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Abstract

We describe a common generalization of the weighted matching
problem and the weighted matroid intersection problem. In this con-
text we establish common generalizations of the main results on those
two problems—polynomial-time solvability, min-max theorems, and
totally dual integral polyhedral descriptions. New applications of
these results include a strongly polynomial separation algorithm for
the convex hull of matchable sets of a graph, and a polynomial-time
algorithm to compute the rank of a certain matrix of indeterminates.

1 Introduction

Given a graph G = (V, E), a perfect matching of G is a subset of edges
such that each vertex of G is incident to exactly one edge of the subset.
Tutte [19] gave a necessary and sufficient condition for the existence of a
perfect matching. Later Edmonds [6], [7] gave polynomial-time algorithms to
decide whether a given graph has a perfect matching, and (given a weighting
of the edges) to find a perfect matching of maximum weight. He also gave



a polyhedral description of the perfect matchings of G, by characterizing
their convex hull as the solution set of a certain system of linear inequalities.
Finally, Cunningham and Marsh [5] proved the total dual integrality of the
system of inequalities.

Given matroids M;, M, on the same set T', a common basis of My, M, is a
subset of T that is a basis in both matroids. Edmonds [9] gave a necessary and
sufficient condition for the existence of a common basis, and polynomial-time
algorithms to determine whether there exists a common basis and to find a
common basis of maximum weight. (In analyzing such “matroid algorithms”,
we regard each independence test as a single step of the algorithm.) He also
found a totally dual integral polyhedral description of the common bases.

Here we propose a common generalization of matching and matroid in-
tersection, and establish common generalizations for the results mentioned
above. Let G = (V, E) be a graph and T7, T> disjoint stable sets of G, that is,
sets of mutually nonadjacent vertices. We denote V\(T; U T3) by R. Let M;
be a matroid on T;, for + = 1,2, and suppose that M; and M, have rank r.
A basic path-matching is a collection of r vertex-disjoint paths, all of whose
internal vertices are in R, linking a basis of M; to a basis of M,, together
with a perfect matching of the vertices of R not in any of the paths. (Figure 1
shows an example. Here we assume that the only basis of M; is T; and the
only basis of M> is T5. The thick edges form a basic path-matching.) In the
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Figure 1: A basic path-matching
special case when R = V., a basic path-matching is nothing but a perfect

matching of G. In the special case when R = (), and G consists of a perfect
matching joining copies 17,75 of a set T', a basic path-matching corresponds



to a common basis of M; and M,. Another important special case occurs
when there are no special restrictions on G, Ty, T, but M; and M, are free,
that is, T; is a basis of M; for + = 1 and 2. In this case we refer to a basic
path-matching as a perfect path-matching with respect to G, Ty, Ty. Perfect
path-matching is itself a nontrivial generalization of matching. With the ex-
ception of matroid intersection, all of the applications of basic path-matching
that we cite are actually special cases of perfect path-matching.

The existence theorem

Given a graph G, we denote by odd(G) the number of components of G
having an odd number of vertices. For a subset S of vertices of G, G[S]
denotes the subgraph of G induced by S. A pair of subsets D; C 177 U R,
D, C T> U R is called stable if no edge of G joins a vertex in D\ D, to a
vertex in D, or a vertex in Ds\D; to a vertex in D;. (To see where the
name comes from, consider the special case in which R = (.) The sets of
vertices contained in the ellipses of Figure 2 form a stable pair. We use 7y, 75
to denote the rank functions of M, M,. We now state the main result on
the existence of basic path-matchings.
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Figure 2: A stable pair

Theorem 1.1 There exists a basic path-matching with respect to G, My, M,
if and only if there does not exist a stable pair (Dq1, Ds) for which

r1(T1 \ D1) + 72(T2 \ D2) + |R\(D1 U D3)| < r + odd(G[D1 N Dy)).



Proof of necessity in Theorem 1.1: Suppose that there exists a basic
path-matching K, and let (D1, D3) be a stable pair. We think of the paths
of K as being from Ty to Ty. There are at least r» — r1(T1\ D) paths of K
beginning in D; N T;. Each of them has a first vertex not in D;. Since
(D1, D5) is stable, that vertex must be in (RUT3)\(D; U D2). Also, for each
odd component H of G[D; N D,], either an edge of a path of K leaves H
or a matching edge leaves H. In either case the other end of this edge is
again in (RUT3)\(D1U D»). Now we have identified at least » —r;(T7\Dy) +
odd(G[D1 N Dy]) vertices of (R U T>)\(D1 U Ds), and all of them must be

distinct. Moreover, at most r4(7%\D2) of them can be from T5. Therefore,
T — Tl(Tl\_Dl) —|— Odd(G[_Dl N D2]) S |R\(_D1 U D2)| —|— r2(T2\_D2).

The result follows. |

The stable pair indicated in Figure 2 shows that there is no perfect path-
matching in that example. Now we apply the existence theorem to derive the
existence theorems for matching and matroid intersection mentioned above.
Matching. Tutte’s Theorem [19] states that G = (V, E) has a perfect
matching if and only if there does not exist a subset S of V such that odd(G —
S) > |S]. It is easy to see that the condition is necessary. Now suppose that
G has no perfect matching, and take R = V. Then by Theorem 1.1, there
exists a stable pair (D, Dy) such that

[V\(D; U Dy)| < odd(G[Dy N Dy)).

Now observe that, because (D1, D,) is stable, every odd component of G[D;N
D, is also an odd component of G[D; U D»]. Therefore, odd(G[Dy N D)) <
odd(G[D1 U Dy]). If we take S = V\(Dy U D), it follows that odd(G — S) >
|S], as required.

Matroid Intersection. Suppose that M;, M, are matroids on T', each of
rank r. Edmonds’ Matroid Intersection Theorem [9] states that there exists
a common basis if and only if there does not exist a subset A of T' such
that r1(A) + 72(T\A) < r. It is easy to see that this condition is necessary.
Now suppose that there does not exist a common basis. If we take G to
be a perfect matching joining copies Ty,Ty of T, and R to be 0, then by
Theorem 1.1 there exists a stable pair (D;, Ds) such that

r1(Ty\ D1) + rao(T2 \ D) <.
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We see from the stability of (Dy, D) that at least one end of any edge of G
isin Ty \ D; or in Ty \ D,. Thus, if A denotes the subset of T' corresponding
to T1\ Dy, then r1(A) 4+ r2(T\A) < r, as required.

