
Principally unimodular skew-symmetric matricesAndr�e Bouchet1, W. H. Cunningham2 and J. F. Geelen21. D�epartement de Math�ematiques et InformatiqueUniversit�e du Maine72017 Le Mans Cedex, France.2. Department of Combinatorics and OptimizationUniversity of WaterlooWaterloo, Ontario, Canada N2L 3G1May 25, 1996AbstractA square matrix is principally unimodular if every principal submatrix has de-terminant 0 or �1. Let A be a symmetric (0; 1)-matrix, with a zero diagonal. APU-orientation of A is a skew-symmetric signing of A that is PU. If A0 is a PU-orientation of A, then, by a certain decomposition of A, we can construct everyPU-orientation of A from A0. This construction is based on the fact that the PU-orientations of indecomposable matrices are unique up to negation and multiplicationof certain rows and corresponding columns by �1. This generalizes the well-knownresult of Camion, that if a (0; 1)-matrix can be signed to be totally unimodular thenthe signing is unique up to multiplying certain rows and columns by �1. Camion'sresult is an easy but crucial step in proving Tutte's famous excluded minor charac-terization of totally unimodular matrices.1 IntroductionA square matrix A is called principally unimodular (PU) if every nonsingular principalsubmatrix is unimodular (that is, has determinant �1). Let A be a symmetric (0; 1)-matrix, with a zero diagonal, a skew-symmetric signing of A is called an orientation ofA. We are concerned with the orientations of A that are PU; such orientations are calledPU-orientations, and were initially introduced in relation to circle graphs [3, 6].Let A be a symmetric (0; 1)-matrix whose rows and columns are indexed by the set V ,and let A0 be a PU-orientation of A. We can construct other PU-orientations of A from A0,for instance, �A0 is PU, we call this construction negation. Also, for X � V , the matrix� A0 [X] �A0 [X;V nX]�A0 [V nX;X] A0 [V nX] � is PU (where A[X;Y ] denotes the submatrix of A indexed by1



the rows X and columns Y , and A[X] denotes the principal submatrix A[X;X]); thisoperation is called cut-switching. Collectively, we refer to negation and cut-switching asswitching.It is not, in general, the case that every two PU-orientations of A are equivalent underswitching; for instance, we show that the matrix Jn � In has (n � 1)!=2 distinct PU-orientations, where Jn denotes the n�n all ones matrix, and In denotes the n�n identity.Let X;Y be a partition of V with jXj ; jY j � 2, we call (X;Y ) a split of A if the rank ofA[X;Y ] is at most 1, a matrix without a split is called prime. Our main result is:Theorem 1.1 Let A be a symmetric (0; 1){matrix with a zero diagonal. If A is primethen every two PU-orientations of A are equivalent under switching.As a corollary of Theorem 1.1 we derive a formula for the number of PU-orientationsof A distinct up to switching, assuming that A has a PU-orientation; this formula is basedon a decomposition of A using certain splits.Theorem 1.1 is a generalization of a theorem about totally unimodular matrices: amatrix B is totally unimodular if and only if the matrix � 0 B�BT 0 � is PU.Theorem 1.2 (Camion [8]) If A is a matrix which can be signed to be totally unimodularthen such a signing is unique up to multiplication of certain rows and columns by �1. 2Theorem 1.2 is easy to prove, though it is an important step in proofs of Tutte's famousexcluded minor characterization of totally unimodular matrices [20, 21, 14].Our proof of Theorem 1.1 gives rise to a polynomial-time algorithm for the follow-ing problem: Given a symmetric (0; 1)-matrix A with a zero diagonal that admits a PU-orientation, �nd a PU-orientation of A. Such an algorithm implies that the followingproblems are algorithmically equivalent, in the sense that (Q1) is polynomial-time solvableif and only if (Q2) is polynomial-time solvable. (This equivalence is used in algorithmsthat recognize total unimodularity.)(Q1) Given a symmetric (0; 1)-matrix Awith a zero diagonal, does A admit a PU-orientation?(Q2) Given a skew-symmetric matrix A, is A PU?Delta-matroidsWhile delta-matroids do not play a role in the proof of Theorem 1.1, the theorem isnaturally described in this setting, so we begin by introducing delta-matroids.Let A be a square matrix with entries de�ned over a �eld F , and whose rows andcolumns are both indexed by V . De�ne FA = fS � V : A[S] is nonsingularg; by conventionwe assume ; 2 FA. If A is either symmetric or skew-symmetric then FA satis�es theSymmetric Exchange Axiom [4]:(SEA) For X;Y 2 F and x 2 X�Y there exists y 2 X�Y such that X�fx; yg 2 F ,2



where X�Y = (X n Y ) [ (Y n X). If F is a nonempty collection of subsets of V and Fsatis�es the (SEA) thenM = (V;F) is a delta-matroid (see [1]); delta-matroids arising fromsymmetric and skew-symmetric matrices are called representable (see [4]). A delta-matroidthat can be represented by a skew-symmetric PU-matrix is called regular.If A is a skew-symmetric matrix, then all sets in FA have even cardinality. A delta-matroid (V;F) is called even if jF1�F2j is even for all F1; F2 2 F .Let M = (V;B) be a matroid representable over a �eld F . Here B is the set of bases ofM . For a basis B of M de�ne a matrix A, whose columns are indexed by the set V n B,such that [IjA] is a linear representation of M over F . If [IjA] is a representation of Mover the reals and A is totally unimodular then M is regular. De�ne A0 = � 0 A�AT 0 � : Itcan be easily veri�ed that A0 is PU if and only if A is totally unimodular, and FA0 = B�B;where B�B = fB 0�B : B 0 2 Bg: It is also easy to show that, for a collection of subsets Fof V and a set S � V , F satis�es (SEA) if and only if F�S satis�es (SEA) (see [7]); thisoperation is called twisting. Two delta-matroids equivalent under twisting are consideredto be equivalent, so representability and regularity in delta-matroids naturally generalizetheir counterparts in matroids.As is the case with matroids, regularity seems fundamental in the study of representabil-ity.Theorem 1.3 (Geelen [12]) For an even delta-matroid M , the following are equivalent:(i) M is regular,(ii) M is representable over every �eld,(iii) M is representable over both GF (2) and GF (3). 2Our proof of Theorem 1.1 can be generalized to prove the following: Given a 3-connecteddelta-matroid M , any two skew-symmetric GF (3)-representations of M are switching-equivalent. For the de�nition of \3-connectivity", we refer the reader to Bouchet [5]. Therequirements for unique GF (3)-representability in even delta-matroids are remarkably sim-ilar to the requirements for unique GF (4)-representability in matroids, see Kahn [17]. Inthis paper we introduce a tool, called a blocking sequence, for studying splits and primegraphs. Blocking sequences have recently been seen to apply to matroid connectivity, andplay a vital role in proving the excluded minor characterization of GF (4)-representablematroids of Geelen, Gerards and Kapoor [13].Tutte's famous characterization of regular matroids (see [20, 21]) has been generalizedto delta-matroids arising from symmetric matrices [11]. The present work is motivatedby the study of delta-matroids represented by skew-symmetric matrices, and the fact thatproofs of Tutte's characterization of regular matroids rely heavily on Theorem 1.2. (See,for example, [14]).2 Motivations and applicationsThe arguments in this paper are mainly graph theoretic, so we begin by restating theproblem in terms of graphs. Throughout this paper all graphs will be assumed to be3



