution that is an optimal solutionof the linear program (D0) obtained from (D) by deleting all the variablesother than those for which z;w take positive values. To show that (D) hasan integral optimal solution, it su�ces to show that (D0) does. Let F be theconstraint matrix of (D0). Now the familiesC = f
(S) : S 2 supp(z) \ (
12 [ 
1)g [ f�(A) : A 2 supp(w) \ 
02gand D = f
(S) : S 2 supp(z) \ 
2)g [ f�(A) : A 2 supp(w) \ 
01gare laminar families of subsets of E, and the columns of F are the incidencevectors of the elements of C [D. By a result of [9], F is totally unimodular;since c is integral, (D0), and therefore (D), has an integral optimal solution.This solution has all the required properties, so this is a contradiction.Theorem 4.1 has the following consequences. The �rst one is just a spe-cialization to ordinary path-matching.Corollary 4.2 The system of inequalities (16){(21) is totally dual integral.Proof: This is almost immediate from the theorem. The dual variableswA corresponding to the constraints (13) and (14) must be replaced by dual25



variables wv corresponding to the constraints (16). But this is quite easy todo. We simply set wv = P(wA : v 2 A) for each v 2 T1 [ T2. It is easy tocheck that the resulting dual solution has the desired properties.The second consequence gives a totally dual integral description for thebasic path-matching polyhedron. This is a bit subtle. First, note that thesystem (1){(8) of Theorem 1.4, is not totally dual integral. This is alreadydemonstrated in the case of perfect matchings of a graph. We do not knowwhether the system of inequalities (24){(31) of Corollary 4.3 is totally dualintegral, but we believe that it is. We can show that a closely related sys-tem describing the basic path-matching polyhedron is totally dual integral.The proof uses a simple trick (adding a large even integer to each objectivecoe�cient in (P ) and applying Theorem 4.1).Corollary 4.3 The system of inequalities (11), (24){(31) is totally dualintegral.We remark that it is quite easy to show from Corollary 4.3 that, as in thematching case, the system (1){(8) is \totally dual half-integral", that is, thatan optimal dual solution can be required to be half-integral if c is integral.Finally, we use Theorem 4.1 to prove the min-max formula of Theo-rem 1.9.Proof of Theorem 1.9: By an argument similar to that used to prove thenecessity of the condition in Theorem 1.1, we can show that the maximum isat most the minimum. We omit the details. It remains to prove that there isa stable pair making the second expression at most the maximum of  K(E)over independent path-matchings K. This maximum is the optimal value ofthe linear programming problem (P ) when c = (1; 1; : : : ; 1). Therefore, bythe duality theorem, it is the optimal value of problem (D) for this c. Weapply Theorem 4.1 to obtain an optimal solution (y; z; w) with the statedproperties. It is easy to see that this solution is f0; 1g-valued. We canarrange that it has the following additional properties:� yv = 0 for all v 2 T1 [ T2. (Proof: If yv = 1, we can instead putwfvg = 1.)� If S 6= T and zS = zT = 1, then S \ T = ;. (Proof: Since it is easyto see that neither S � T nor T � S is possible, this follows from thelaminar property.) 26



� If zS = 1, then yv = 0 for all v 2 S. (Proof: Suppose not. If S 2 
1[
2,then put zSnfvg = 1 instead of zS . If S 2 
12, take u 2 Snfvg and putyu = 1 and zSnfv;ug = 1 and zS = 0.)� There exist sets A;B such that supp(w)\
1 = fAg and supp(w)\
2 =fBg. (Proof: If wU = wQ = 1 for U;Q 2 
1, then we can instead putwU[Q = 1. If no such set exists, we can take A = T1. The sameargument works for 
2.)� There exist setsA0; B 0 such that supp(z)\
01 = fA0g and supp(z)\
02 =fB 0g. (Proof: We can use the same argument as for the previousproperty, except that if there is no such set we take A0 = ;: )Let C = fv : yv = 1g, and let S1; : : : ; Sk be the sets S 2 
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