Algorithms

The main algorithmic result of this paper is the following.

Theorem 1.2 There is a polynomial-time matroid algorithm to decide whether
there exists a basic path-matching with respect to G, My, Ms.

We have already mentioned that Edmonds also gave polynomial-time
algorithms for weighted versions of the matching and matroid intersection
problems; we want to generalize these results, too. We need to be careful,
however, to find an appropriate weighted generalization of the basic path-
matching problem. The simplest choice, to consider the weight of a basic
path-matching to be the sum of the weights of its edges, leads to an NP-
hard problem. For suppose that all edge-weights are 1, |T1| = |T2| = 1, and
M, M, have rank 1. Then there exists a basic path-matching of weight |V|—1
if and only if G has a hamiltonian path joining 7 to T. Instead, we define
the weight of a basic path-matching to be the sum of the weights of the edges
of the paths plus twice the weights of its other edges. Notice that this choice
has the nice property that it does not favour putting edges into paths over
putting them into the matching, and the resulting maximum-weight problem
still contains the weighted versions of the matching and matroid intersection
problems.

Theorem 1.3 There is a polynomial-time matroid algorithm to find (if there
is one) a mazimum-weight basic path-matching with respect to G, My, M.

Polyhedra

The algorithmic results will be derived as consequences of a polyhedral the-
orem, which we now describe. First, we introduce some terminology and
notation. We use R to denote the set of real numbers. If B is a finite set,
a polyhedron in R? is a set of the form {z € RP : Az < b} for some real
matrix A and vector b of appropriate dimensions. A polytope is a bounded



polyhedron. We say that a polyhedron is integral if it is the convex hull of
its integral points. It is well-known that a polytope is the convex hull of a
finite set of points, and the minimal such set consists of its extreme points.
For z € R® and C C B, we denote by z(C) the sum Y(z; : j € C). For a
graph G = (V. E) and a subset S of V| we denote by §(5) (or dg(.5)) the set
of edges of G that have exactly one end in S, and by v(S) (or y¢(S)) the
set of edges of G having both ends in S. If G is a digraph and S 1s a subset
of its vertices, we denote by 6(S) the set of arcs of G having tail in S and
head not in S, and by %(S) the set of arcs of G having head in S and tail
not in S.

Given a basic path-matching K, let K; be the set of edges in the paths
and let K, consist of the remaining edges of K. We define the basic path-
matching vector corresponding to K to be the vector % € RF such that,
foreec E,

1, ifee K,

PpE =02 ifecK,

0, ifed K.
We denote the set of all basic path-matchings by K = K(G, My, M>). Notice
that, given a weight vector ¢, the problem of finding a maximum-weight basic
path-matching can be written as max(cypX : K € K). The convex hull of all
basic path-matching vectors, conv({¢X : K € K}), is called the basic path-
matching polyhedron. By a slight abuse of notation, we will sometimes denote

this polyhedron by conv(K). The maximum weight basic path-matching
problem is equivalent to a linear programming problem over conv(K).

Theorem 1.4 conv(K(G, My, M,)) is the set of all x € RE satisfying:

d(6(v) = 2 (eR (1)
2(8(S)) > (T, C SCT,UR) (2)
2(5(5)) > (S C R, |S] odd) (3)
P(§(4)) < m(4) (ACT) (4)
2(5(4) < m(4) (ACT (5)
2(8(T) = r (6)
o(3(Ty)) = (7)

e > (8)



Theorem 1.4 is proved in Section 3. Here we apply it to matching and
matroid intersection. Edmonds [7] proved the following result on the polytope
of perfect matchings.

Theorem 1.5 (Matching Polytope Theorem) The convexr hull of inci-
dence vectors of perfect matchings of a graph G = (V, E) is the set of all
x € RY satisfying:

z(d(v)) = 1 (v eV)
z(6(5)) > 1 (S C R, [S] odd)
x > 0.

Now consider the special case of Theorem 1.4 in which Ty = Ty, = 0.
Then we get a description by linear inequalities of the convex hull of twice
the incidence vectors of perfect matchings of G. In the resulting description,
the inequalities (2), (4), (5), (6), and (7) each collapse to a single redundant
inequality. Dividing the right-hand sides of the remaining inequalities by 2,
we obtain a description of the perfect matching polyhedron, and it is precisely
that of Theorem 1.5, as required.

Edmonds [9] also proved the following polyhedral theorem on common
bases.

Theorem 1.6 (Matroid Intersection Polyhedron Theorem) The con-
vex hull of incidence vectors of common bases of two matroids My, My on T
with rank functions r1,ry is the set of all & € RT satisfying:

w(A) < m(4) (ACT)
z(4) < r(4) (ACT)
z(T) =

r >

Applying Theorem 1.4 in the case in which R = () and G consists of a
perfect matching joining 7 to T3, we get a description of the convex hull
of incidence vectors of common bases of M; and M,. In this description,
inequalities (1) and (3) disappear, inequalities (2) are redundant, and in-
equality (6) is the same as (7). Therefore, Theorem 1.6 also follows from
Theorem 1.4.



It is also quite easy to prove the algorithmic results stated above from
Theorem 1.4.

Proof of Theorems 1.2 and 1.3 from Theorem 1.4: By the equivalence
of optimization and separation—see Grotschel, Lovasz, and Schrijver [13]—it
is possible to optimize an arbitrary linear function over conv(K(G, My, M>))
in polynomial time if and only if it is possible to solve the separation problem
for the same polytope in polynomial time. (The separation problem for a
polytope P C R" 1s, given a point £ € R", either to determine that & € P
or to find a linear inequality ax < a that is violated by & but satisfied by
every point in P.) However, it is straightforward to show that the latter is
true for the polyhedron of Theorem 1.4. First, it is easy to check that a given
point # € R¥ satisfies inequalities (1) and (8), since there are only a few of
them. Henceforth, we may assume that & > 0. Now inequalities (2) can be
checked by solving a minimum-cut problem. Inequalities (3) require a more
sophisticated use of minimum-cut methods, but these can also be checked in
polynomial time; see Padberg and Rao [16]. Next, & satisfies inequalities (4)
and (6) if and only if the vector y € R™ defined by y, = #(6(v)) is in the
convex hull of incidence vectors of bases of M;. Polynomial-time algorithms
for the separation problem for this polytope are given in [13] and [2]. The
inequalities involving M, can be handled similarly. This completes the proof.
|
Note that the algorithms that result from these proofs use the ellipsoid
method, and are not practical.

