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1 IntroductionMatroids are important as a unifying structure in pure combinatorics, as well as a usefulmodel in the theory of algorithms and in combinatorial optimization. (See Bixby and Cun-ningham [1] for a survey of the latter aspects.) Delta-matroids constitute an interestinggeneralization, and have been introduced only recently. Many of the nice properties associ-ated with matroids (greedy algorithm, polyhedral description, interesting examples) extendto delta-matroids. In the present paper we begin by reviewing some of this work. Then weprove a new composition theorem for delta-matroids. It has several applications, includingconstructions for matroids. An important theme is to identify in which of the applicationsthe composition is algorithmically constructible.The polyhedral aspects of matroids, developed more than twenty years ago by Ed-monds [11], led him to a di�erent generalization, integral polymatroids. In a certain sensethere are two views of an integral polymatroid; �rst, it is a polyhedron P , and second, it is aset F of integral points. There is a simple relation between the two views|P is the convexhull of F , and F is the set of integral points in P . In this paper we introduce jump systems,a common generalization of delta-matroids and (the second view of) integral polymatroids.A jump system is de�ned by a set F of integral points, but it is not generally true that it isthe set of integral points in its convex hull. We present some examples of jump systems andprove an addition theorem, which implies the composition theorem for delta-matroids.Although jump systems cannot be de�ned via polyhedra, there is an important subclassthat can. These arise from (integral) bisubmodular polyhedra, introduced by Dunstan andWelsh [10] in 1973 in a paper that seems to have been fully appreciated only recently. Weprove that the integral points in such a polyhedron determine a jump system. Moreover,there is a partial converse|if F is a set of integral points determining a jump system, thenthe convex hull of F is an integral bisubmodular polyhedron. So it is true that a polyhedronwith integral vertices is bisubmodular if and only if the integral points in it form a jumpsystem.Throughout this paper S, with or without subscripts, is a �nite set. We use R, R+, Z,and Z+ to denote the sets of real numbers, non-negative real numbers, integers, and non-negative integers, respectively. For x 2 RS and A � S, we often use x(A) as an abbreviation2



for P(xj : j 2 A). For c; x 2 RS we write cx to mean P(cjxj : j 2 S). For x 2 RS andA � S, we use xjA to denote the restriction of x to A, that is, the vector x0 2 RA such thatx0j = xj for all j 2 A. Finally, we use the symbol A also to denote the incidence vector of A,that is, the vector x 2 RS such that xj = 1 if j 2 A and xj = 0 if j =2 A.2 Delta-matroidsLet F be a family of subsets of a �nite set S. Then (S;F) is a delta-matroid if the followingsymmetric exchange axiom is satis�ed:(SEA) If F1; F2 2 F and j 2 F1�F2 then there is k 2 F1�F2 such that F1�fj; kg 2 F .(Here and elsewhere � denotes symmetric di�erence.) These structures have been introducedby Bouchet [2]. Essentially equivalent structures were independently considered by Dressand Havel [8] and by Chandrasekaran and Kabadi [5]. A main motivation for their studyis that, if F is the family of bases of a matroid on S, then (S;F) is a delta-matroid. Infact, matroids are precisely the delta-matroids for which all members of F have the samecardinality. (We remark that throughout the paper we use \matroid" to mean a matroidde�ned by its family of bases.) In addition to these examples, we mention a few others.Matching delta-matroids. Let G = (V;E) be a graph, let S = V , and let F 2 F ifand only if there is a matching of G covering precisely the elements of F . Then (S;F) is adelta-matroid. This can be proved using augmenting path arguments.Twisting. Let (S;F) be a delta-matroid, and let N � S. Let F�N denote fF�N :F 2 Fg. Then (S;F�N) is a delta-matroid. For example, we can get delta-matroids byapplying twisting to a matroid. In one case we get again a matroid; namely, when N = S,we get the dual matroid.Linear delta-matroids. Let M = (mij : i 2 S; j 2 S) be a skew-symmetric matrixover a �eld. De�ne F by F 2 F if and only if the principal submatrix (mij : i 2 F; j 2 F )is non-singular. Then (S;F) is a delta-matroid. The proof of this result is not trivial; seeBouchet [3], where it is also generalized. (For example, a symmetric matrix can also beused.)Another basic fact is that, if (S;F) is a delta-matroid and F 0 is the family of maximal3



members of F , then (S;F 0) is a matroid. This and twisting can be used to justify a greedyalgorithm for optimizing any linear function over F . Namely, jcj(F�N) = c(F ) � c(N),where N = fj : cj < 0g. Therefore, we can apply the matroid greedy algorithm to themaximal members of F�N with weight function jcj. Translating that algorithm into oneoperating directly on (S;F) and c, we get the following procedure. It appears in [2] and [5],but a similar kind of greedy algorithm can be found in Dunstan and Welsh [10].Greedy Algorithm for Delta-MatroidsInput: Delta-matroid (S;F) and weight vector c 2 RS.Objective: To �nd F 2 F such that c(F ) is maximum.beginorder S as fe1; e2; : : : ; eng so that jce1j � jce2j � : : : � jcen j;for i = 1 to n+ 1 let Ti = fei; : : : ; eng;J  ;;for i = 1 to nif cei � 0 and there exists F 2 F with J [ feig � F � J [ Tithen J  J [ feig;if cei < 0 and there does not exist F 2 F with J � F � J [ Ti+1then J  J [ feig;end.Notice that to implement this algorithm we need to be able to answer the question, givendisjoint subsets A, B of S,(2.1) Does there exist F 2 F with A � F � S nB ?A more general question is to ask for the value f(A;B), de�ned to be maxF2F(jF \Aj �jF \ Bj), since the answer to (2.1) is \yes" exactly when f(A;B) = jAj. However, the twoquestions are algorithmically equivalent because f(A;B) can be computed by the greedyalgorithm with cj = 1 for j 2 A, �1 for j 2 B, and 0 otherwise. We consider the existenceof an e�cient subroutine to evaluate the function f (or answer the question (2.1)) to bethe measure of algorithmic tractability of the delta-matroid. (If (S;F) is a matroid with4



