Delta-matroids, Jump Systems and Bisubmodular

Polyhedra *

André Bouchet |
Département de Mathématiques et Informatique

Université du Maine

William H. Cunningham *
Department of Combinatorics and Optimization

University of Waterloo

September, 1991, revised July, 1993

Abstract

We relate an axiomatic generalization of matroids, called a jump system, to poly-
hedra arising from bisubmodular functions. Unlike the case for usual submodularity,
the points of interest are not all the integral points in the relevant polyhedron, but
form a subset of them. However, we do show that the convex hull of the set of points
of a jump system is a bisubmodular polyhedron, and that the integral points of an
integral bisubmodular polyhedron determine a (special) jump system. We also prove
addition and composition theorems for jump systems, which have several applications

for delta-matroids and matroids.
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1 Introduction

Matroids are important as a unifying structure in pure combinatorics, as well as a useful
model in the theory of algorithms and in combinatorial optimization. (See Bixsy and Cun-
nineHAM [1] for a survey of the latter aspects.) Delta-matroids constitute an interesting
generalization, and have been introduced only recently. Many of the nice properties associ-
ated with matroids (greedy algorithm, polyhedral description, interesting examples) extend
to delta-matroids. In the present paper we begin by reviewing some of this work. Then we
prove a new composition theorem for delta-matroids. It has several applications, including
constructions for matroids. An important theme is to identify in which of the applications
the composition is algorithmically constructible.

The polyhedral aspects of matroids, developed more than twenty years ago by Eb-
monDs [11], led him to a different generalization, integral polymatroids. In a certain sense
there are two views of an integral polymatroid; first, it is a polyhedron P, and second, it is a
set F of integral points. There is a simple relation between the two views—P is the convex
hull of F, and F is the set of integral points in P. In this paper we introduce jump systems,
a common generalization of delta-matroids and (the second view of) integral polymatroids.
A jump system is defined by a set F of integral points, but it is not generally true that it is
the set of integral points in its convex hull. We present some examples of jump systems and
prove an addition theorem, which implies the composition theorem for delta-matroids.

Although jump systems cannot be defined via polyhedra, there is an important subclass
that can. These arise from (integral) bisubmodular polyhedra, introduced by Dunstan and
WeLsH [10] in 1973 in a paper that seems to have been fully appreciated only recently. We
prove that the integral points in such a polyhedron determine a jump system. Moreover,
there is a partial converse—if F is a set of integral points determining a jump system, then
the convex hull of F is an integral bisubmodular polyhedron. So it is true that a polyhedron
with integral vertices is bisubmodular if and only if the integral points in it form a jump
system.

Throughout this paper S, with or without subscripts, is a finite set. We use R, R, Z,
and Z, to denote the sets of real numbers, non-negative real numbers, integers, and non-

negative integers, respectively. For z € R® and A C §, we often use z(A) as an abbreviation



for Y(z; : j € A). For ¢,z € R® we write cz to mean Y(c;z; : 7 € §). For z € R® and
A C S, we use x4 to denote the restriction of « to A, that is, the vector ' € R# such that
z; = z; for all j € A. Finally, we use the symbol A also to denote the incidence vector of A,

that is, the vector z € R® such that z; =1if j € Aand z; =0if j ¢ A.

2 Delta-matroids

Let F be a family of subsets of a finite set S. Then (5, F) is a delta-matroid if the following

symmetric exchange axiom is satisfied:
(SEA) If Fi, F> € F and j € F1AF;, then there is k € F1AFs such that FiA{j, k} € F.

(Here and elsewhere A denotes symmetric difference.) These structures have been introduced
by Boucuer [2]. Essentially equivalent structures were independently considered by Dress
and Haver [8] and by CuanDrasekaraN and Kasapi [5]. A main motivation for their study
is that, if F is the family of bases of a matroid on S, then (S, F) is a delta-matroid. In
fact, matroids are precisely the delta-matroids for which all members of F have the same
cardinality. (We remark that throughout the paper we use “matroid” to mean a matroid
defined by its family of bases.) In addition to these examples, we mention a few others.

Matching delta-matroids. Let G = (V. E) be a graph, let S =V, and let F' € F if
and only if there is a matching of G covering precisely the elements of F'. Then (S, F) is a
delta-matroid. This can be proved using augmenting path arguments.