Independent path-matchings

Many important results are formulated in terms of matchings of graphs
(rather than perfect matchings), and in terms of common independent sets of
two matroids (rather than common bases). There is an analogous theory for
path-matchings, which we describe here. In particular, we show how these
results lead to a proof of Theorem 1.1.

We begin as before with G, M, M,, except that we no longer require that
M; and M, have the same rank. An independent path-matching with respect
to G, My, M, is a set K of edges such that every component of G(V, K) having
at least one edge is a simple path from 77 U R to T5 U R, all of whose internal
vertices are in R, and such that the set of vertices of T; in any of these paths



is independent in M;, for i = 1 and 2. (Of course, any basic path-matching
is an independent path-matching.) The thick edges in Figure 3 form an
independent path-matching with respect to the free matroids M;, M,. It is

D e
~— //>.

T, R T,

Figure 3: An independent path-matching

easy to see, in the case where R = ) and G consists of a perfect matching
of Ty to T,, that an independent path-matching corresponds to a common
independent set of M; and M,. In the case where R = V., we do not get
such a simple correspondence to matchings of G, since there may be paths of
length more than 1in G(V, K'). However, let us define the independent path-
matching vector ¥ corresponding to K in the same way as before, namely,
an edge of a one-edge component of G(V, K') having both ends in R gets an
entry of 2, the other edges of K get entries of 1, and edges not in K get
entries of 0. Also, we define the weight of K with respect to a given weight
vector ¢ to be cip®. Then in the case where R = V, it is easy to see that the
maximum weight of an independent path-matching is twice the maximum
weight of a matching, although there may be maximum-weight independent
path-matchings that do not arise directly from a single maximum-weight
matching. Finally, there is the important special case in which M;, M, are
free; then we may refer to an independent path-matching with respect to
G, My, M, as a path-matching with respect to G, T, Ts.

The problem of finding a maximum-weight independent path-matching
can be reduced by a trick to the problem of finding a maximum-weight basic
path-matching (in a different graph with different matroids). However, as
mentioned above, there is something to be gained by attacking this problem
more directly. A main result is the following polyhedral description of the
independent path-matchings. We denote by K* = K*(G, My, Ms), the set of
all independent path-matchings with respect to G, My, Ms. (As before, we



may abbreviate conv({y¥X : K € K*}) to conv(K*).)

Theorem 1.7 conv(K*(G, My, My)) is the set of all x € RP satisfying:

z(d(v)) < 2 (v € R) (9)
z(v(S)) < |SNR (I1CSCTiUR) (10)
z(v(S)) < |[SNR| (ICSCT2UR) (11)
z(y(5) < [S]=1 (S CR,I[S] odd) (12)
#(3(4) < m(4) (ACT) (13)
2(3(A) < m(A) (ACT) (14)

x > 0. (15)

Theorem 1.7 is proved from Theorem 1.4 in Section 3. It is easy to derive
from it the polyhedral theorems of Edmonds on matchings and common
independent sets. We also call attention to the path-matching polyhedron,
that is, the special case in which My, M, are free.

Corollary 1.8 The convezx hull of path-matchings determined by G, Ty, T is
the set of all x € RZ satisfying © € RY satisfying:

z(d(v)) < I (veTiUTy) (16)
z(d(v)) < 2 (v € R) (17)
z(y(5)) < [SAR] (Ih€SCTiUR) (18)
z(y(5)) < [SAR] (IS SCTUR) (19)
z(v(5)) < |5|=1 (SC R[5 odd) (20)
: > 0. (21)

|

A system Az < b of linear inequalities is totally dual integral if for ev-
ery integral vector ¢ for which the linear programming problem minimize
(yb:yA = ¢, y > 0) has an optimal solution, it has an optimal solution that
is integral. (A fundamental theorem states that, if Az < b is totally dual
integral and b is integral, then P = {z : Az < b} is an integral polyhedron.)
Cunningham and Marsh [5] proved that the system of inequalities describing
the convex hull of matchings is totally dual integral, and Edmonds [9] proved
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the same thing for the convex hull of common independent sets of two ma-
troids. (However, the system of inequalities appearing in Theorem 1.5 is not
totally dual integral.) These results generalize well-known min-max theorems
characterizing the maximum cardinality of a matching and of a common in-
dependent set. We prove in Section 4 that the system of Theorem 1.7 is
totally dual integral. This theorem generalizes the similar results for match-
ing and matroid intersection. It also can be used to prove a generalization
of the corresponding min-max formulas, which we now state.

Theorem 1.9 The mazimum over K € K*(G, My, Ms) of pX(E) is the min-

imum over stable pairs (D1, Ds) of
Tl(Tl\_Dl) + r2(T2\_D2) + |R\(_D1 U D2)| + |R| — Odd(G[_Dl N D2])

We leave to the reader the exercise of obtaining from this theorem the
Tutte-Berge matching formula, and Edmonds’ matroid intersection min-max

theorem. We can now prove the existence result for basic path-matchings,
Theorem 1.1.

Proof of Theorem 1.1 from Theorem 1.9: We already showed that the
condition is necessary. Now suppose that there is no basic path-matching.
Notice that this implies that the maximum of Y (z. : € € E) over independent
path-matching vectors z is less than |R|+ r. It follows from Theorem 1.9
that there exists a stable pair (Dy, D) such that

Tl(Tl\Dl) —|— TQ(T2\D2) —|— |R\(D1 U D2)| —|— |R| - Odd(G[Dl N Dz]) < |R| —|— T.
So (D1, D) is the required stable pair. |
2 Applications

In this section we treat some further applications of path-matchings.
Disjoint paths

Suppose that we are given a graph G' = (V' E') whose vertex-set is parti-

tioned into sets Ty, Ty, R with |T]| = |T3| = k. We wish to find, if possible,
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k vertex-disjoint paths of G’ from 7] to T,. This is, of course, a standard
problem, for which Menger’s Theorem gives a characterization, and network
flow methods give efficient algorithms. Our purpose here is just to show that
it can be transformed into a perfect path-matching problem.