simple. The adjacency matrix of an undirected graph G = (V;E) is the V by V symmetric(0; 1)-matrix that has a 1 in entry i; j if and only if ij 2 E. The adjacency matrix of adirected graph ~G = (V; ~E) is the V by V skew-symmetric (0;�1)-matrix that has a 1 inentry i; j if and only if ij 2 ~E. A digraph ~G is called an orientation (PU-orientation) of agraph G if the adjacency matrix of ~G is an orientation (PU-orientation) of the adjacencymatrix of G. For an orientation ~G of G, we de�ne the operations of negation, cut-switchingand switching for ~G as the result of applying the corresponding operations to the adjacencymatrix of ~G.Let G = (V;E) be a graph, and let X;Y be disjoint subsets of V . We denote by [X]the set of all distinct pairs of vertices in X, and we denote by [X;Y ] the set of all pairs ofvertices containing an element of X and an element of Y . For S � E we denote by S[X]and S[X;Y ] the edge sets S \ [X] and S \ [X;Y ] respectively. The set E[X;Y ] is referredto as a cut of G. The graph induced by X, denoted G[X], is the graph (X;E[X]). For avertex v 2 V , we denote by NG(v) the neighbour set of v. For a graph G0 we denote byVG0 and EG0 its vertex-set and edge-set.A split of G is a partition (X;Y ) of V such that jXj ; jY j � 2, and the cut E[X;Y ]induces a complete bipartite graph. (Note that not all pairs x 2 X; y 2 Y need be joinedby an edge for (X;Y ) to be a split; in fact, if the cut E[X;Y ] contains no edges (X;Y ) isa split.) A prime graph is a graph without any splits; thus, a graph is prime if and only ifits adjacency matrix is prime.Circle Graphs
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1 Figure 1: Circle graphs.In this section we discuss an important class of graphs that admit PU-orientations, namelythe circle graphs. A circle graph is the intersection graph of a �nite set of chords of acircle. (See Figure 1.) De Fraysseix [10], showed that the bipartite circle graphs are thefundamental graphs of planar graphs. (If T is a spanning tree of a connected graph G thena fundamental graph of G is a bipartite graph with bipartition ET ; EG n ET and edges efwhere e 2 ET , f 2 EG nET and T + f � e is a tree.) It is well known that the fundamental4



matrices (that is, the adjacency matrices of fundamental graphs) of any graph can besigned to be totally unimodular. Hence bipartite circle graphs admit PU-orientations. Infact, this result extends to all circle graphs.
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1 5Figure 2: Orienting circle graphs.Let G = (V;E) be a circle graph represented by a set V of chords of a circle. Bypossibly perturbing the representation, we may assume that no two chords intersect onthe circle. Given an arbitrary orientation of the chords, we de�ne an orientation ~G of G.Namely, an edge uv of G is oriented with v as its head if and only if the chord v crosses ufrom left to right (that is, the tail of v is encountered before the head of u when the circleis traversed in the clockwise direction from the tail of u). Figure 2 depicts an arbitraryorientation of the representation in Figure 1 and the corresponding orientation of the circlegraph. ~G is a PU-orientation of G. (see [3, 6].)
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1 Figure 3: Local complementation.Given a vertex v of a graph G, we de�ne a new graph G � v by complementing theinduced graph on the neighbour set of v in G; this operation is called local complementation.5



Kotzig [18] noted that G is a circle graph if and only if G � v is a circle graph. Figure 3demonstrates local complementation on the graph in Figure 1 and the new representation.(In general, if G is a circle graph, then a representation of G � v can be obtained from arepresentation of G by reversing the order in which chords are encountered while traversingthe circle in a clockwise direction from one end of v to the other.) Graphs that admitPU-orientations are not in general preserved under local complementation (in fact, G isa circle graph if and only if every graph equivalent to G under any sequence of localcomplementations admits a PU-orientation [7]). However, for an edge uv of a graph G, Gadmits a PU-orientation if and only if G �u � v �u admits a PU-orientation; this operationis called a pivot and will be discussed further in Section 3.Decomposition on splitsLet G = (V;E) be a simple graph, and (X;Y ) be a partition of V ; denote by G �X thegraph obtained from G by shrinking X to a single vertex, which we label X, and removingmultiple edges. Similarly if ~G is an orientation of G we de�ne ~G � X by shrinking X in~G and removing multiple arcs. Note that ~G � X need not be an orientation of G � X;however, if the edges in E[X;Y ] were all oriented in ~G with their heads in Y then ~G �Xis an orientation of G � X. The decomposition G � X, G � Y of G where (X;Y ) is asplit was studied in [9]; it has applications in �-matroid connectivity [5] and circle graphrecognition [2]. Note that G �X and G � Y are both isomorphic to induced subgraphs ofG; hence, if G has a PU-orientation then G �X and G � Y both have PU-orientations. Inthis section we show that the converse also holds, that is, if G �X and G � Y both admitPU-orientations then G admits a PU-orientation. Let ~G1 and ~G2 be PU-orientations ofG �X and G � Y respectively. By cut-switching in ~G1, we may assume that no arc in ~G1has X as its head. Similarly, we may assume that no arc in ~G2 has Y as its tail. Nowconstruct an orientation ~G of G such that ~G � X = ~G1 and ~G � Y = ~G2; ~G is called thecomposition of ~G1 and ~G2. Before proving that ~G is a PU-orientation, we review somebasic results about pfa�ans; we use the de�nition of Stembridge [19].Let ~G be an orientation of a simple graph G = (V;E), let A = (aij) be the adjacencymatrix of ~G, let MG denote the set of perfect matchings of G, and let � be a linear orderof V . A pair of edges u1v1, u2v2 of G, where u1 � v1 and u2 � v2, are said to cross ifu1 � u2 � v1 � v2 or u2 � u1 � v2 � v1. (If we place u1; u2; v1; v2 on the perimeter of acircle, according to the linear order, then u1u2 crosses v1v2 if and only if the chords u1u2and v1v2 cross.) The sign of a perfect matching M of G, denoted �M , is (�1)k where k isthe number of pairs of crossing edges in M . The pfa�an of A, denoted pf(A), is de�nedas follows: pf(A) = XM2MG �M Yuv2Mu�v auv: (1)Surprisingly pf(A) is independent of the order relation; this is re
ected by the funda-mental identity det(A) = pf(A)2. Like determinants, pfa�ans can be calculated by \row6