Twisting. Let (S, F) be a delta-matroid, and let N C S. Let FAN denote { FAN :
F € F}. Then (S,FAN) is a delta-matroid. For example, we can get delta-matroids by
applying twisting to a matroid. In one case we get again a matroid; namely, when N = S,
we get the dual matroid.

Linear delta-matroids. Let M = (m;; : i € S,j € S) be a skew-symmetric matrix
over a field. Define F by F € F if and only if the principal submatrix (m;; : i € F,j € F)
is non-singular. Then (5, F) is a delta-matroid. The proof of this result is not trivial; see
BoucHET [3]|, where it is also generalized. (For example, a symmetric matrix can also be
used.)

Another basic fact is that, if (S, F) is a delta-matroid and F’ is the family of maximal



members of F, then (S, F’) is a matroid. This and twisting can be used to justify a greedy
algorithm for optimizing any linear function over F. Namely, |¢|(FAN) = ¢(F) — ¢(N),
where N = {j : ¢; < 0}. Therefore, we can apply the matroid greedy algorithm to the
maximal members of FAN with weight function |¢|. Translating that algorithm into one
operating directly on (5, F) and ¢, we get the following procedure. It appears in [2] and [5],

but a similar kind of greedy algorithm can be found in Dunstan and WeLsu [10].

Greedy Algorithm for Delta-Matroids

Input: Delta-matroid (S, F) and weight vector ¢ € R®.
Objective: To find F € F such that ¢(F') is maximum.

begin
order S as {e1,e2,...,e,} s0 that |ce, | > |ce,| > ... > e, s
fori=1ton+1let T; ={e;,....en};
J 0
fori=1ton
if ¢.; > 0 and there exists F' € F with JU{e;} CF CJUT;
then J « J U {e;};
if ¢.; < 0 and there does not exist F € F with J C F C JU Ty
then J « J U {e;};
end.
Notice that to implement this algorithm we need to be able to answer the question, given

disjoint subsets A, B of S,
(2.1) Does there exist F € F with ACFCS\B ¥

A more general question is to ask for the value f(A, B), defined to be maxpex(|F N A| —
|F' N BJ), since the answer to (2.1) is “yes” exactly when f(A, B) = |A|. However, the two
questions are algorithmically equivalent because f(A, B) can be computed by the greedy
algorithm with ¢; = 1for j € A, —1 for j € B, and 0 otherwise. We consider the existence
of an efficient subroutine to evaluate the function f (or answer the question (2.1)) to be

the measure of algorithmic tractability of the delta-matroid. (If (S, F) is a matroid with
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rank function r, a simple argument shows that f(A, B) = r(4) + 7(S \ B) — r(S). Since
r(A) = f(A,0), it follows that this oracle is available for a matroid exactly when the usual

one is available.)

Composition of delta-matroids

Our main result on delta-matroids is a composition theorem. We define the composition of
delta-matroids (S, Fo), (S1,F1) to be (S,F) where S = SoAS; and F = {F)AF, . Fy €
Fo, F1 € F1, Fy NSy = F1 N So}. That is, each feasible set is a symmetric difference of two
feasible sets, one from each of the initial delta-matroids, that agree on Sy N S;. The proof
that this construction gives a delta-matroid is our original one, which we include because
of its algorithmic flavour. However, the reader is warned that the next section contains an

easier proof of a more general result, so he may want to skip this prove on a first reading.

(2.2) Theorem. The composition of delta-matroids is a delta-matroid.

Proof. We consider F,G € F, j € FAG, and we search for k € FAG such that FA{j, k} €
F. There exist Fy, Gy € Fo, F1, Gy € F; such that F' = FoAF; and G = GoAG;. We also
consider 8" = SoNS1, FF=FNS =FNS, G =G, NS =G NS For any integer i we
let F;, G;, F; be respectively equal to Fy, Go, Fo if ¢ is even, Fy, Gy, F; if ¢ is odd.

The element j belongs to FoAGoAF;AG;. By symmetry we may assume that j €
F1AG,. Applying (SEA) to Fi,Gy € Fy and j € F1AG; we can find z € F1AG; such that
FiA{j,z} € Fi. If z € S’ we have F1A{j, z}AF, = FA{j,z} C S, and the property is
proved with k& = z. From now on we assume that z € S’ so that z € F'AG".

We consider a sequence U = (ji1, 2, ..., Jr) of pairwise distinct elements belonging to
F'AG' with j; = z. For 0 < i <rwelet U; ={j,j1,J2,-. ., Jipif i is odd, U; = {J1,72,---,Ji}
if ¢ is even, and we suppose that ®; = F;AU; € F;. The conditions are satisfied if U = (j;)
because &g = Fy and &; = F{A{j,z}. From now on we suppose that the length of U is
maximal.