rank function r, a simple argument shows that f(A;B) = r(A) + r(S n B) � r(S). Sincer(A) = f(A; ;), it follows that this oracle is available for a matroid exactly when the usualone is available.)Composition of delta-matroidsOur main result on delta-matroids is a composition theorem. We de�ne the composition ofdelta-matroids (S0;F0), (S1;F1) to be (S;F) where S = S0�S1 and F = fF0�F1 : F0 2F0; F1 2 F1; F0 \ S1 = F1 \ S0g. That is, each feasible set is a symmetric di�erence of twofeasible sets, one from each of the initial delta-matroids, that agree on S0 \ S1. The proofthat this construction gives a delta-matroid is our original one, which we include becauseof its algorithmic 
avour. However, the reader is warned that the next section contains aneasier proof of a more general result, so he may want to skip this prove on a �rst reading.(2.2) Theorem. The composition of delta-matroids is a delta-matroid.Proof. We consider F;G 2 F , j 2 F�G, and we search for k 2 F�G such that F�fj; kg 2F . There exist F0; G0 2 F0, F1; G1 2 F1 such that F = F0�F1 and G = G0�G1. We alsoconsider S0 = S0 \ S1, F 0 = F0 \ S 0 = F1 \ S 0, G0 = G0 \ S 0 = G1 \ S 0. For any integer i welet Fi, Gi, Fi be respectively equal to F0, G0, F0 if i is even, F1, G1, F1 if i is odd.The element j belongs to F0�G0�F1�G1. By symmetry we may assume that j 2F1�G1. Applying (SEA) to F1; G1 2 F1 and j 2 F1�G1 we can �nd z 2 F1�G1 such thatF1�fj; zg 2 F1. If z 62 S 0 we have F1�fj; zg�F0 = F�fj; zg � S, and the property isproved with k = z. From now on we assume that z 2 S 0, so that z 2 F 0�G0.We consider a sequence U = (j1; j2; : : : ; jr) of pairwise distinct elements belonging toF 0�G0 with j1 = z. For 0 � i � r we let Ui = fj; j1; j2; : : : ; jig if i is odd, Ui = fj1; j2; : : : ; jigif i is even, and we suppose that �i = Fi�Ui 2 Fi. The conditions are satis�ed if U = (j1)because �0 = F0 and �1 = F1�fj; zg. From now on we suppose that the length of U ismaximal.We have (�r�1�Gr�1) \ S 0 = (Fr�1�Ur�1�Gr�1) \ S 0 = F 0�G0�Ur�1. The elementjr belongs to F 0�G0 and it does not belong to Ur�1. Therefore jr 2 (�r�1�Gr�1) \ S 0 ��r�1�Gr�1. We apply (SEA) to �r�1; Gr�1 2 Fr�1 and jr 2 �r�1�Gr�1. This yields an5



element jr+1 2 �r�1�Gr�1 such that �r�1�fjr; jr+1g 2 Fr�1. We let Ur+1 = Ur�1�fjr; jr+1gand �r+1 = �r�1�fjr; jr+1g.We claim that either jr+1 62 S 0 or jr = jr+1. If this is not true, we have jr+1 2(�r�1�Gr�1) \ S 0 = F 0�G0�Ur�1. Since Ur�1 � F 0�G0, this implies that jr+1 is dis-tinct from j1, j2, : : :, jr. Therefore (j1; j2; : : : ; jr+1) satis�es the same properties as U , whichcontradicts the maximality of U .If either jr+1 62 S 0 or jr+1 = jr, we have �r+1 \S 0 = �r \S 0 = Ur�F 0. Since �r+1 2 Fr+1and �r 2 Fr, we have �r��r+1 2 F . If jr+1 62 S 0 we verify that �r��r+1 = F�fj; jr+1gand jr+1 2 F�G, which proves the property with k = jr+1. If jr+1 = jr we have �r��r+1 =F�fjg, which proves the property with k = j.Given a set l of disjoint pairs of S and a subset F � S we abuse the notation F�l torepresent the symmetric di�erence of F with the union of the pairs that belong to l. Let(S;F) be a delta-matroid. For F;F 0 2 F , a linking L of (F;F 0) is a partition of F�F 0into pairs such that F�l 2 F for all l � L. We say that (S;F) is linkable if there exists alinking of (F;F 0) for all F;F 0 2 F . This generalizes the notion of strong base orderability(see Welsh [25]) for matroids.(2.3) Theorem. The composition of linkable delta-matroids is a linkable delta-matroid.Proof. The notation is the same as in the proof of Theorem (2.2). For i = 0; 1, let Li be alinking of (Fi; Gi). Let H be the graph de�ned over the vertex-set S0 [ S1 and the edge-setL0[L1. Each vertex of H has degree 0, 1, or 2, and no vertex in S0�S1 has degree 2. Hencethe components ofH are paths and circuits, and each path ends in S0�S1. Let P be the set ofthe components of H that are paths. Let L = ffs; tg : s and t are the ends of a path in Pg.We prove that L is a linking of F�G. Let l = f(s1; t1); (s2; t2); : : : ; (sk; tk)g � L. Let P j bethe path in P that ends at sj and tj, for 1 � j � k. Let lji = Li \ P j , for i = 0; 1. Since Liis a linking of (Fi; Gi), we have(i) F 0i = Fi�(l1i�l2i : : : lki ) 2 Fi:Notice that X�lj0�lj1 = X�fsj; tjg holds for all X � S and 1 � j � k. Hence it followsfrom (i) that F�l = F 00�F 01, and so F�l 2 F .6



Remark. Matching delta-matroids are examples of linkable delta-matroids. But for match-ing delta-matroids an even stronger property holds. For F;F 0 2 F , there is a partition ofF�F 0 that is a linking of both (F;F 0) and (F 0; F ).Composition of MatroidsIf we apply the composition to two matroids, it is clear that the composed delta-matroid isnot necessarily a matroid. However, composition can be combined with twisting to providea matroid construction.(2.4) Theorem. If (S0;F0), (S1;F1) are matroids, then the composition (S;F) of (S0;F0)with (S1;F1�(S0 \ S1)), is a matroid (provided F is non-empty).Proof. (S;F) is a delta-matroid by Theorem (2.2), so we need only show that the membersof F all have the same cardinality. ButF = f(F0 [ F1) n (S0 \ S1) : F0 2 F0; F1 2 F1; F0 \ F1 = ;; F0 [ F1 � S0 \ S1g :Thus F 2 F implies jF j = jF0j+ jF1j � jS0 \ S1j, and we are done.In fact, this matroid composition can be obtained from standard constructions: (S;F) =((S;F0)+(S;F1))=(S0\S1), where + denotes matroid union [25] and = denotes contraction.This composition was investigated in [6] and [23]. It is easy to derive a formula for its rankfunction r in terms of the rank functions r0; r1 of (S;F0), (S;F1), namelyr(A) = minX�S0\S1(r0(X [ (A \ S0)) + r1(X [ (A \ S1))� jXj):The research in [6, 23] concentrated on cases where jSj > jS0j; jS1j and treated the resultingdecomposition, which has some nice properties based on connectivity. But the compositionalso yields constructions for smaller matroids, as follows.7