expansion" [15]: pf(A) = nXk=2(�1)k+1av1vkpf(A[V n fv1; vkg]); (2)where V = fv1; v2; : : : ; vng and vi � vi+1, for i = 1; 2; : : : ; n� 1.Proposition 2.1 Let G be a graph containing a split (X;Y ). Then the composition ofPU-orientations of G �X and G � Y is a PU-orientation of G.Proof Let ~G1 and ~G2 be PU-orientations of G � X and G � Y respectively, and let ~Gbe the composition of ~G1 and ~G2. Let A, A1 and A2 be the adjacency matrices of ~G, ~G1and ~G2 respectively, and let S � V . We are required to prove that det(A[S]) 2 f0; 1g,or equivalently that pf(A[S]) 2 f0;�1g. If jS \Xj < 2 or jS \ Y j < 2 then ~G[S] isisomorphic to an induced subgraph of ~G1 or ~G2; hence det(A[S]) 2 f0; 1g. Now, supposejS \Xj � 2 and jS \ Y j � 2; then (X \ S; Y \ S) is a split in G[S]. We assume, withoutloss of generality, that V = S.Suppose X = fx1; x2; : : : ; xkg and Y = fy1; y2; : : : ; ylg. De�ne a linear order � suchthat xk � xk�1 � : : : � x1 � y1 � y2 � : : : � yl:Recall that, for S � EG, S[X;Y ] denotes S \ [X;Y ]. Let M(i)G = fM 2 MG : jM [X;Y ]j =ig; then, by (1), pf(A) =Xi�0 XM2M(i)G �M Yuv2Mu�v auv:Claim 1 For i � 2, XM2M(i)G �M Yuv2Mu�v auv = 0:Proof of claim: For each matchingM 2 M(i)G , we de�ne another matchingM 0 as follows:choose edges xi1yj1 and xi2yj2 , where i1 < i2, such thatM [fx1; x2; : : : ; xi2g; Y ] = fxi1yj1 ; xi2yj2g;then de�ne M 0 =M�fxi1yj1; xi2yj2; xi1yj2 ; xi2yj1g:Note that M = (M 0)0, and �M Yuv2Mu�v auv = ��M 0 Yuv2M 0u�v auv;which proves the claim.For any perfect matching M of G we have jM [X;Y ]j � jXj (mod 2); this gives rise totwo cases. 7



Case 1: jXj is even. Thuspf(A) = XM2M(0)G �M Yuv2Mu�v auv= XMX2MG[X] XMY 2MG[Y ]�MX[MY Yuv2MX[MYu�v auv= 0BB@ XMX2MG[X]�MX Yuv2MXu�v auv1CCA0BB@ XMX2MG[X]�MX Yuv2MXu�v auv1CCA= pf(A[X])pf(A[Y ]):However A[X] = A2[X] and A[Y ] = A1[Y ], and A1 and A2 are PU, so pf(A) = 0;�1.Case 2: jXj is odd. Thus pf(A) = XM2M(1)G �M Yuv2Mu�v auv:Every matching M 2 M(1)G can be expressed as M1 [M2 [ fxiyjg, where M1 2 MG[X�xi]and M2 2 MG[Y �yi ]. The set of edges of M that cross xiyj isM1[fx1; : : : ; xi�1g; fxi+1; : : : ; xkg] [M2[fy1; : : : ; yj�1g; fyj+1; : : : ; ylg];furthermore jM1[fx1; : : : ; xi�1g; fxi+1; : : : ; xkg]j � i� 1 (mod 2) andjM2[fy1; : : : ; yj�1g; fyj+1; : : : ; ylg]j � j � 1 (mod 2):Therefore �M = ((�1)i�1�M1)((�1)j�1�M2), andpf(A) = kXi=1 lXj=1 XM12MG[X�xi] XM22MG[Y�yi]((�1)i�1�M1)((�1)j�1�M2)axiyj 0BB@ Yuv2M1u�v auv1CCA0BB@ Yuv2M2u�v auv1CCA= 0BB@ kXi=1(�1)i+1 XM12MG[X�xi] �M1 Yuv2M1u�v auv1CCA0BB@ lXj=1(�1)j+1 XM22MG[Y�yi] �M2 Yuv2M2u�v auv1CCA :Now, applying equations (1) and (2),pf(A) =  kXi=1(�1)i+1pf(A[X � xi])!0@ lXj=1(�1)j+1pf(A[Y � yi])1A :pf(A) = �pf(A1)pf(A2); 8



and hence, pf(A) 2 f0;�1g, as required. 2We remark that there is an alternative proof of Proposition 2.1 that uses pivoting (de�nedin section 3).Counting PU-orientationsLet G = (V;E) be a graph with a PU-orientation, and de�ne �(G) to be the number ofPU-orientations of G distinct up to cut-switching. Camion's theorem tells us that if G isbipartite then �(G) = 1; the main result of this paper implies that if G is prime, but notbipartite, then �(G) = 2. In this section we describe how �(G) can be computed by acanonical decomposition of graphs into graphs that are either prime, bipartite, or complete.Let ~G be an orientation of G, and let C be an even circuit of G. We say that ~G is even(odd) on C if, while traversing C in an arbitrary direction, the number of edges of C thatare oriented in the forward direction by ~G is even (odd). Because C has an even numberof edges this de�nition is independent of the direction in which we traverse C.Lemma 2.2 Let C be the circuit x1; x2; x3; x4; x1 of a graph G, and let ~G be a PU-orientation of G that is odd on C. Then G[fx1; x2; x3; x4g] is a complete graph and ~Gis even on the circuit x1; x2; x4; x3; x1.Proof This follows by an easy pfa�an calculation, which is left to the reader. 2Let (X1;X2) and (Y1; Y2) be splits of G. We say that (X1;X2) and (Y1; Y2) cross ifXi \ Yj 6= ; for each i; j; we call the split (X1;X2) good if there are no splits of G thatcross (X;Y ). We recursively de�ne a decomposition of a graph G as follows.� D = fH : H a connected component of Gg is a decomposition of G,� If D is a decomposition of G and H 2 D has a good split (X;Y ) then (D nH)[fH �X;H � Y g is a decomposition of G.We call the elements of a decomposition D the D-components.Theorem 2.3 If D is a decomposition of G then �(G) = QH2D �(H):Proof It is clear that �(G) is the product, taken over all connected components Hof G, of �(H). Thus, it is su�cient to prove that if (X;Y ) is a good split of G then�(G) = �(G �X)�(G � Y ). By the composition of PU-orientations of G � X and G � Y ,we have that �(G) � �(G � X)�(G � Y ). Therefore, it su�ces to show that every PU-orientation ~G of G is equivalent under cut-switching to a composition of PU-orientationsof G �X and G � Y (that is, ~G can be reoriented by cut-switching so that every edge inE(X;Y ) is oriented with its head in Y ). Suppose, by way of contradiction, that ~G is aPU-orientation of G, and that ~G is not the composition of PU-orientations of G �X andG � Y .Let X 0 = NG(Y ) and Y 0 = NG(X). Choose x1 2 X 0 and y1 2 Y 0; then, for all y 2 Y 0and x 2 X 0, use cut-switching so that the edge x1y is oriented with x1 as the tail, andthe edge xy1 is oriented with y1 as the head in ~G. Since ~G is not the composition of PU-orientations of G�X and G�Y , there exists an edge x2y2 of G, where x2 2 X 0 and y2 2 Y 0,9