Here is the construction. Form a new graph G by adding, for every r € R,
vertices 71,7y and edges rry,rre, 7172 and put Ty = Ry U T, Ty = R, U Ty,
where R; denotes {r; : 7 € R}. Then there is a perfect path-matching of G
with respect to T, Ty if and only if the desired paths exist in G'. Thus the
existence of a polynomial-time algorithm for the disjoint paths problem is a
consequence of Theorem 1.2.

We can also use the construction to derive Menger’s Theorem from Theo-
rem 1.1. Menger’s Theorem states that the disjoint paths exist if there exists
no set S that separates 7] from Ty in G’ and has size less than k. (A set
of vertices separates T] from T, if it meets every path from 77 to Tj,.) It is
easy to show that the condition is necessary. Now suppose that G’ does not
contain the desired paths. Then there exists a stable pair (D;, D2) of G such
that

| D1 NT1| + odd(G[D1 N Ds]) > |T2\D2| + |R\(D1 U D5)|. (22)

For every r € D1 N Dy, 71 ¢ Dy and 7o ¢ D,. For every such r, delete » from
D; and add r; to D;. Then we get a new stable pair with D; N Dy, = 0 and
still satisfying (22). Now

S = (T{\D1) U (T;\D2) U (R\(Dy U Dy))

separates T] from T, in G’, and a calculation shows that |S| < k, proving
Menger’s Theorem.

Rank in the matching matroid

Another application of the maximum path-matching formula occurs when
Ty = 0. Then the maximum value of a path-matching is the maximum in-
tersection of a matchable set with R. This is the rank of R in the “matching
matroid” determined by G. This matroid was introduced by Edmonds and
Fulkerson [10]. The following formula for the rank of R is well known, al-
though it was not explicitly stated in [10]. We use the notation oddr(H) for
the number of odd components of H, each having all of its vertices contained
in T'. This result can be derived from the min-max theorem by a method
similar to ones used above, and we leave this to the reader.

12



Theorem 2.1 Let G = (V, E) be a graph and R a subset of V.. The maui-
mum size of a subset of R covered by a matching of G s the minimum over
SCV of

IR| — [S] + oddn(G[V\S])

The Tutte matrix

Let G' = (V', E’) be a graph, and let z., e € E’ be distinct variables. Let
A = (aij) be a V' by V' skew-symmetric matrix such that a;; = +a. if
ij = e € E', and a;; = 0 otherwise. We call A the Tutte matriz of G,
even though it is not quite unique. Given subsets I, .J of V', both of size k,
we want to determine whether the submatrix A[I, J| is nonsingular, that is,
whether its determinant is nonzero (as a polynomial), or more generally, to
determine its rank. (Edmonds [8] seems to have been the first to emphasize
such algorithmic questions. For example, he proposed the problem of finding
a polynomial-time algorithm to compute the rank of a matrix whose entries
are multivariate polynomials with integral coefficients.) This problem is in
NP, because it is not difficult to show that A is nonsingular if and only
if there exist (small) rational values for the variables so that the resulting
rational matrix is nonsingular. (This observation is the basis for a well-known
approach that provides a randomized polynomial-time algorithm.) However,
it is not obvious that it is in co-N P, let alone that there is a polynomial-time
deterministic algorithm.

There are two important special cases where satisfactory results have
been available. If 7 N J = (), then each z, occurs at most once in A[I,J],
so A[I,J] is nonsingular if and only if there is at least one nonzero term in
the expansion of its determinant. This property can be tested by solving a
bipartite matching problem. Also, if I = J, then A[I, J]is nonsingular if and
only if G[I] has a perfect matching. (The latter fact, which is not obvious but
can be proved by elementary methods, played an important role in Tutte’s
original paper [19].) We generalize this fact, as follows. Define G = (V. E)
to be the graph obtained from G’ by deleting the vertices not in I U J and
the edges having both ends in 7\J and those having both ends in J\I. The

following result can be proved by elementary methods; see [11] or [4].

Theorem 2.2 The rank of A[l,J] is the mazimum of PX(E) over path-
matchings K with respect to G, I\J, J\I. |
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From Theorems 2.2 and 1.2 we get immediately the following consequence.

Corollary 2.3 There is a polynomial-time algorithm to determine the rank
of a giwven submatriz of the Tutte matriz. |

We can combine Theorem 2.2 with the min-max theorem Theorem 1.9 to
obtain a formula for the rank of A[I,J]. However, this formula is not really
new. It can be proved directly using a linear-algebra method of Lovész [14].
His proof, which can be found in [11], predates our polyhedral proof, also
in [11], and our generalization, which first appeared in [4].

Theorem 2.4 The rank of A[I, J] is equal to the minimum over all stable
pairs (I', J') of G with respect to I\J, J\I of

NI+ |\ + [T J'| — odd(G[I' 0 J). (23)

The matchable set polyhedron

A matchable set of a graph is a set of vertices forming the ends of the edges
of some matching. The matchable set polyhedron Q(G) of a graph G is the
convex hull of incidence vectors of matchable sets of G. This polyhedron
was introduced by Balas and Pulleyblank [1], who gave a nice description by
linear inequalities. (We will not need that description here.)

There are several ways to obtain a polynomial-time algorithm for the
separation problem for Q(G). The easiest method to describe briefly goes
as follows. We use the equivalence of separation and optimization, so it is
enough to show that there is a polynomial-time algorithm to optimize any
linear function cx over Q(G). One way to do this, is to reduce the problem
to a weighted matching problem, by defining edge weights ¢/, = ¢, + ¢, for
any edge uwv. The resulting algorithm for the separation problem is based
on the ellipsoid method, and so is not combinatorial, and is not strongly
polynomial. There does exist a polynomial-time combinatorial algorithm for
the separation problem; see [3]. However, that algorithm uses scaling, and is
not strongly polynomial. Here we describe a strongly polynomial algorithm,
based on the results of this paper. In fact, it was this problem that originally
led to the formulation of problems on path-matchings.
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Let A be a V by V matrix, and let F denote {I C V : A[l,I] is
nonsingular}. (If A is the Tutte matrix of G, then F is the family of match-
able sets of G.) Let A’ = (A,Z), where Z is a |V| by |V| identity matrix. We
suppose that the columns of 7 are indexed by V' = {v’' : v € V'}, and for any
subset J of V we define J' to be {v': v € J}. It is easy to see that A[J, J]is
nonsingular if and only if B = JU (V’\J’) indexes a column basis of A’. (Of
course, there are column bases of A’ that are not of this form.) Let B consist
of the sets B C V U V' such that B indexes a column basis of A’. Then B
is the family of bases of a matroid N on V U V’. Theorem 2.5 below is the
key observation. Its proof uses Edmonds’ Matroid Intersection Polyhedron
Theorem 1.6. We use the following notation: Given a vector z € R, define
' € RV by xhy = x; forall j € V.