(2.5) Corollary. Let M0 = (S0;B0) and M1 = (S1;B1) be matroids with S1 � S0. ThenfB n S1 : B 2 B0; B \ S1 2 B1g, if non-empty, is the family of bases of a matroid onS = S0 n S1. Its rank function is given byr(A) = minX�S1(r0(A [X) + r1(X)� jXj):(2.6) Corollary. Let M0 = (S0;B0) be a matroid, let S � S0, let S1 = S0 n S, and let k bean integer. Then fB \ S : B 2 B0; jB \ S1j = kg, if non-empty, is the basis family of amatroid on S. Its rank function is given byr(A) = min(r0(A); r0(A [ S1)� jS1j+ k):Proof. We apply (2.5), taking M1 to be the uniform matroid of rank k on S1. This matroidhas rank function r1 de�ned by r1(X) = min(jXj; k). In the expression for r(A), we see thatif jXj � k, then we may as well take X = S1, and if jXj < k, we may as well take X = ;.This leads to the required expression for the rank function.We observe that the last construction contains as special cases both contraction anddeletion.E�cient realization of composed delta-matroidsAnother application of Theorem (2.2) is the following result of Bouchet [4]. We use it andits further corollary to make an important point about the availability of the oracle for acomposition of delta-matroids.(2.7) Corollary. Let G be a bipartite graph with bipartition fS; S 0g, let (S;F) be a delta-matroid, and let F 0 = fF 0 � S 0 : F 0 is matched in G to a member of Fg. Then (S 0;F 0) is adelta-matroid. 8



Proof. (S 0;F 0) is the composition of (S;F) with the matching delta-matroid of G.In the special case of (2.7) in which (S;F) is a matroid, we get that (S 0;F 0) is also amatroid; this is a classical result (seeWelsh [25]). A further specialization gives a \partition"construction for delta-matroids. This is also from [4].(2.8) Corollary. Let (S;F0), (S;F1) be delta-matroids, and let F = fF0 [ F1 : F0 2F0; F1 2 F1; F0 \ F1 = ;g. Then (S;F) is a delta-matroid.We refer to this construction as the \union" of delta-matroids. Corollary (2.8) can beused to show that the composition theorem (2.2) is not necessarily algorithmically realizable,in the sense that an oracle for (S;F) may not be available from oracles for (S0;F0), (S1;F1).In the applications (2.5), (2.6), oracles can be constructed e�ciently, essentially by meansof the matroid partition algorithm, and of course (2.4) is even easier. We show that in (2.8)(and hence in (2.7), (2.2)), in general, they cannot.Suppose we are given a graph G = (V;E) and a matroid M = (V;B). Consider theunion (V;F) (as in (2.8)) of the matching delta-matroid of G with the dual matroid M� ofM . Suppose that we have an oracle for (V;F). Then we can apply the greedy algorithmto �nd a largest member of F , and in particular to decide whether V 2 F . But V 2 F ifand only if it is partitionable into a matchable set and a basis of M�, that is, if and only ifthere is a basis of M that is matchable in G. It is well known that deciding whether thisis true (\the matroid matching problem" [17]) is not generally solvable in polynomial time.Hence an oracle for the union of (S;F0), (S;F1) is not constructible in polynomial time fromoracles for (S;F0), (S;F1). The composition is a useful construction, but it is important todistinguish the cases where it is e�ciently constructible from those where it is not.We conclude the section by deriving a new class of delta-matroids from the compositiontheorem, and constructing the relevant oracle. A red-blue graph is a graph each of whose edgesis coloured either red or blue. A vertex v of a red-blue graph is bichromatic or monochromaticaccording to whether v is incident to edges of both colours or not. An alternating path ofa red-blue graph is a path of length at least one whose edges alternate in colour. Here is a9



class of delta-matroids arising from red-blue graphs. Notice that the matching delta-matroidsform a subclass, arising from the case where there are no blue edges.(2.9) Proposition. Let G = (V;E) be a red-blue graph, S be the set of monochromaticvertices, and F = fF � S : F is the set of end vertices of a set of vertex-disjoint simplealternating pathsg. Then (S;F) is a delta-matroid.Proof. Let (S0;F0) be the matching delta-matroid of the graph (S0; E0), where S0 = fv 2V : v is incident to a red edgeg and E0 is the set of red edges. Similarly de�ne (S1;F1) withred replaced by blue. It is easy to see that (S;F) is the composition of (S0;F0) and (S1;F1).We describe an e�cient construction of the oracle for this class of delta-matroids, due toJohn Vande Vate. Given disjoint subsets A;B of S, delete the vertices of B from G. Foreach bichromatic vertex w, split w into two vertices w1; w2 such that w1 is incident to thered edges previously incident to w, and w2 is incident to the blue edges previously incidentto w. Also join w1; w2 by a new \white" edge. Let G0 be the new graph. Let P be theset of edges of a set of alternating paths determining a feasible set F , A � F � SnB, andlet M be P together with the set of white edges corresponding to bichromatic vertices notin any of the paths. Then M is a matching of G0 covering all vertices not in Sn(A [ B).Conversely, any such matching of G0 determines such a set of alternating paths. Hence theoracle is provided by a matching algorithm. In the next section we will see another examplebased on red-blue graphs, but allowing the alternating paths to be nonsimple.3 2-step axiom and jump systemsFor vectors x; y 2 ZS , we use the norm kxk = P(jxjj : j 2 S) and the distance d(x; y) =kx � yk. For x; y 2 ZS a step from x to y is a vector s 2 ZS such that ksk = 1 andd(x+ s; y) = d(x; y)� 1. We denote the set of steps from x to y by St(x; y). A jump systemis a pair (S;F) where F � ZS satis�es the following 2-step axiom:(2-SA) If x; y 2 F ; s 2 St(x; y), and x + s =2 F , then there exists t 2 St(x + s; y) withx+ s+ t 2 F . 10