that is oriented with x2 as its head. Partition X 0 into sets X1;X2 such that x 2 X1 if andonly if the edge xy2 has y2 as its head; similarly, partition Y 0 into sets Y1; Y2 such thaty 2 Y1 if and only if the edge x2y has y as its head.For any y0i 2 Yi (i = 1; 2), ~G is odd on the circuit x1; y01; x2; y02; x1, so, by Lemma 2.2,G[fx1; x2; y01; y02g] is a complete graph. Therefore y01y02 is an edge of G. We similarly provethat x01x02 is an edge of G for any x0i 2 Xi (i = 1; 2). Hence (X1 [ Y1;X2 [ Y2) is a splitof G[X1 [X2 [ Y1 [ Y2]. However, since (X;Y ) is a good split, there cannot exist a split(X 00; Y 00) with X1; Y1 � X 00 and X2; Y2 � Y 00. Therefore, there exists a chordless pathv1; : : : ; vp in V n (X 0 [ Y 0) such that NG(vi) \ (X1 [ Y1) 6= ; if and only if i = 1, andNG(vj) \ (X2 [ Y2) 6= ; if and only if j = p. Since (X;Y ) is a split in G, fv1; : : : ; vpg isa subset of either X or Y ; we assume, by possibly exchanging the roles of X and Y , thatfv1; : : : ; vpg is a subset of Y . Choose y01 2 Y1 adjacent to v1, and choose y02 2 Y2 adjacent tovp. Let H be the graph induced by fx1; x2; y01; y02; v1; : : : ; vpg; this is depicted by Figure 4.
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1 Figure 4: HWe assume that p = 1 or 2, since otherwise we shorten the path y01; v1; v2; : : : ; vp; y02 bypivoting on v1v2, and then deleting v1 and v2 from G. If p = 1 then ~G is odd on exactlyone of the circuits v1; y01; x1; y02; v1 and v1; y01; x2; y02; v1, which, by Lemma 2.2, contradictsthat v1 is adjacent to neither x1 nor x2. If p = 2 then pivoting on v1v2 deletes the edgey01y02 while leaving ~G odd on the circuit x1; y01; x2; y02; x1, contradicting Lemma 2.2. 2Lemma 2.4 For every integer n, �(Kn) = (n� 1)!, where Kn is the complete graph on nvertices.Proof Let ~Kn be a PU-orientation of Kn, and let v be any vertex of Kn. There exists aunique orientation equivalent under cut-switching to ~Kn with the property that every edgeincident with v has v as its tail; we assume that ~Kn has this property.Suppose that ~Kn has a directed circuit, and let ~C be a shortest directed circuit. ~C musthave length 3, since otherwise there exists a chord e of ~C and ~C + e contains a directedcircuit shorter than ~C. Let X be the vertex set of ~C. ~Kn is odd on every circuit of length4 in Kn[X +v], which contradicts Lemma 2.2. Hence ~Kn contains no directed circuits. Wecall such an orientation transitive.There are (n � 1)! transitive orientations of Kn � v; thus, �(Kn) � (n � 1)!, withequality only if every transitive orientation of Kn is PU. Every two transitive orientationsare isomorphic, so we may assume that VKn = f1; : : : ; ng, and for 1 � i < j � n, the edgei; j is oriented with j as its head in ~Kn. We have that ~K3 is PU; and, for n > 3, Kn is10



the composition of transitive orientations of two smaller complete graphs. Therefore, byProposition 2.1 and induction, ~Kn is PU. 2A decomposition D is called a total decomposition if no D-component has a good split. Astar graph with n vertices is a graph containing a vertex that is adjacent to n� 1 verticesof degree 1. Total decompositions were introduced in [9], though our de�nition of the termdecomposition di�ers slightly from the original de�nition.Theorem 2.5 (Cunningham [9]) Let G be a graph. Then� All total decompositions of G are essentially the same; speci�cally, if D1 and D2 aretotal decompositions of G, then there exists a bijection � : D1 ! D2 such that, foreach D1-component H, H and �(H) are isomorphic.� If D is the total decomposition of G then every D-component is a complete graph, astar graph, or a prime graph.� The total decomposition can be found in polynomial time. 2Let D be the total decomposition of a graph G. By Theorem 2.5, every D-component His either complete, prime or bipartite; so, assuming that G has a PU-orientation, we know�(H). Therefore, by Theorem 2.3, we know �(G) explicitly.3 Prime graphsThis section contains the proof of Theorem 1.1. We begin by introducing preliminaryresults.PivotingLet A = (aij) be a skew-symmetric (0;�1)-matrix whose rows and columns are indexedby V . Suppose u;w 2 V and auw = 1. De�ne x, y so thatA = 0B@ 0 1 xT�1 0 yT�x �y A[V � u� w] 1CAwhere the �rst and second row are indexed by u and w respectively. Then de�ne a matrixA0 whose rows and columns are also indexed by the set V as follows:A0 = 0B@ 0 1 yT�1 0 xT�y �x A[V � u� w]� yxT + xyT 1CA :The operation that constructs A0 from A is called a pivot on uw in A. If in addition weswitch the labels u and w, then we call the operation a partial pivot. The following resultimplies that the family of PU-matrices is closed under pivoting (and hence also underpartial pivoting). 11