Theorem 2.5 Given x € RV, define y € RV by y = (x,1—2a'). Then
s a conver combination of incidence vectors of elements of F if and only if
y 15 a conver combination of incidence vectors of elements of B.

Proof: First, suppose that 2 is a convex combination Y A;z* of incidence
vectors ' of members C; of F. Then for each i, C; U (V'\C/) is a basis of
N;. Let y* be its incidence vector. Then y = 3 \;y?, as required.

Now suppose that y is a convex combination of incidence vectors of ele-
ments of B. Define a matroid Ny = (VUV',By) by Bo={BCVUV': B=
C U (V'\C") for some C C V}. Then y is a convex combination of incidence
vectors of bases of N». (There are many ways to show this. One is to ob-
serve that the coefficient matrix of the system y; + y; = 1, y > 0 is totally
unimodular.) Hence by Theorem 1.6, y is a convex combination ¥ Ay of
incidence vectors y* of common bases B; of N and N,. But a common basis
of N and N, is of the form CU(V'\C’) where C € F, so for each 7, the vector
z*, defined to be y* restricted to V, is the incidence vector of a member of
F. Therefore, since = Y \;jz*, we are done. |

It follows from Theorem 2.5 that we can use a separation algorithm for
the convex hull of incidence vectors of elements of B to determine whether a
given vector « is in the convex hull of incidence vectors of elements of F. (In
the alternative case when x is not in the polytope, we also need to be able to
find a violated valid inequality, but clearly an inequality az + b(1 — ') < «
translates into an inequality (a — b)z < a + 3, where (3 is the sum of the
components of b.) There is a strongly polynomial matroid algorithm for
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the former problem [2]. If we want to apply it to the special case where
A 1s the Tutte matrix of a graph G, then we need an algorithm to decide
whether a given subset of V U V"’ is independent in the matroid N. But it is
easy to see that a subset P U @)’ is independent if and only if the submatrix
A[V\Q, P] has rank |P|, so we can use the algorithm of Corollary 2.3. The
latter algorithm is strongly polynomial, so we have a strongly polynomial
separation algorithm for the matchable set polytope.

Remark Theorem 2.5 is the basis for a separation algorithm for “linear
delta-matroid polyhedra”.

3 Proofs of polyhedral theorems

In this section we prove Theorem 1.4, and then we use Theorem 1.4 to prove
Theorem 1.7. An important step in the proof of Theorem 1.4 is the proof
of the following key fact: If the inequalities (3) are omitted from the list of
inequalities, the resulting polyhedron P’ is integral. This fact is interesting in
its own right; it generalizes both the matroid intersection polyhedron theorem
and the “fractional matching polyhedron theorem”. Moreover, its proof is
the only part of the proof of Theorem 1.4 that uses a new idea.

Theorem 3.1 The set of solutions of (1), (2), and (4)—(8) is an integral
polytope.

Proof: Let P’ denote the polytope that is claimed to be integral. Let
G = (V, E) denote the digraph obtained from G by replacing each edge by a

pair of oppositely directed arcs. We define a matroid N; on E, as follows. A
set A is a basis of Nj if and only if

e No arc in A has its tail in T5;

o Each vertex in R is the tail of exactly one arc in A;

e Each vertex in Tj is the tail of at most one arc in A;

o The set of elements of T} that are tails of arcs in A is a basis of M;.

(N; is a matroid because it is the direct sum of matroids of rank at most one
and a matroid obtained from M; by making parallel copies of its elements.)
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We define M, similarly, interchanging “head” with “tail” and T with 5.
It follows from Theorem 1.6, the common basis polytope theorem, that the

polytope @ C RZ defined to be the set of all y satisfying

y(0~(v)) = 0, (v ETy)
y(0*(v)) = 0, (veT)
y(0~(v)) = 1, (v € R)
y(0*(v)) = 1, (v € R)
(Q) y(0=(4)) < n(4), (ACT)
y(0*(4)) < m(4), (ACT)
y(0=(Th)) = r
y(0H(Tz)) = r
y > 0

has only integral extreme points.

We define a function p : R¥ — RE, by: p(4)vw = Yow + Yuw, for vw € E.
Let p(Q) denote {p(y) : y € Q}. It is easy to see that p(Q) is an integral
polyhedron. (Namely, if z € p(Q), then & = p(y) for some y € (). Now y
can be expressed as a convex combination of integral points in (), and so by
linearity of p, ¢ is a convex combination of their images, which are integral
points of p(@Q).) So we can complete the proof by proving the following.
Claim P’ = p(Q).

Given z € p(Q), choose y € Q with « = p(y). For any S such that
T, €S CTiUR, we have

so © satisfies (2). It is straightforward to check that z also satisfies the other
inequalities defining P’, so p(Q) C P'.

Now, suppose that € P’. Let £ denote the set of all paths in G from a
vertex in T3 to a vertex in T and having internal vertices only from R. For
vw € E, we denote by L., the set of paths in £ that use the edge vw. By
the Max-flow Min-cut Theorem, there exists a nonnegative vector A € R™,

such that A(L) = 7, and, for vw € E, AM(Lyw) < Ty Let f € RZ be the
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(Ty, T,)-flow in G, corresponding to the path-flow A. That is, for vw € E,
fow = 2 AL where the sum is over L € L,,, such that v precedes w on L.
Now, define a vector y € R¥_ such that, for vw € E,

1
Yow = fvw + §($vw - (fvw + fwv))-
It is easily verified that y € @, and p(y) = z. Thus, z € p(Q), so P’ C p(Q),
and we are done. |

Remark One might expect that adding to (@) the inequalities y(6=(5)) > 1
and y(d7(S)) > 1for all S C R such that |S|is odd, also results in an integral
polyhedron. This is false.