We begin by considering some simple examples of jump systems.Low dimensional jump systems. In Figure 1 we illustrate two choices of F for thecase where jSj = 2. In both we denote members of F with solid dots and nonmembers byhollow or non-existent dots. It is easy to see that in the �rst case, we have a jump system,whereas in the second case a pair x; y violating the 2-SA is indicated. It is interesting alsoto consider the case jSj = 1, that is, to ask which subsets of the integers satisfy 2-SA. Theseare the sets having no gap of size bigger than one, that is, there do not exist two consecutiveintegers not in F , unless either all elements of F are bigger than both or all are smaller thanboth.
xhx hhh xhx xxlx hhh xhxlFigure 1: The 2-step axiomHyperplanes. Let a 2 f0; 1;�1gS, let b 2 Z, and let F = fx 2 ZS : ax = bg. It is easyto check that (S;F) is a jump system.Delta-matroids. It is an easy exercise to prove that a pair (S;F) such that F � f0; 1gSis a jump system if and only if it is a delta-matroid. (Here, of course, we are identifyingsubsets of S with their characteristic vectors.)Simple operations on jump systemsHere we mention a few elementary operations that preserve 2-SA.Translation. Let (S;F) be a jump system and let a 2 ZS . Then the translation (S;F 0)of (S;F) by a is de�ned by F 0 = fx+ a : x 2 Fg, and is clearly a jump system.11



Cartesian Product. Let S0; S1 be disjoint sets, and let (Si;Fi) be a jump system fori = 0; 1. De�ne S = S0 [ S1 and F = fF0 [ F1 : F0 2 F0; F1 2 F1g. Then (S;F) is a jumpsystem.Re
ection. Let (S;F) be a jump system and let N � S. For each x 2 RS, let x0 be thevector obtained by re
ecting x in the co-ordinates indexed by N , that is, x0j = xj if j =2 Nand x0j = �xj otherwise. Then, where F 0 = fx0 : x 2 Fg , it is easy to see that (S;F 0) isa jump system. We observe that the twisting operation on delta-matroids is a combinationof re
ection and translation; more precisely, twisting by N is equivalent to re
ecting in theco-ordinates indexed by N followed by translating by the characteristic vector of N .Minors. Let (S;F) be a jump system, let S 0 � S, let x 2 ZSnS0 , and let F 0 = fx0 2ZS0 : (x0; x) 2 Fg. Then (S 0;F 0) is a jump system.Intersection with a box. A box is a set of the form fx 2 RS : l � x � ug, wherel 2 (R [ f�1g)S and u 2 (R [ f1g)S. It is easy to see that the intersection of a jumpsystem with a box is again a jump system.Restriction or projection. Let (S;F) be a jump system and let S 0 � S. Then (S 0;F 0)is a jump system, where F 0 = fxjS0 : x 2 Fg. We remark that this is not completelyobvious, but we leave the (easy) proof to the reader. Also, we point out that the minoroperation is now redundant, in the sense that it can be obtained as an intersection with abox followed by a projection. (Namely, intersect with the box de�ned by lj = �1, uj =1,j 2 S 0, and lj = uj = xj otherwise, and then restrict to S 0.)Integral polymatroidsNow we introduce a less trivial example. An integral polymatroid is a polyhedron P = fx 2RS+ : x(A) � f(A) for all A � Sg, where f : f0; 1gS ! Z+ is normalized (f(;) = 0) andsubmodular (f(A) + f(B) � f(A [ B) + f(A \B) for all A;B � S).(3.1) Proposition. If P is an integral polymatroid in RS, then P \ ZS satis�es 2-SA.The proof uses a well-known result, from [11]. Given x 2 P , where P is determined by f ,we say that a set A � S is x-tight or just tight if x(A) = f(A).12



(3.2) Lemma. The union and intersection of tight sets are tight.Proof of Proposition (3.1). Let x; y be integral points of P and s a step from x to ysuch that x + s =2 P . Then it is easy to see that s must be non-negative, so s = feg forsome e 2 S such that xe < ye. It follows that there is an x-tight set A such that e 2 A.Now if yj � xj for all j 2 A, then y(A) > x(A) = f(A), a contradiction. So there existsj 2 A with xj > yj. If x + feg � fjg 2 P , we are done, so we may assume that for everysuch j there is an x-tight set Aj with e 2 Aj and j =2 Aj. The intersection of all these Ajwith A is, by (3.2), an x-tight set B such that e 2 B and xj � yj for all j 2 B. But theny(B) > x(B) = f(B), a contradiction.Sum of jump systemsThe sum of jump systems (S;F0) and (S;F1), de�ned on the same set S, is the pair (S;F)where F = F0 +F1 = fx+ y : x 2 F0; y 2 F1g. The simple proof of the following theoremwas suggested to us by Andr�as Seb}o.(3.3) Theorem. The sum of two jump systems is a jump system.Proof. We use the above notation. Let x; y 2 F1 + F2 and let s be a step from x to y.We have to prove that x + s 2 F1 + F2 or there exists a step t from x + s to y such thatx+ s+ t 2 F1 + F2. We assume that x+ s 62 F1 + F2 and we search for t. Let x = x1 + x2and y = y1+ y2 with x1; y1 2 F1 and x2; y2 2 F2. We have x1+ s 62 F1 and x2+ s 62 F2 (forexample if x1 + s 2 F1 then (x1 + s) + x2 = x+ s 2 F1 + F2, a contradiction).We claim that we can �nd x01 2 F1, x02 2 F2 and a step t satisfying x+ s + t = x01 + x02.Since s is a step from x1+x2 to y1+ y2, s is a step from x1 to y1 or a step from x2 to y2. Bysymmetry we may assume the former. Apply 2-SA to x1; y1 2 F1 and the step s from x1 toy1. Since x1+ s 62 F1 there exists a step t from x1+ s to y1 such that x1+ s+ t 2 F1. Then(x1 + s+ t) + x2 = x+ s+ t 2 F1 + F2, which implies the existence of x01 and x02.Choose a triple (x01; x02; t) that minimizes d(x01; y1) + d(x02; y2). We show that, under thisassumption, t is a step from x+s to y, proving the theorem. Assume not for a contradiction.13