Proposition 3.1 For S � V , detA[S] = detA0[S�fx; yg]:Proof Since pivoting on uw in A has the same e�ect on principal submatrices of A[S [fu;wg] as pivoting on uw in A[S [ fu;wg], we may assume that S [ fu;wg = V . Fur-thermore, since pivoting is an involution, we may assume that u 2 S. Hence it su�ces toprove the following two identities:detA[V � w] = detA0[V � u], and (3)detA = detA0[V � u� w]: (4)Note that A[V �w] and A0[V �u] are equivalent under row and column operations. Thus,since the determinant is invariant under row and column operations, we have proved (3).De�ne B = 0B@ 0 1 xT�1 0 yT0 0 A[V � u� w]� yxT + xyT 1CA :B is obtained from A by row elimination, so detA = detB; furthermoredetB = detB[V � u� w] = detA0[V � u� w]:Thus we have proved (4). 2For a pair S; S 0 of subsets of V , if S and S 0 are disjoint, we have de�ned [S; S 0] = fss0 :s 2 S; s0 2 S 0g; for intersecting sets S, S 0 we de�ne[S; S 0] = [S n S 0; S 0 n S] [ [S n S 0; S \ S 0] [ [S 0 n S; S \ S 0]:We can interpret partial pivoting over the binary �eld as a transformation of an undirectedgraph. Let G = (V;E) be the graph whose adjacency matrix is equivalent to A overGF (2).De�ne a graph G0 = (V;E 0) whereE0 = E�[NG(u)� w;NG(w)� u]:It is easily veri�ed that the adjacency matrix of G0 is obtained by performing a partialpivot on uw in A over GF (2).A consequence of Proposition 3.1 is that pivoting (or partial pivoting) on a PU-matrixyields a (0;�1)-matrix. Thus we can think of pivoting and partial pivoting as operationson oriented graphs. Suppose A is PU and let ~G = (V; ~E) be the directed graph havingadjacency matrix A. Let ~G0 = (V; ~E0) be the directed graph whose adjacency matrix isobtained by performing a partial pivot on uw (over the reals) in A. Then we say that ~G0is obtained from ~G by performing a partial pivot on uw. Note that the orientation of uwis reversed by the partial pivot. The only other common edges of G and G0 that may beoriented di�erently in ~G and ~G0 are edges whose ends are both common neighbours of uand w.The following result links pivoting and splits; in particular it implies that pivotingpreserves prime graphs. It is implied by the fact that local complementation (de�ned inSection 2) preserves splits (see [2]) and that pivoting on an edge uw of G is equivalent tolocally complementing on u;w; u in sequence.12



Proposition 3.2 (Bouchet [5]) Let (X;Y ) be a partition of V , let vw 2 E and let G0 =(V;E 0) be the graph obtained by pivoting on vw in G. Then (X;Y ) is a split in G if andonly if (X;Y ) is a split in G0. 2Blocking sequencesA subsplit of G is a pair (X;Y ) of disjoint subsets of V such that (X;Y ) is a split inG[X [ Y ] and the cut EG[X;Y ] is nonempty. A blocking sequence for the subsplit(X;Y ) is a sequence v1; : : : ; vp of vertices in V nX n Y satisfying the following conditions:1. (a) (X;Y [ fv1g) is not a subsplit of G,(b) for all i < p, (X [ fvig; Y [ fvi+1g) is not a subsplit of G, and(c) (X [ fvpg; Y ) is not a subsplit of G, and2. no proper subsequence of v1; : : : ; vp satis�es 1.We note that the problem of �nding a blocking sequence for (X;Y ) can be solved by�nding a directed path in the digraph D = D(X;Y ), with the vertex-setV (D) = fvX; vY g [ (V nX n Y )and the set of directed edgesE(D) = f(vX; y) : (X;Y [ fyg) is not a subsplitg [f(x; y) : (X [ fxg; Y [ fyg) is not a subsplitg [f(x; vY ) : (X [ fxg; Y ) is not a subsplitg:Then v1; v2; � � � ; vp is a blocking sequence if and only if vX; v1; v2; � � � ; vp; vY is a directedpath with no shortcut in D. If no directed path exists in D, from vX to vY , then the setX 00 = fs 2 V (D) � vX : a directed path joins vX to sgdoes not contain vY , and (X 0; Y 0) := (X [X 00; V nX nX 00) is a subsplit of G.Proposition 3.3 Let (X;Y ) be a subsplit of G. There exists a blocking sequence for (X;Y )in G if and only if there exists no split (X 0; Y 0) of G with X � X 0 and Y � Y 0.Proof If there exists a split (X 0; Y 0) of G with X � X 0 and Y � Y 0, then (X[fxg; Y [fyg)is a subsplit for every x 2 X 0 nX and y 2 Y 0 n Y ; therefore no blocking sequence exists.Conversely, if no blocking sequence exists, then we can �nd the required subsplit (X 0; Y 0)by using the digraph D(X;Y ). 2Following are some results that relate pivoting operations with blocking sequences.Proposition 3.4 Let (X;Y ) be a subsplit of G and let G0 be a graph obtained by performinga pivot (or partial pivot) on an edge of G[X]. A sequence v1; : : : ; vp is a blocking sequenceof (X;Y ) in G if and only if it is a blocking sequence of (X;Y ) in G0.Proof Let X 0; Y 0 be disjoint subsets of V with X � X 0 and Y � Y 0. By Proposition 3.2,(X 0; Y 0) is a subsplit of G0 if and only if it is a subsplit of G. The result follows byconsidering the de�nition of a blocking sequence. 213



Proposition 3.5 Let v1; : : : ; vp be a blocking sequence for a subsplit (X;Y ) of G, let x 2X \NG(v1) and let G0 be the graph obtained by performing a partial pivot on the edge xv1in G. Suppose that NG(x) \X 6= ; and NG(x) \X 6= NG(Y ) \X. Then(i) if p = 1, (X;Y ) is not a subsplit in G0, and(ii) if p > 1, v2; : : : ; vp is a blocking sequence for (X;Y ) in G0.Proof (i) Suppose p = 1. Let X 0 = NG(Y )\X and Y 0 = NG(X)\Y . Then, since (X;Y )is a subsplit, EG[X;Y ] = [X 0; Y 0]. Note that[P;Q] \ [R;S] = [P \R;Q \ S]�[P \ R;Q \ S]holds for any subsets P , Q, R and S of V . ThereforeEG0 [X;Y ] = (EG�[NG(v1)� x;NG(x)� v1]) \ [X;Y ]= [X 0; Y 0]�[(NG(v1)� x) \X;NG(x) \ Y ]�[NG(x) \X;NG(v1) \ Y ]:We consider two cases; in each case we use the following fact:Suppose EG0 [X;Y ] = [X1; Y1]�[X2; Y2] where X1 and X2 are distinct nonemptysubsets of X, and Y1 and Y2 are distinct, nonempty subsets of Y . Then (X;Y )is not a subsplit in G0.Case 1: x 62 X 0. Then NG(x) \ Y = ;, soEG0(X;Y ) = [X 0; Y 0]�[NG(x) \X;NG(v1) \ Y ]:Furthermore, by the conditions of the proposition, X 0, NG(x) \X are distinct, nonemptysubsets of X, and, by the de�nition of a blocking sequence, Y 0, NG(v1) \ Y are distinct,nonempty subsets of Y , so (X;Y ) is not a subsplit in G0.Case 2: x 2 X 0. Then NG(x) \ Y = Y 0. Note that, for any sets A � Y , B1; B2 � X,[A;B1]�[A;B2] = [A;B1�B2], soEG0 [X;Y ] = [X 0�((NG(v1)� x) \X); Y 0]�[NG(x) \X;NG(v1) \ Y ]:Now x 2 X 0�((NG(v1) � x) \X). However x 62 NG(x) \ X, so X 0�((NG(v1) � x) \X),NG(x) \ X are distinct, nonempty subsets of X. Furthermore, by the de�nition of ablocking sequence, Y 0, NG(v1)\Y are distinct nonempty subsets of Y ; hence (X;Y ) is nota subsplit in G0.(ii) Suppose p > 1. By the minimality of a blocking sequence we have that (X;Y [fv2g)is a subsplit in G. Note that v1 is a blocking sequence for the subsplit (X;Y [ fv2g) inG. By part (i) of the proposition, (X;Y [ fv2g) is not a subsplit in G0. Also note that(X [fv1g; Y ) is a subsplit in G and that v2; : : : ; vp is a blocking sequence for (X [fv1g; Y )in G. By Proposition 3.4, v2; : : : ; vp is also a blocking sequence for (X [ fv1g; Y ) in G0,and, since (X;Y [ fv2g) is not a subsplit in G0, v2; : : : ; vp is also a blocking sequence for(X;Y ) in G0. 214