Our proof of Theorem 1.4 follows a technique that was used previously in
proofs of Edmonds’ description of the perfect matching polyhedron (Theo-
rem 1.5); see Schrijver [17] or Green-Kroétki [12]. The proof uses Theorem 1.5,
but could easily be modified to avoid doing so.

Proof of Theorem 1.4: Let P(G, My, M,) C R? (or simply P) denote the
polyhedron defined by the inequalities (1)—(8). Clearly, conv(K) C P. To
prove the opposite inclusion, it suffices to prove that P is integral. (Namely,
an integral vector  satisfying (1), (4), (5), (6), and (7) must determine a set
of r disjoint paths joining pairs of vertices in Ty U T5, together with disjoint
circuits and edges in G[R]. Moreover, the vertices in T; that are ends of
paths must form a basis of M; for ¢ = 1 and 2. Because of inequalities (2),
the paths must go from T} to Ts, and because of inequalities (3), the circuits
must all be even. If there are no circuits, then z is a basic path-matching
vector, and if there are some even circuits, then z is the average of two such
vectors.)

We prove that P is integral by induction on the number of vertices of G;
the result is obviously true when G has just one vertex. Let ' € R¥ be an
extreme point of P. If ' does not satisfy with equality any of the inequal-
ities (3) for which |S| > 3, then by Theorem 3.1, 2’ is integral. Otherwise,
there exists S C R such that |S| > 3, |S| is odd, and #'(4(5)) = 2.

Denote by G; the graph G o S, that is, the graph obtained from G by
deleting the edges in y(S) and shrinking the vertices in S to a single vertex
which we call S. Let z' denote the restriction of ' to G;. Let P; denote
P(Gy, My, M>), and let Ky denote K(G1, My, M>). It is easily verified that
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z' € P;. Then, by induction, conv(K;) = P;. Thus there exists a nonnegative

vector A\! € RICl such that A'(K;) = 1 and

2= 3 A,
KEICl
Let U = V\S. Let G, denote GoU., let K4 denote the set of perfect matchings
of G4, and let z? denote the restriction of #’ to Gs. It is easily verified, using

the Perfect Matching Polyhedron Theorem 1.5, since z?(d(v)) = 2 for all

vertices v of Gq, that that there exists a nonnegative vector A2 € R™? such

that A2(K2) = 1 and
2 = Z PLRIE

Kek,

In what follows, when we speak of a basic path-matching in G or in Gy,
we mean with respect to the matroids M;, Ms. We will show explicitly that
' can be expressed as a convex combination - (ux®® : K € K). Begin with
all ux = 0, and do the following until A! = 0. Consider L € K; such that
A7 > 0. Either there exist two edges ¢’,¢” € L that are incident with the
vertex S of Gy, or there exists a matching edge €’ of L that is incident to S.

In the latter case, we take ¢’ = ¢”. Now, z2 = z!, > 0, and so there exists

J' € K, containing ¢’ such that A%, > 0. Similarly, there exists J” € K,
containing €” such that A%, > 0. (An example is shown in Figure 4, where L
is drawn with thin lines, J"\{e'} is drawn with thick solid lines, and J"\{e"}

is drawn with thick dashed lines.) Let K = LUJ'UJ"”. Note that J'U.J” may

Figure 4: Combining solutions

contain circuits of even length, so K is not necessarily a basic path-matching
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in G; however, K is the union of two basic path-matchings K’, K" (possibly
equal) of G. If K’ = K", then take ¢ to be the minimum of A}, A%,; increase
px' by € and decrease A} and A%, by €. If K’ # K" then take ¢ to be the
minimum of %)\}—J, AZ,, and A%,; increase pux: and pxn by e, decrease A} by
2¢ and decrease A%, and A%, by e.

Thus we can obtain z’ as a convex combination of path-matching vectors
of basic path-matchings in G. However, ' is an extreme point of P, and
so cannot be expressed as a convex combination of other elements of P.
Therefore, #’ is a basic path-matching vector, and hence is integral. |

Remark It can be deduced from the proof that any basic path-matching
problem on a bipartite graph can be reduced to a matroid intersection prob-
lem.

As a consequence of Theorem 1.4, we get a second description of conv(K).

Corollary 3.2 conv(K(G, M1, Ms)) is the set of solutions of:

z(d(v)) = 2 (v € R) (24)
z(v(S5)) < |SNR] (T, CSCTiUR) (25)
z(7(5)) < [5]-1 (S C R, [S] odd) (26)
A6(4) < m(A)  (ACT) (21)
AO(A) < m(A)  (ACTy (28)
z(6(Ty)) = r (29)
2(6(T2)) = (30)

r > (31)
)

Proof: Itis clear that the above inequalities are valid for conv(K(G, My, Ms)).
Now suppose that # € RZ satisfies all of them. Given a subset S of T} U R
such that Ty C S, we have

(6(5))

2;56(5(1})) —2z(7(5))
2151 R+ 7 — 20(+(S))
2ISNR|+r—2|SNR|

7

IAVART

Y

so x satisfies (2). A similar argument shows that « satisfies (3). Trivially, =
also satisfies (1) and (5)—(8). Therefore, by Theorem 1.4, € conv(K), as

required. |
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The independent path-matching polytope

We now prove Theorem 1.7 as a consequence of Corollary 3.2. For the special
case of the Matching Polyhedron Theorem, the proof reduces to one due to
Schrijver [18].

Proof of Theorem 1.7: It is clear that inequalities (9)—(15) are valid
for conv(K*). Now suppose that z € RY satisfies all of these inequalities.
Create a copy @ of each v € V, and for § C V, denote by S the corresponding
copy of S. Similarly, for a subset F of E, denote by F the set {# : vw € F}.
Now construct a graph G' = (V’,E’) such that V' = VUV and E' =
EUEU{vi:v eV} andlet T = TyUTy, Ty = T,UTy, and R = RUR. Let
Mi denote a copy of M; on the set Tl for i = 1 and 2. Let M| be the direct
sum of M; with M2, and M, be the direct sum of M, with Ml. In what
follows, we use K to denote K*(G, My, M,) and K to denote K(G', M|, M3).

Claim If 2z’ € conu(K) and z is the restriction of 2’ to E, then z € conv(K™).
It suffices to prove the claim when 2’ is an extreme point. Thus, assume
that 2/ = 9L for some L € K. Let K = LN E, and let F be the set
of matching edges of K that are not matching edges of L. Then, clearly,
z =3 (pF + PF\F). Hence, z € conv(K*), which proves the claim.