Then �t is a step from x01 + x02 = x + s + t to y1 + y2 = y. This implies that �t is a stepfrom x01 to y1 or a step from x02 to y2. By symmetry we assume the former. Apply 2-SAto x01; y1 2 F1 and the step �t. The point x01 � t does not belong to F1 because, if so,we should have (x01 � t) + x02 = x+ s 2 F1 + F2, which contradicts the initial assumption.Thus we can �nd a step r from x01 � t to y1 such that x01 � t + r 2 F1. This impliesx+ s+ r = (x01� t+ r)+x02 2 F1+F2, where x01� t+ r is closer to y1 than x01. So the triple(x01 � t+ r; x02; r) contradicts the choice of (x01; x02; t).Bidirected graphsWe consider �nite graphs that may have loops and multiple edges. In order to de�ne bidi-rections, it is convenient to let each edge be incident to two half-edges. Formally a graphG is de�ned by three pairwise disjoint �nite sets: a set of vertices V , a set of edges E, anda set of half-edges H. There is an incidence relation between H and V , as well as betweenH and E. These incidence relations are such that each half-edge is incident to precisely onevertex and one edge. Further an edge is incident to precisely two half-edges. We denote byhv the set of the half-edges incident to a vertex v. The degree of v is d(v) = jhvj.A biorientation, or bidirection, over G is a function � : H ! f�1;+1g. For f 2 ZE andv 2 V , the excess of f at v is ex(f)v = P(�(h)f(e) : h 2 hv; e is the edge incident to h), andthe excess of f is the vector ex(f) = (ex(f)v : v 2 V ). Given c1; c2 2 ZE, with c1 � c2, wedenote by [c1; c2] the set ff 2 ZE : c1 � f � c2g.(3.4) Proposition. Let c1; c2 2 ZE, such that c1 � c2. Then (V; fex(f) : f 2 [c1; c2]g) is ajump system.Proof. For h 2 H let x(h) 2 ZV be de�ned by x(h)v = �(h) if the vertex v is incidentto h, x(h)v = 0 otherwise. For e 2 E let Fe = f�(x(h0) + x(h00)) : � 2 [c1(e); c2(e)]g,where h0 and h00 are the half-edges of G incident to e. We easily verify that (V;Fe) is ajump system. (One way is to observe that it is a hyperplane jump system intersected witha box and then extended by zeroes, but it is perhaps as easy to check directly.) We have14



(V; fex(f) : f 2 [c1; c2]g) = P((V;Fe) : e 2 E), where the summation stands for the sumoperation considered in Theorem (3.3). The result follows from that theorem.The special case in which we take the bidirection to be trivial, that is, all the values of� to be +1, is already quite interesting. If we also de�ne c1(e) = 0 and c2(e) = 1 for eachedge e, then fex(f) : f 2 [c1; c2]g is the set of degree sequences of subgraphs of G. If we nowintersect this set with the unit cube, we get the matching delta-matroid of G. More generalsets of this type are investigated in [7].Suppose that we consider again the red-blue graph example of Proposition (2.9), but thistime we allow the alternating paths to repeat vertices, but not edges. We show that weobtain another delta-matroid. We form a bidirected graph, by assigning to each red edgetwo positive half-edges, and assigning to each blue edge two negative half-edges; we de�neagain c1(e) = 0 and c2(e) = 1 for each edge e. Now consider the resulting jump system,and re
ect it in the co-ordinates corresponding to the vertices incident only to blue edges.Next, intersect it with the box determined by 0; u, where uj = 1 if j is monochromatic, anduj = 0 otherwise. Finally, project the jump system to the co-ordinates corresponding to themonochromatic vertices. The resulting jump system is a delta-matroid, and it is easy to seethat it is precisely the desired one. Moreover, an oracle for this delta-matroid can be realizedin polynomial time by methods of bidirected matching; see [12].Composition of jump systemsLet (S0;F0) and (S1;F1) be two jump systems. The composition of (S0;F0) and (S1;F1) isthe pair (S;F), where S = S0�S1 and F � ZS is de�ned by x 2 F if and only if there existsx0 2 F0 and x1 2 F1 satisfying x0jS0\S1 = x1jS0\S1, xjS0nS1 = x0jS0nS1, xjS1nS0 = x1jS1nS0.(We may also speak of the composition F of F0 and F1.) Notice that this de�nition, in thecase of f0; 1g-valued vectors, corresponds to the composition of delta-matroids introducedin Section 2. Hence the next result generalizes (2.2).(3.5) Proposition. The composition of two jump systems is a jump system.15



Proof. For i = 1; 2 we extend each vector in Fi to an element of ZS0[S1 by �lling it outwith zeroes. Then we re
ect F1 in the components corresponding to S0 \ S1, then we takethe sum, and then we take the minor associated with the vector 0 2 ZS0\S1.Conversely, Theorem (3.3) can be easily derived from the preceding proposition. (Infact, the original version of this paper proved the proposition directly and used it to proveTheorem (3.3).) Consider two sets F 0;F 00 � ZS that satisfy 2-SA. We �rst notice that� = f(x; y; x + y) : x; y 2 Zg is a subset of Z3 which satis�es 2-SA. (For example, it isan instance of the hyperplane systems introduced earlier.) Let us consider a family (Tv =fv0; v00; vg : v 2 S) of pairwise disjoint 3-element sets. For each v 2 S let �v = f(xv0; xv00 ; xv) :xv0; xv00 2 Z; xv = xv0 +xv00g � ZTv, and consider the cartesian product � = �(�v : v 2 S) ��(ZTv : v 2 S) = ZS0[S00[S, with S 0 = fv0 : v 2 Sg and S 00 = fv00 : v 2 Sg. Then � satis�es2-SA. We make a copy G 0 � ZS0 of F 0 and a copy G 00 � ZS00 of F 00. The cartesian productG = G 0�G 00 � ZS0[S00 satis�es 2-SA. Finally we notice that the composition of � � ZS0[S00[Swith G � ZS0[S00 is equal to F 0 + F 00.4 Bisubmodular polyhedra and jump systemsHere we describe a generalization of (integral) polymatroids, called (integral) bisubmodularpolyhedra. We show that the integral points of an integral bisubmodular polyhedron satisfythe 2-SA. In the next section, we show a partial converse: The convex hull of a set satisfyingthe 2-SA is an integral bisubmodular polyhedron.A function f from pairs (A;B) of disjoint subsets of S to R[f1g is called bisubmodularif it satis�es, for all such pairs (A;B), (A0; B 0),f(A;B) + f(A0; B 0) � f((A;B) ^ (A0; B 0)) + f((A;B) _ (A0; B 0)):Here (A;B)^ (A0; B 0) denotes (A\A0; B \B 0), and we call it the intersection of (A;B) and(A0; B 0); (A;B) _ (A0; B 0) denotes ((A [ A0) n (B [ B 0); (B [ B 0) n (A [ A0)), and we call itthe reduced union of (A;B) and (A0; B 0). (Notice that the operation _ is not associative.)It is convenient to assume throughout that f(;; ;) = 0. The bisubmodular inequality (on16