Sign-�xed circuitsLet C be a circuit in a graph G. We say that C is sign-�xed with respect to G if any twoPU-orientations of G di�er on an even number of edges of C. For subgraphs H1, H2 of G,we denote by H1�H2 the subgraph of G induced by the edges EH1�EH2.Proposition 3.6 Let C be a circuit of a graphG. If there exist sign-�xed circuits C1; : : : ; Ckof G such that C = C1�C2� : : :�Ck then C is sign-�xed in G.Proof Let ~G1; ~G2 be any pair of PU-orientations of G. Let S be the set of edges of Gin which the orientations ~G1 and ~G2 di�er. For each sign-�xed circuit Ci, jCi \ Sj is even.Now C \ S = (C1� : : :�Ck) \ S= (C1 \ S)� : : :�(Ck \ S):Since C \ S can be represented as the symmetric di�erence of even sets, C \ S has evencardinality. Hence C is sign-�xed in G. 2The following proposition is attributed to Bondy in [16]; it can be proved using Menger'stheorem.Proposition 3.7 Let H be an eulerian subgraph of a 2-vertex-connected graph G. If Hhas an even number of edges, then there exist even circuits C1; : : : ; Ck of G such thatH = C1�C2� : : :�Ck: 2Lemma 3.8 Let G be a graph such that every even circuit is sign-�xed. All PU-orientationsof G are switching-equivalent if G is bipartite or 2-connected.Proof Let ~G1; ~G2 be PU-orientations of G. If C 0 is an even circuit of G, then ~G1 and ~G2di�er on an even number of edges of C 0, by the premises of the lemma. We claim that thesame property may be assumed for every circuit C 0 of G. This is obvious if G is bipartite.Otherwise �x an odd circuit C. We may assume that the orientations ~G1 and ~G2 di�eron an even number of edges of C; otherwise we reverse the orientation ~G2. Consider anyother odd circuit C 0 of G. By Proposition 3.7 there exist even circuits C1; : : : ; Ck suchthat C 0�C = C1� : : :�Ck; therefore C 0 = C�C1� : : :�Ck. It follows similarly to the theproof of Proposition 3.6, that the orientations ~G1 and ~G2 di�er on an even number of edgesof C 0. Which proves the claim.Let S be the set of edges upon which the orientations ~G1 and ~G2 di�er. It follows fromthe claim that if we contract each of the edges in EG nS, then we obtain a bipartite graph.Therefore the edges S form a cut in G, so ~G1 and ~G2 are equivalent under cut-switching.2Corollary 3.9 If G is prime and every even circuit of G is sign-�xed, then all PU-orientations of G are switching equivalent.Proof Trivially we may assume G has at least 4 vertices. Then G is 2-connected. 2Lemma 3.8 generalizes the ideas used in Seymour's proof of Theorem 1.2. Followingis a summary of Seymour's proof. Suppose C is a circuit of a bipartite graph G. If Cis chordless then it is easy to show that C is sign-�xed. Otherwise, if C has a chord,then C can be expressed as the symmetric di�erence of two shorter circuits, so inductivelywe can prove that C is sign-�xed. Then, by Lemma 3.8, all PU-orientations of G areswitching-equivalent. 15



Decomposition of circuitsIn this section we describe three decompositions of an even circuit C into a symmetricdi�erence of shorter even circuits.
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e

C (e)
2Figure 5: C + eLet C be an even circuit and let e be a chord of C. C can be expressed as the symmetricdi�erence of two shorter circuits (see Figure 5) denoted C1(e); C2(e) (in no particular order).Since C is even, C1(e) and C2(e) are either both even or both odd. We say that e is aneven (odd) chord of C if C1(e) and C2(e) are both even (odd). The �rst decomposition ofC is C = C1(e)�C2(e), when e is an even chord.
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C 1Figure 6: Decomposition of C + e1 + e2Let e1 and e2 be odd chords of an even circuit C. We say that e1 and e2 cross if e1 ande2 have disjoint ends and e2 has exactly one end in C1(e1). If e1 and e2 are crossing thende�ne C 01 = C1(e1)�C1(e2) and C 02 = C1(e1)�C2(e2); see Figure 6. C 01 and C 02 are botheven circuits and C 01�C 02 = (C1(e1)�C1(e1))�(C1(e1)�C2(e2))= C1(e2)�C2(e2)= C:If either C 01 or C 02 has length 4 then the other has the same length as C; otherwise both C 01and C 02 are shorter than C. We say that e1 and e2 are tight crossing chords if either C 01 orC 02 has length 4. The second decomposition of C is C = C 01�C 02, when e1 and e2 are nottight crossing chords. 16



Note that it is not possible to have three odd chords of a circuit such that each pair isa tight crossing pair, so if we have any three mutually crossing odd chords of a circuit C,we can apply one of the above decompositions to express C as the symmetric di�erence oftwo shorter even circuits.
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CFigure 7: C + e1 + e2 + e3In the third decomposition we have three odd chords e1, e2 and e3 of an even circuit Csuch that fe1; e2g and fe2; e3g are pairs of tight crossing chords and e1 and e3 do not cross.In this situation there are consecutive vertices x1; : : : ; x5 in C such that e1, e2 and e3 haveends fx1; x3g, fx2; x4g and fx3; x5g respectively, as depicted in Figure 7. Also depictedin Figure 7 is an even circuit C 0; C is the symmetric di�erence of C 0 and the two circuitsx1; x2; x4; x3; x1 and x5; x4; x2; x3; x5. Furthermore each of these circuits is even and shorterthan C.A circuit is said to be decomposable (otherwise indecomposable) if by one of the abovedecompositions we can express C as the symmetric di�erence of shorter even circuits. Morerigorously, an even circuit C is indecomposable if the chords of C are all odd, each chordcrosses at most one other chord and all crossings are tight.PU-orientations of prime graphsWe now prove the main result of the paper.Proof of Theorem 1.1. By Corollary 3.9, it su�ces to show that in a prime graph alleven circuits are sign-�xed. We prove this by induction on the length of an even circuit.Let k � 4 be an even integer. We assume that in every prime graph every even circuit oflength less than k is sign-�xed.Let C 0 be a circuit of length k in a prime graph G0. If C 0 can be expressed as thesymmetric di�erence of sign-�xed circuits in G0 then, by Proposition 3.6, C 0 is sign-�xed.In particular, if C 0 is decomposable then C 0 is sign-�xed.Claim 1 Let C be a circuit of length k in a prime graph G. If there exists a vertex thathas degree 2 in G[VC ] then C is sign-�xed.Proof of claim In the case that C has length 4, the claim follows from Lemma 2.2. Nowsuppose that k > 4 and that C is indecomposable. Let v be a vertex of degree 2 in G[VC ],let u;w be the neighbours of v in G[VC ] and let G0 be the graph obtained by performing apartial pivot on vw in G. 17