By the claim, we can prove the theorem by constructing z' € conv(K),
such that z is the restriction of z’ to E. By the Matroid Polyhedron Theo-
rem [9], the vector ¢t = (z(d(v)) : v € T1) is a convex combination of incidence
vectors of independent sets of M;. Therefore, there exists, for each v € Ty,
a number y, > x(d(v)) such that (y, : v € T1) is a convex combination of
incidence vectors of bases of M. (To get y, we simply extend to a basis each
of the independent sets in the expression for ¢, and use the same coeflicients.)
We similarly define y, for v € T, using M, instead of M;. Now we define
«' € RY by:

o for vw € E, w;w = Ty, and 53%11, = Low;
o forve R,z =2—x(dc(v));
o forv e T1 U T2, Ly = Yy — :13(5(;(1)))

By Corollary 3.2, conv(K) is defined by (24)—(31) (applied to G'). The proof

will be finished if we can show that z’ satisfies all of these inequalities. We
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show that it satisfies inequalities (25) and (26); it obviously satisfies the

others.

Let S C T/UR' such that 7] C S’. Define S,U C V such that S’ = SuU.
Thus Ty CS CTiURand T CU C Ty U R. Then

IANIA Il

' (va ("))

2(7(5)) +=((U)) +2[SNU| - ;wa(v))

2(7(5)) + 2(7(U)) = 22(y(S N U)) —=(6(5NU)) + 2|5 N U] (32)
2(y(S\U)) + =(y(U\S)) + 2[5 NU| (33)
(S\U)N R|+ |(U\S)NR|+2|SNU| (34)
ISONR|+|UNR|

1$'N R,

where we get (33) from (32) by nonnegativity, and we get (34) from (33) by
inequalities (10) and (11). Thus &’ satisfies the inequalities (25).

Now, let $ C R’ such that |$’| is odd. Define S,U C V by §'=SUU.
Thus S,U C R, and exactly one of |S]|,|U| is odd. Therefore exactly one of
|IS\U|,|U\S| is odd. Then, by the inequalities (12) and (9),

Now

IA A

z(7(S\U)) + z(7(U\S)) < [S\U[ +[U\S] - 1. (35)
(70 (5')
z(y()) +2z(y(U)) +2[SN U= > =(3(v))
2(7(5)) + 2(y(U)) = 22(y(S N0 U)) —z(8(SNU)) + 2[5 N U (36)
2(Y(S\U)) + 2(y(U\S)) + 2|5 N U] (37)
IS\U|+ |U\S| =1+2[SNU| (38)
[S1+ U] -1
|Sl| - ]-7

where we get (37) from (36) by nonnegativity, and we get (38) from (37) by
inequality (35). Therefore, @’ satisfies the inequalities (26). |
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4 Total dual integrality

By the Independent Path-Matching Polyhedron Theorem 1.7, the polyhedron
defined by inequalities (9)—(15) has integral extreme points. Therefore, for
any objective function ¢ € RZ, the linear programming problem (P) below
has an integral optimal solution

(P) { Z?li}jecctwto
(9) — (15).

Given a partition 77, Ty, R of the vertices of G, we define

O = {§: 171 CSCTIUR},
Q = {§:T,CSCT,UR},
Q14 {SCR:|S] is 0dd},
Q/1 {SS g T1}7

Q, = {S:5CTr}.

Let Q = Q;UQ2UQ4 2, and ' = Q{UQS. Foraset S € Q, define f(S5) € {0,1}
such that f(S) = 1 exactly when S € Q5. For a set S € ', define g(S) to
be r1(S) if § C Ty, and to be r5(S) otherwise. For variables y € RV, z € RY,
and w € RY, the dual (D) of (P) is given by

min Y 2y, + Y ([S N Rl = f($)zs + Y g(A)wa
vER SeN AcQ/
subject to
(D) yu+yv+zzS‘|‘ Z W4 > Cyy (uv € E)
sSen Aeq!
u,vES uv€d(A4)
y>0,z2>0w>0.

We will prove that, whenever ¢ is integral, there exists an integral optimal
solution to (D). In other words, we will show that the system of inequal-
ities (9)—(15) is totally dual integral; see Schrijver [18]. Cunningham and
Marsh [5] proved that the system of inequalities in Edmonds’ characteriza-
tion of the matching polyhedron is totally dual integral, and Edmonds [9]
proved that the system of inequalities in his description of the matroid in-
tersection polyhedron is totally dual integral. Our theorem generalizes these
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theorems. Our proof uses ideas from Schrijver’s proof [17] of the matching
result and from Edmonds’ proof of the matroid intersection result.

Let S be a collection of subsets. We call & a laminar famaly if, for each
S.T e S, eithet SCT.TCSor SNT =10. We call S a chain if, for each
S, T eS8, either SCTorTCS.

Theorem 4.1 For all integral ¢, there exists an integral optimal solution
(y, z,w) to (D) such that supp(z) is laminar, and supp(w)NQ] and supp(w)N
Q) are chains.

Proof: It suffices to prove the theorem for nonnegative ¢. Suppose that the
result fails, and let G, My, M», ¢ form a counterexample with |V|+|E|+ ¢(E)
as small as possible. For each edge e of G, ¢, > 1, since otherwise we can
delete e.

Claim 1 For every optimal solution (y,z,w) to (D), y = 0.

Let F denote the set of independent path-matchings that attain the opti-
mum of (P). Suppose that there exists v € R such that 9% (§(v)) = 2 for each
K in F. We decrease the weight of each edge incident with v by 1 to get ¢'.
Then, by our choice of ¢, there exists an integral optimal solution (y',z’,w’)
to (D), with respect to ¢, with the required properties. By increasing y! by
1, we obtain an integral optimal solution to (D), with respect to ¢, having
these properties, and this is a contradiction. So, for all v € R, there exists
K € F such that ¥ (d(v)) < 2. Thus, by complementary slackness, y, = 0,
proving Claim 1.

Claim 2  There exists an optimal solution to (D) such that supp(z) is
laminar.