real-valued functions) has been introduced by Kabadi and Chandrasekaran [5, 16], by Naka-mura [18, 19], and by Qi [22]. The term \bisubmodular" was introduced by Nakamura [20].The bisubmodular polyhedron associated with f is P (f) = fx 2 RS : x(A) � x(B) �f(A;B); A;B � S; A\B = ;g. These polyhedra, again with the exception that the functionvalues are �nite, were introduced by Dunstan and Welsh [10] and studied in [16, 18, 22].Nakamura showed the equivalence of the Dunstan-Welsh de�nition and the bisubmodularone. The function f associated in Section 2 with a delta-matroid (S;F) is bisubmodularand the associated bisubmodular polyhedron is the convex hull of the elements of F . Thisresult appears in [5] and [2]. We say that f is integral if its �nite values are integral, andthat P (f) is integral if f is integral.A number of more familiar classes of polyhedra fall into this class. If f 0 is submodular onsubsets of S, and f 0(;) = 0, then f de�ned by f(A; ;) = f 0(A) for A � S and f(A;B) =1for B 6= ;, is bisubmodular. The associated P (f) is fx 2 RS : x(A) � f 0(A) for all A � Sg,the submodular polyhedron associated with f 0. If we take f(A;B) = f 0(A) for all pairs A;Bof disjoint subsets of S, then it is easy to check that f is bisubmodular if and only f 0 isalso monotone: if A1 � A2, then f 0(A1) � f 0(A2). In this case P (f) is fx 2 RS+ : x(A) �f 0(A) for all A � Sg, the polymatroid associated with f 0. (Although P (f 0) is a polymatroideven without the assumption of monotonicity, it is known that every polymatroid is deter-mined by a monotone submodular function, so every polymatroid is a bisubmodular poly-hedron.) Finally, the base polyhedron fx 2 RS : x(A) � f 0(A) for all A � S; x(S) = f 0(S)gassociated with f 0 is obtained by taking f(A;B) = f 0(A) + f 0(S n B) � f 0(S), and f isbisubmodular.Another, more general, class of bisubmodular polyhedra consists of Frank's generalizedpolymatroids. Here we suppose that g, h are submodular functions on S, which are allowedto take the value 1, and that they also satisfyg(A) + h(B) � g(A nB) + h(B nA)for all pairs of subsetsA;B of S. ThenQ(g; h) = fx 2 RS : �h(A) � x(A) � g(A) for all A �Sg is the generalized polymatroid determined by g and h. If we de�ne f(A;B) to beg(A) + h(B) for disjoint pairs A;B of subsets of S, then P (f) = Q(g; h), and f is bisub-17



modular. The class of generalized polymatroids contains all the special classes mentionedearlier, but the class of bisubmodular polyhedra is even larger.(4.1) Proposition. Let f be bisubmodular and let C � S. Then re
ecting P (f) in C givesa bisubmodular polyhedron P (f 0), where f 0 is de�ned byf 0(A;B) = f((A n C) [ (B \ C); (B n C) [ (A \ C)):Proof. It is clear that x0 2 P (f) if and only if x0(A0) � x0(B 0) � f(A0; B 0) for all pairs(A0; B 0), where x0 is obtained by re
ecting x in C. But this is equivalent tox(A0 n C)� x(A0 \ C)� x(B 0 n C) + x(B 0 \ C) � f(A0; B 0)or, taking A = (A0 n C) [ (B 0 \ C), B = (B 0 n C) [ (A0 \ C),x(A)� x(B) � f((A n C) [ (B \ C); (B n C) [ (A \ C)):Hence, the re
ection of P (f) is P (f 0), and it remains only to prove that f 0 is bisubmodular.This can be done by a straightforward computation, which we omit.(4.2) Proposition. Let f be bisubmodular and S 0 � S. Then the projection of P (f) ontothe co-ordinates indexed by S 0 is a bisubmodular polyhedron P (f 0), where f 0 is the restrictionof f to S 0.Proof. It is obvious that f 0 is bisubmodular, so we need only show that P (f 0) is theprojection. It is enough to prove this in the case in which S 0 = S n feg for some e 2 S. ByFourier elimination of xe, the projection is determined by two classes of inequalities. The�rst consists of inequalities(i) x(A)� x(B) � f(A;B); where e 62 A [B:The second consists of inequalities each of which is obtained by adding an inequality for P (f)in which xe has coe�cient 1, to one in which xe has coe�cient �1. So each such inequalityhas the form(ii) x(A0)� x(B 0) + x(A00)� x(B 00) � f(A0; B 0) + f(A00; B 00); where e 2 A0 \B 00:18



We need to show that each inequality of type (ii) is implied by those of type (i). In fact, weadd the inequality for (A0; B 0)^(A00; B 00) to the one for (A0; B 0)_(A00; B 00). These inequalitiesare both of type (i). Their sum has the same left-hand side as (ii) and its right-hand side isno larger than the right-hand side of (ii), by bisubmodularity.We remark that it follows that every bisubmodular polyhedron is non-empty: sincef(;; ;) = 0, this is true by induction. Besides projection, several other operations thatpreserve 2-SA also preserve bisubmodular polyhedra, and the corresponding bisubmodularfunction can be explicitly constructed. For cartesian product, translation, and minors thisis easy to show, and we do not bother to state the results. On the other hand, for intersec-tion with a box, it is not obvious, and the formula for the de�ning function is not easy toestablish. This result will be discussed elsewhere.The proof that integral bisubmodular functions yield jump systems uses a basic lemma,the analogue for bisubmodular polyhedra of Lemma (3.2). Given x 2 P (f), we say that apair (A;B) is x-tight (or just tight) if x(A)� x(B) = f(A;B).(4.3) Lemma. The intersection and the reduced union of x-tight pairs are x-tight.Proof. Suppose that (A;B) and (A0; B 0) are x-tight.x((A [A0) n (B [ B 0)) � x((B [B 0) n (A [A0)) + x(A \A0)� x(B \ B 0)= x(A)� x(B) + x(A0)� x(B 0)= f(A;B) + f(A0; B 0)� f((A;B) ^ (A0; B 0)) + f((A;B) _ (A0; B 0)):Since x 2 P (f), the inequality also holds in the other direction, so we have equalitythroughout.We remark that the above lemma, or similar arguments as in the proof, can be used toobtain further results. For example, if (A;B) and (A0; B 0) are x-tight, then so is (A nB 0; B n19