Let u0u and ww0 be the edges other than uv and uw incident to u and w respectivelyin C. Note that u0 is not adjacent to w in G since such an edge would be an even chord ofC, and similarly u is not adjacent to w0. We have that NG[VC](v)� w = fug, soEG0 [VC] = EG[VC ]�[fug; NG[VC](w)� v]:Therefore the partial pivot a�ects only edges incident with u, but the edges uu0 and uvare una�ected by the partial pivot, so C is a circuit in G0. Furthermore if the partial pivotwere performed on any orientation of G, then exactly one edge of C, namely vw, will bereoriented, so C is sign-�xed in G if and only if C is sign-�xed in G0. Now uw0 is an edgeof G0, so C has an even chord in G0. Hence C is sign-�xed in G0. This proves Claim 1.
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x4x Figure 8: Circuits in Claim 2.Claim 2 Let C be a circuit of length k in a prime graph G, and suppose x1; : : : ; x4 areconsecutive vertices of C such that x1x3 and x2x4 are chords of C. Finally let C 0 be thesymmetric di�erence of C and the circuit x1; x3; x4; x2; x1. (See Figure 8.) Then at leastone of C and C 0 is sign-�xed.Proof of claim The claim is trivially true when C is decomposable, so suppose that Cis indecomposable. Let X = fx2; x3g and Y = VC n X, and let e1 and e2 be the edgesx1x3 and x2x4, respectively. Note that e1 and e2 are crossing chords of C, so there are noother chords which cross either e1 or e2. Hence (X;Y ) is a subsplit of G; let v1; : : : ; vp be ablocking sequence for this subsplit. We prove the claim by induction on the length of theblocking sequence.Case 1: p = 1. v1 is a blocking sequence for the subsplit (X;Y ) in G. Then v1 isadjacent to exactly one of x2 and x3. Assume with no loss of generality that v1 is adjacentto x2. v1 must also be adjacent to some vertex in Y . This gives rise to two subcases.Case 1.1: v1 is adjacent to a vertex y in Y n fx1; x4g. We assume that x2 and y are aneven distance apart in C. (Otherwise x2 and y are an even distance apart in C 0 and we caninterchange the roles of C and C 0.) Consider the circuits C1 and C2 de�ned by Figure 9.C1 and C2 are both even and have length at most k. x3 and x2 have degree 2 in G[VC1 ]and G[VC2 ] respectively, so by Claim 1, C1 and C2 are both sign-�xed. Furthermore C isthe symmetric di�erence of C1 and C2 so C is also sign-�xed. This completes the proof ofClaim 2 in Case 1.1.Case 1.2: v1 is not adjacent to any vertices in Y n fx1; x4g. In this case v1 cannot beadjacent to both x1 and x4 since otherwise (X[fv1g; Y ) would be a subsplit, contradictingthe de�nition of a blocking sequence. So v1 is adjacent to exactly one of x1 and x4. Weassume that v1 is adjacent to x1. (The other case is equivalent under interchanging the18
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Figure 10: Decomposition in Case 1.2.roles of C and C 0 and changing labels.) Consider the even circuits C1 and C2 de�nedby Figure 10. v1 has degree 2 in both G[VC1 ] and G[VC2 ], so by Claim 1, C1 and C2 areboth sign-�xed. C 0 is the symmetric di�erence of C1 and C2 so C 0 is also sign-�xed. Thiscompletes the proof of Claim 2 in Case 1.Case 2: p > 1. As with Case 1, v1 is adjacent to exactly one of x2 and x3, and weassume with no loss of generality that x2 and v1 are adjacent. (X [ fv1g; Y ) is a subsplit,so either NG(v1)\Y = ; or NG(v1)\Y = NG(X)\Y = fx1; x4g. This gives two subcases.Case 2.1: NG(v1) \ Y = ;. Let G0 be the graph de�ned by performing a partialpivot on the edge x2v1. Note that NG(v1) \ VC = fx2g, so G[VC ] = G0[VC]. Then C andC 0 are circuits in G0 and, by considering the e�ect of this partial pivot on an orientationof G, C and C 0 are sign-�xed in G if and only if they are sign-�xed in G0. Now, byProposition 3.5, v2; : : : ; vp is a blocking sequence for the subsplit (X;Y ) in G0, so, by theinduction hypothesis of the claim, one of C and C 0 is sign-�xed in G0.Case 2.2: NG(v1) \ Y = fx1; x4g. We have that v2; : : : ; vp is a blocking sequence forthe subsplit (X [ fv1g; Y ). Furthermore, for i > 1, (X;Y [ fvig) is a subsplit; it follows19
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x Figure 11: Decomposition in Case 2.2.that vi is adjacent with x2 if and only if vi is adjacent with x3. Consequently v2; : : : ; vp isa blocking sequence for the subsplit (fx2; v1g; Y ). Now, by the induction hypothesis of theclaim, one of the circuits C1 or C2, de�ned in Figure 11, is sign-�xed. Let C 01 and C 02 bethe circuits v1; x1; x3; x2; v1 and v1; x4; x3; x2; v1 respectively. C 01 and C 02 are both sign-�xedby Claim 1. If C1 is sign-�xed then C 0, which is the symmetric di�erence of C1 and C 01, issign-�xed. Otherwise C2 is sign-�xed; then C, which is the symmetric di�erence of C2 andC 02, is sign-�xed. In either case we have proved Claim 2.The proof is now settled with two �nal cases.
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Figure 12: Decomposition when k = 4.Case 1: k = 4. Let C1 be a circuit of length 4 in a prime graph G. If G[VC1 ] is notcomplete then G[VC1 ] contains a vertex of degree 2, so, by Claim 1, C1 is sign-�xed. Thuswe may suppose that G[VC1 ] is complete. Let C2 and C3 be de�ned by Figure 12. ByClaim 2, one of C1 and C2 is sign-�xed. If C1 is sign-�xed we are done, so suppose C2 issign-�xed. Similarly one of C1 and C3 are sign-�xed, so suppose C3 is sign-�xed. HoweverC1 is the symmetric di�erence of C2 and C3, so C1 is sign-�xed.Case 2: k > 4. Let C be a circuit of length k in a prime graph G. If C is decomposableor if G[VC ] contains a vertex of degree 2 then C is sign-�xed. Suppose then that C isindecomposable and that every vertex in G[VC ] has degree at least 3. Let e be a chordof C such that the distance in C between the ends of e is minimum among all chords of20