Let (y, z,w) be an optimal solution to (D) that minimizes Y (zs |S| |[V\ S| :
S € Q). Suppose that supp(z) is not laminar, and let S,U € supp(z) such
that |S\U|,|U\S|, |[SNU| > 0. By a simple case analysis, we find that
either S\U and U\S are both in 2, or S N U and S U U are both in 2. We

consider these cases separately.

Case 1:  S\U and U\S are both in €. Let ¢ be the minimum of zg and zy.
We construct z’ € R® from z by decreasing zg and zy by €, and increasing
zg\v and zing by €. Now, construct y' € RY, by increasing y, by ¢ for all
v € SNU. One easily checks that (y’, 2, w) is an optimal solution to (D).
However, y’ # 0, which contradicts Claim 1.
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Case 2: SNU and S UU are both in §2. Let € be the minimum of zg
and zy. We construct z/ € R? from z by decreasing zs and zy by e, and
increasing zsny and zsuy by €. One easily checks that (y, 2/, w) is an optimal
solution to (D), and that the choice of (y, z,w) is contradicted. This proves
Claim 2.

Now choose (y,z,w) as in Claim 2, so that > (wa|A||[V\A| : A € Q) is
minimized. Suppose that there exist A, B € supp(w) such that A\B and
B\ A are both nonempty, with A, B € Q] or A, B € Q). Let € be the
minimum of w, and wg. We construct w’' € RY from w by decreasing
wy and wp by €, and increasing wanp and waup by €. One easily checks,
using the submodularity of the rank functions, that is, g(A4) + g(B) > g(A U
B) + g(A N B), that (y,z,w') is an optimal solution to (D), and that the
choice of (y, z,w) is contradicted. Therefore, there exists an optimal solution
(y,z,w) of (D) such that y = 0, supp(z) is laminar, and supp(w) N Q] and
supp(w) N € are chains.

We know that (D) has an optimal solution that is an optimal solution
of the linear program (D') obtained from (D) by deleting all the variables
other than those for which z,w take positive values. To show that (D) has
an integral optimal solution, it suffices to show that (D’) does. Let F' be the
constraint matrix of (D’). Now the families

C={~(5):S € supp(z) N (212U Qy)}U{(A): A € supp(w) N Q,}
and
D={y(S5): S € supp(z) N Q) } U{d(A) : A € supp(w) N Qi}

are laminar families of subsets of E, and the columns of F' are the incidence
vectors of the elements of C UD. By a result of [9], F is totally unimodular;
since ¢ is integral, (D'), and therefore (D), has an integral optimal solution.
This solution has all the required properties, so this is a contradiction. |

Theorem 4.1 has the following consequences. The first one is just a spe-
cialization to ordinary path-matching.

Corollary 4.2 The system of inequalities (16)—(21) is totally dual integral.

Proof: This is almost immediate from the theorem. The dual variables
wy corresponding to the constraints (13) and (14) must be replaced by dual
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variables w, corresponding to the constraints (16). But this is quite easy to
do. We simply set w, = > (wya : v € A) for each v € T1 U Ts. It is easy to
check that the resulting dual solution has the desired properties. |

The second consequence gives a totally dual integral description for the
basic path-matching polyhedron. This is a bit subtle. First, note that the
system (1)—(8) of Theorem 1.4, is not totally dual integral. This is already
demonstrated in the case of perfect matchings of a graph. We do not know
whether the system of inequalities (24)—(31) of Corollary 4.3 is totally dual
integral, but we believe that it is. We can show that a closely related sys-
tem describing the basic path-matching polyhedron is totally dual integral.
The proof uses a simple trick (adding a large even integer to each objective
coeflicient in (P) and applying Theorem 4.1).

Corollary 4.3 The system of inequalities (11), (24)-(31) is totally dual
integral. |

We remark that it is quite easy to show from Corollary 4.3 that, as in the
matching case, the system (1)—(8) is “totally dual half-integral”, that is, that
an optimal dual solution can be required to be half-integral if ¢ is integral.

Finally, we use Theorem 4.1 to prove the min-max formula of Theo-
rem 1.9.

Proof of Theorem 1.9: By an argument similar to that used to prove the
necessity of the condition in Theorem 1.1, we can show that the maximum is
at most the minimum. We omit the details. It remains to prove that there 1s
a stable pair making the second expression at most the maximum of ¥ (E)
over independent path-matchings K. This maximum is the optimal value of
the linear programming problem (P) when ¢ = (1,1,...,1). Therefore, by
the duality theorem, it is the optimal value of problem (D) for this ¢. We
apply Theorem 4.1 to obtain an optimal solution (y,z,w) with the stated
properties. It is easy to see that this solution is {0,1}-valued. We can
arrange that it has the following additional properties:

ey, =0 forall v e Ty UTs. (Proof: If y, = 1, we can instead put
weyy = 1.)

e If S 4T and zg = zr = 1, then SNT = 0. (Proof: Since it is easy
to see that neither S C T nor T' C S is possible, this follows from the
laminar property.)
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o If zg =1, theny, =0forallv € S. (Proof: Suppose not. If § € Q;UQ,,
then put zs\ () = 1 instead of zg. If § € (5, take u € S\{v} and put
yu = 1 and zg\p0p = 1 and zg = 0.)

e There exist sets A, B such that supp(w)N€; = {A} and supp(w)Ny =
{B}. (Proof: If wy = wq =1 for U,Q € Q, then we can instead put
wyug = 1. If no such set exists, we can take A = T;. The same
argument works for 15.)

e There exist sets A’, B’ such that supp(z)NQ; = {A’'} and supp(z)NQ, =
{B'}. (Proof: We can use the same argument as for the previous
property, except that if there is no such set we take A’ = 0. )

Let C = {v :y, = 1}, and let S,..., Sk be the sets S € {215, such that
zs = 1. Then the maximum of ¢¥(E) over independent path-matchings is

k
a=ri(A)+ANR| +r(B) + |BN R+ 2|C| + D (1S — 1).
=1
We define D; to be ((T1\A') U AU (U(S; : 1 <i < Ek)), and similarly for D,.
Then no edge of G joins a vertex in D1\ D, to a vertex in D, or a vertex in
D,\D; to a vertex in Dy, since such an edge would violate the corresponding
feasibility constraint in problem (D). Moreover,

r1(T1\D1) + r2(T2\D2) + |R\(D1 U Ds)| + |R| — 0dd(G[D1 N Ds)) < a,

as required. |
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