A0), by applying the lemma again to (A;B) and (A;B) _ (A0; B 0). This was pointed out in[16]. Also if f and x are integral, (A;B) is x-tight, and x(A0)� x(B 0) = f(A0; B 0)� 1, thenone of the intersection and reduced union is x-tight.(4.4) Theorem. Let f be bisubmodular and integral. Then F = ZS \ P (f) satis�es the2-SA.Proof. Let x; y 2 F and s 2 St(x; y) and suppose 2-SA fails. By re
ecting P (f) in fj : xj >yjg, we may assume that x � y. Suppose that s = feg. Let Q = fj 2 S n feg : xj < yjg,and let Q0 = fj 2 Q : there exists x-tight (A;B) with e 2 A, j 62 Bg.Claim. There exists x-tight (A;B) with e 2 A and Q nB = Q0.Suppose �rst that Q0 = ;. Choose x-tight (A0; B 0) with e 2 A0. (Such exists, becausex + feg 62 P (f).) Then by the de�nition of Q0, Q n B 0 = ; = Q0, as required. So supposethat Q0 6= ;. Now take the intersection of all the x-tight pairs (A00; B 00) with e 2 A00 andQ n B 00 6= ;. This gives an x-tight pair (A;B) with B \ Q0 = ; and so, by the de�nition ofQ0, Q nB = Q0. This completes the proof of the claim.Suppose there exists j 2 Q n Q0. Notice that j 2 B. Since x + feg + fjg 62 P (f) andj 62 Q0, there exists (A0; B 0) such that(i) x(A0)� x(B 0) = f(A0; B 0); j 2 A0; e 62 B 0;or (ii) x(A0)� x(B 0) � f(A0; B 0)� 1; j; e 2 A0:In case (i) the reduced union of (A;B) and (A0; B 0) is an x-tight pair (A00; B 00) withe 2 A00, j 62 B 00, so j 2 Q0, a contradiction. In case (ii) both the reduced union and theintersection of (A;B), (A0; B 0) are pairs (A00; B 00) with e 2 A00, j 62 B 00. Moreover, at leastone of the two pairs is x-tight, so j 2 Q0, a contradiction. It follows that Q n Q0 = ;, soy(A)� y(B) > x(A)� x(B) = f(A;B), again a contradiction.We use Lemma (4.3) to prove another basic fact about bisubmodular polyhedra, thateach such polyhedron has a unique de�ning function. For the case where all function valuesare �nite, this result is proved in [14], page 94.20



(4.5) Theorem. If f is bisubmodular on pairs of disjoint subsets of S, then for each suchpair A;B we have f(A;B) = maxx2P (f)(x(A)� x(B)). Moreover, if f is integral, then themaximum is achieved by an integral x.Proof. By applying re
ection and projection, using Propositions (4.1) and (4.2), we canassume that A = S and B = ;. Obviously, the maximum is at most f(S; ;), so if it is 1,we are done. We choose �x 2 P (f) maximizing x(A)� x(B). Fix e 2 S. Since �xe cannot beincreased, there is a tight pair (A0; B 0) with e 2 A0.Claim. For each j =2 A0 there is a tight pair (Aj; Bj) such that e 2 Aj and j =2 Bj.Proof of Claim. If not, then there is a tight pair (A00; B 00) with j 2 A00 and e =2 B 00.(Otherwise we could increase both �xe and �xj). Now take (Aj; Bj) = (A0; B 0)_ (A00; B 00). Thispair is tight by Lemma (4.3), and it is easy to see that it satis�es the conditions of the claim.Now take the intersection over all j =2 A0 of the pairs (Aj; Bj). We get a tight pair(Ae; Be) with e 2 Ae and Be � A0. The intersection of (Ae; Be) with (A0; B 0) is a tight pair(A0e; ;) with e 2 A0e. Finally, the union over all e of these tight pairs is the tight pair (S; ;),so �x(S) = f(S; ;), as required. It is straightforward to check that if f is integral, then thewhole argument applies to integral points, so the second part is proved also.5 Jump systems and bisubmodular polyhedraWe say that x 2 F is (A;B)-maximal in F if y 2 F , yj � xj for all j 2 A, yj � xj for allj 2 B imply yjA[B = xjA[B.(5.1) Lemma. If F satis�es 2-SA and y; x 2 F with y(A)� y(B) > x(A) � x(B), then xis not (A;B)-maximal.Proof. By twisting at B, we may assume that B = ;. Suppose that x is (A; ;)-maximaland there exists y 2 F and y(A) > x(A). Subject to this, choose y so that Pj2A jxj � yjj isminimum. By the maximality of x, there exists e 2 A with xe > ye. Either y0 = y+feg 2 F ,or y00 = y + feg+ s 2 F for some step s from y + feg to x. But this contradicts the choiceof y. 21



Given F , de�ne f by f(A;B) = maxx2F(x(A) � x(B)), if the maximum exists, and tobe 1 otherwise.(5.2) Lemma. If F satis�es 2-SA, then f is bisubmodular.Proof. Let (A;B), (A0; B 0) be pairs of disjoint sets. First, we consider the case where theright-hand side of the bisubmodular inequality is not1. We may assume that f(A;B) 6=1,since otherwise the inequality holds trivially. Choose x 2 F to be (A\A0; B \B 0)-maximal.Now by increasing xj for j 2 (B�B 0) n (A [A0), we can �nd an x0 that is (A _ A0; B _ B 0)-maximal. Then by ((5.1)), we getf(A;B) + f(A0; B 0)� x0(A)� x0(B) + x0(A0)� x0(B 0)= x(A \A0)� x(B \B 0) + x0((A [A0) n (B [B 0))� x0((B [ B 0) n (A [A0))= f((A;B) ^ (A0; B 0)) + f((A;B) _ (A0; B 0));as required.Now suppose that the right-hand side of the bisubmodular inequality is in�nity. LetFk be F \ fx 2 ZS : �k � xj � k for all j 2 Sg. Then Fk satis�es 2-SA; let fk bethe corresponding (bisubmodular!) function. Then the right-hand side of the bisubmodularinequality for fk goes to1 with k, and so the left-hand side must also, and we are �nished.(5.3) Theorem. If F satis�es 2-SA, then conv(F) is an integral bisubmodular polyhedron.Proof. De�ne f by f(A;B) = maxx2F(x(A)�x(B)). Then f is integral and bisubmodular,by (5.2), and F � P (f). If P (f) 6= conv(F), then there exists c 2 RS and y 2 P (f) suchthat cy > cx for every x 2 F . By a straightforward perturbation argument we can choosec so that there does not exist j 2 S with cj = 0 and there do not exist distinct elementsj, k of S with jcjj = jckj. By re
ection in N = fj : cj < 0g, we may assume that cj > 0for all j 2 S. Now maxx2F cx exists, so maxx2F x(S) exists, by (5.1) with A = S, B = ;.22