C. Let y1; : : : ; yr be the internal vertices of a shortest path in C between the ends of e.Since each vertex in VC has degree at least 3 in G[VC ], each yi must subtend at least onechord of C; let ei be a chord having yi as an end. The distance in C between the endsof ei is at least the distance between the ends of e in C, so ei must cross e. Since C isindecomposable, there is at most one chord crossing e; therefore r = 1. Furthermore e1and e must be a tight crossing pair, so the other end of e1 must also be adjacent to an endof e in C. Therefore there are consecutive vertices x1; x2; x3; x4 of C such that x1 and x3are the ends of e, and x2 and x4 are the ends of e1. Let C 0 be the circuit x1; x2; x4; x3; x1;C 0 is sign-�xed since it has length 4. By Claim 2 at least one of C and C�C 0 is sign-�xed.If C is sign-�xed we are done. Otherwise C�C 0 is sign-�xed, so C (which is the symmetricdi�erence of C�C 0 and C 0) is also sign-�xed. This completes the proof. 24 Constructing a PU-orientationLet G = (V;E) be a simple graph that admits a PU-orientation. In Section 2 we essentiallydescribed how to construct all PU-orientations of G from a single PU-orientation. In thissection, we outline a polynomial-time algorithm that provides the initial PU-orientation.By Proposition 2.1, we may assume that G is prime.We �x an arbitrary orientation ~G0 = (V; ~E0) of G. Thus orientations can be conve-niently encoded by (0; 1)-vectors indexed by E. Speci�cally, an orientation ~G is encodedby x 2 f0; 1gE where xe = 0 if and only if ~G and ~G0 concur in their orientation of e.Henceforth we refer to an orientation by its encoding.Let C0 denote the set of edge sets of even circuits of G. Let M be the incidence matrixof even circuits versus edges of G. That is, M is a (0; 1)-matrix with rows C0 and columnsE where, for C 2 C0 and e 2 E, the (C; e) entry of M is 1 if and only if e 2 C. Letv; v� 2 f0; 1gE, where v� is a PU-orientation, and let b = Mv�. Then, by Theorem 1.1,v is PU if and only if v satis�es the binary matrix equation Mv = b. Let B0 � C0 be abasis of the even-circuit space (that is, the rowspace of M over GF(2)). We now de�ne,M 0 = M [B0; E] and b0 = M 0v�. Then, M 0v = b0 if and only if Mv = b. Consequently,for v 2 f0; 1gE, v is PU if and only if M 0v = b0 over GF(2). Our algorithm �nds a PU-orientation by solving the binary matrix equation M 0v = b0. At this point there remaintwo obstacles in implementing the algorithm, namely:(1) How can we �nd a basis for the even-circuit space e�ciently?(2) For an even circuit C, how can we compute bC e�ciently (without knowing v�)?Let C denote the set of edge sets of circuits of G. The circuit space (that is therowspace, over GF (2), of the circuit-edge incidence matrix of G) is the set of incidencevectors of eulerian subgraphs of G. Thus, by Proposition 3.7, there exists a basis B � Cof the circuit space that contains at most one odd circuit. For bipartite graphs this istrivial; for nonbipartite graphs such a basis can be constructed e�ciently by making anear decomposition of G that begins with an odd circuit; we leave the details to the reader.Given such a basis of the circuit space, the even circuits form a basis of the even-circuitspace. This answers (1). 21



The second of the aforementioned problems is less trivial. However, our proof of Theo-rem 1.1 is essentially a recursive algorithm for computing bC. The algorithm relies on thefollowing strengthening of Proposition 3.6, whose proof is left to the reader.Proposition 4.1 Let C;C1; : : : ; Ck be even circuits of G such that C = C1� : : :�Ck.Then bC = bC1 + : : :+ bCk modulo 2. 2Our algorithm immediately separates the cases where jCj = 4 and jCj > 4. However,in each case we must solve the subproblem given in Claim 2; precisely, the problem is asfollows.Subproblem: Let C be an even circuit with consecutive vertices x1; : : : ; x4 such thatx1x3 and x2x4 are chords, and let C 0 be the symmetric di�erence of C and the circuitx1; x3; x4; x2; x1. Find bC or bC0 .The algorithm for this subproblem comes directly from the proof of Claim 2. We leave thedetails to the reader, and instead focus on the main algorithm.Suppose that jCj = 4. If G[VC ] has a vertex of degree 2, then bC can easily be computedusing Lemma 2.2. Thus we assume G[VC ] is complete, and is depicted in Figure 12. Byusing the subproblem twice, we determine two of bC1 ; bC2; bC3, and the third is obtained bytheir sum.We now consider the case that jCj > 4.If C is decomposable, then we can express C as the symmetric di�erence of circuitsC1; : : : ; Ck, as described in Figures 5, 6 and 7, such that jCij < jCj, for i = 1; : : : ; k,and Pki=1 jCij � jCj + 8. Thus bC can be computed recursively as the sum of the bCi.The conditions on the sizes of these circuits maintains the e�ciency of the algorithm.Henceforth we assume that C is indecomposable.Now suppose that G[VC ] has a vertex v of degree 2. Let w be a vertex adjacent tov. Note that changing the orientation of an edge in ~G0 has a predictable e�ect on bC.We change the orientation ~G0 so that we have the following property: Each edge xy withx 2 N(w) and y 2 N(v) is oriented with its head being a neighbour of v and its tail being aneighbour of w. (Note that we allow x = v and y = w.) We leave it to the reader to checkthat this property ensures that partial pivoting on fv;wg in the adjacency matrix of ~G0yields a (0;�1)-matrix. Let ~G00 be the oriented graph obtained by this partial pivot, andlet G0 be the graph obtained by performing a partial pivot on vw in G. Note that ~G00 isan orientation of G0; also C is a circuit of G0 and bC is una�ected by the pivot. However,the partial pivot added an even chord to C, making C decomposable. Henceforth we mayassume that G[VC ] has no vertex of degree 2.By the assumptions on C, we can �nd consecutive vertices x1; x2; x3; x4 of C suchthat x1x3 and x2; x4 are chords. Let C0 denote the circuit x1; x2; x4; x3; x1. Since C isindecomposable, x1x4 is not a chord. Thus bC0 can be computed easily by Lemma 2.2. LetC 0 be the symmetric di�erence of C and C0. We now use the subproblem to �nd bC orbC0 . Thus we know two of bC0; bC ; bC0, their sum gives us the third. This completes thealgorithm. AcknowledgmentsThe authors wish to thank M. Loebl and W. Hochst�attler for stimulating discussions.22
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