Therefore, we can form the polyhedron B(f) = fx 2 P (f) : x(S) = f(S; ;)g. The set B ofmaximal members of F is contained in B(f). Since cj > 0, j 2 S, there exists y 2 B(f)with cy > cx for every x 2 B. This again follows from (5.1). We need the followingClaim. If y; x 2 B, A � S, and y(A) > x(A), then x is not A-maximal over B.Proof of Claim. If possible, choose y and x violating the statement with Pj2A jxj � yjj assmall as possible. Clearly there exists e 2 A with xe > ye. Apply the 2-SA to get j 2 S withy + feg or y + feg+ fjg or y + feg � fjg 2 F . By the de�nition of B, the only possibilityis the last one. But then y00 = y + feg � fjg 2 B, and this contradicts the choice of y, andthe claim is proved.Let us relabel the elements of S as e1; e2; : : : ; en so that ce1 > ce2 > : : : > cen , and let Tidenote fe1; e2; : : : ; eig for 0 � i � n. For T � S, z 2 RT , and Q � RS we write z2̂Q tomean that there exists �z 2 Q such that �zjT = z. Choose �x 2 B as follows:For i = 1 to nChoose �xei to be max(� : (�xe1; : : : ; �xei�1; �)2̂B, if the maximum exists.Otherwise, stop.Now suppose the procedure runs to completion and delivers �x 2 B. By the claim, �x(Ti) =f(Ti; ;) <1, 1 � i � n. Now for any x 2 B(f), we havecx = nXi=1 cei (x(Ti)� x(Ti�1))= n�1Xi=1(cei+1 � cei)x(Ti) + cenx(Tn)� n�1Xi=1(cei+1 � cei)�x(Ti) + cen �x(Tn) = c�x:This shows that a point of B maximizes cx over B(f), a contradiction. Now suppose thatthe procedure stops early; say that j is the �rst index for which the maximum does not existand �x is the point constructed after step j � 1. Then by the claim, we have �x(Ti) = f(Ti; ;)for 1 � i � j � 1. Moreover, �x is not A-maximal in B, so there exists x0 2 B with x0ei = �xei,1 � i � j�1 and x0j = �xj+� for some positive integer �. But then, x0(SnTj) = �x(SnTj)��,23



so cx0 � c�x+ ��, where � = min(cei � cei+1 : 1 � i � n� 1). But the same argument can beapplied to x0, and so on, so cx is unbounded on B, a contradiction.We remark that the proof of (5.3) contains the basis of a greedy algorithm for optimizinga linear function over a set satisfying 2-SA. However, we have managed to avoid many of theawkward parts of such an algorithm (such as those dealing with unboundedness and equalcost coe�cients). These di�culties are handled for some classes of polyhedra in [13], [14],[15].It is a consequence of (5.3) that the convex hull of a set satisfying 2-SA is given byinequalities having coe�cients 0; 1;�1. This result can be applied to the bidirected-graphexample of Section 3 to conclude that the resulting polyhedra can be described in this way.For the case of trivial bidirections, these results, and somewhat more, were proved in [7].We can also prove that an integral bisubmodular polyhedron, that is, the polyhedrondetermined by a bisubmodular polyhedron that is integral, is indeed an integral polyhedron.This result, in a slightly less general setting, appears in [16], [18], and [22].(5.4) Corollary. Every integral bisubmodular polyhedron is the convex hull of its integralpoints.Proof. Let f be an integral bisubmodular function de�ned on pairs of disjoint subsets ofS. By Theorem (4.4), F = P (f) \ ZS satis�es 2-SA, and so by Theorem (5.3), conv(F) isa bisubmodular polyhedron P (f 0), where f 0 is de�ned by f 0(A;B) = maxx2F(x(A)� x(B)).Now by Theorem (4.5), we have that f = f 0, and we are done.A gap of a set F � ZS is an integral point in conv(F) n F . The examples of Figure 1show that adding a gap to a set satisfying 2-SA can create a set violating 2-SA. On the otherhand we have the following result.(5.5) Corollary. Suppose that F satis�es 2-SA and F 0 is obtained from F by adding all ofthe gaps of F . Then F 0 satis�es 2-SA.Proof. By (5.3), conv(F) is an integral bisubmodular polyhedron P . By (4.4), the integralpoints in P satisfy 2-SA. 24



The following related results have been obtained recently. Duchamp [9] has proved thatthe \delta-sum" (S;F), of delta-matroids (S;F0) and (S;F1), is again a delta-matroid. HereF = fF0�F1 : F0 2 F0; F1 2 F1g. This result implies the composition theorem for delta-matroids. Payan [21] has proved that the mod 2 reduction of a jump system is a delta-matroid. (That is, each component of a vector in F is replaced by 0 or 1 according to itsparity.) This result together with Theorem (3.3) implies the result of Duchamp. Althoughadding an arbitrary gap can violate 2-SA, there is a notion intermediate between this andadding all gaps. If j 2 S, a gap in direction j is a point x =2 F such that x+ fjg and x�fjgare both in F . We originally conjectured that adding all gaps in the same direction preservesthe 2-SA. Payan [21] has proved this conjecture.Acknowledgment. We are grateful to Andr�as Seb}o for his help and encouragement.References[1] R.E. Bixby and W.H. Cunningham, Matroid optimization and algorithms, in: R.L. Gra-ham et al (eds), Handbook of Combinatorics, North-Holland, to appear.[2] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Programming 38 (1987)147{159.[3] |, Representability of �-matroids, Colloquia Societatis Janos Bolyai 52 (1988) 167{182.[4] |, Matchings and �-matroids, Discrete Applied Mathematics 24 (1989) 55{62.[5] R. Chandrasekaran and S. N. Kabadi, Pseudomatroids, Discrete Mathematics 71 (1988)205{217.[6] W.H. Cunningham, A Combinatorial Decomposition Theory, Thesis, University of Wa-terloo, 1973.[7] W.H. Cunningham and J. Green-Kr�otki, b-matching degree-sequence polyhedra, Com-binatorica 11 (1991) 219-230. 25
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