We have (®,_1AG,_1) NS = (F._1AU._1AG,_1) N S" = F'AG'AU,_;. The element
J» belongs to F'AG’ and it does not belong to U,_;. Therefore j. € (®,_1AG,_1) NS C
¢, 1AG,_1. We apply (SEA) to ®,_;,G,—1 € F,_; and j, € ®,_1AG,_;. This yields an
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element j,41 € ®,_;AG,_; such that ®,_1A{j,, jr11} € Fror. Welet U,y = U1 AL, Jrr1}
and (I)r+1 = (I)r—lA{jr,jr+1}-

We claim that either j,o1 & S" or j, = j,41. If this is not true, we have 3,4, €
(®,_1AG,_1) NS = F'AG'AU,_;. Since U,_; C F'AG’, this implies that j,.; is dis-
tinct from j1, ja, ..., Jr. Therefore (41, ja, ..., jr-4+1) satisfies the same properties as U, which
contradicts the maximality of U.

If either j.+1 € S" or j,41 = j», we have €, NS =&, NS = U, AF'. Since ¢,,1 € F, 11
and ®, € F,., we have ®,A®,; € F. If j..; € 5 we verify that ®,AdD,,; = FA{j, jr11}
and j,411 € FAG, which proves the property with k = j3,.1. If 3,11 = j, we have &, AP, ; =
FA{j}, which proves the property with k& = j. L]

Given a set [ of disjoint pairs of S and a subset ' C S we abuse the notation FAl to
represent the symmetric difference of F' with the union of the pairs that belong to [. Let
(S,F) be a delta-matroid. For F,F' € F, a linking L of (F,F’) is a partition of FAF’
into pairs such that FAl € F for all | C L. We say that (S, F) is linkable if there exists a
linking of (F, F') for all F, F' € F. This generalizes the notion of strong base orderability
(see WeLsH [25]) for matroids.

(2.3) Theorem. The composition of linkable delta-matroids is a linkable delta-matroid.

Proof. The notation is the same as in the proof of Theorem (2.2). For ¢ = 0,1, let L; be a
linking of (F;, G;). Let H be the graph defined over the vertex-set Sy U S; and the edge-set
LoU L. Each vertex of H has degree 0, 1, or 2, and no vertex in SoAS; has degree 2. Hence
the components of H are paths and circuits, and each path ends in SoAS;. Let P be the set of
the components of H that are paths. Let L = {{s,t} : s and t are the ends of a path in P}.
We prove that L is a linking of FAG. Let [ = {(s,#!),(s%,¢%),...,(s",t*)} C L. Let P? be
the path in P that ends at s/ and #/, for 1 < j < k. Let lf = L;NPJ fori=0,1. Since L;
is a linking of (F;, G;), we have

(i) F/ = BEA(LALZ ... IF) e F;.

Notice that XAlgAl{ = XA{s?,#'} holds for all X C S and 1 < j < k. Hence it follows
from (i) that FAl = FJAF], and so FAl € F. L]
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Remark. Matching delta-matroids are examples of linkable delta-matroids. But for match-
ing delta-matroids an even stronger property holds. For F, F' € F, there is a partition of
FAF' that is a linking of both (F, F') and (F', F').

Composition of Matroids

If we apply the composition to two matroids, it is clear that the composed delta-matroid is
not necessarily a matroid. However, composition can be combined with twisting to provide

a matroid construction.

(2.4) Theorem. If (So, Fo), (S1,F1) are matroids, then the composition (S, F) of (So, Fo)
with (S1, F1A(So N S1)), is a matroid (provided F is non-empty).

Proof. (S5, F) is a delta-matroid by Theorem (2.2), so we need only show that the members
of F all have the same cardinality. But

J’T:{(F()UFl)\(SomSl)3F0€J,T0,FlEfl,FomFlzm,F()UFl250m51}.

Thus F € F implies |F| = |Fy| + |Fi| — |So N S1|, and we are done. [

In fact, this matroid composition can be obtained from standard constructions: (S, F) =
(S, Fo)+ (S, F1))/(SoN S1), where 4+ denotes matroid union [25] and / denotes contraction.
This composition was investigated in [6] and [23]. It is easy to derive a formula for its rank
function 7 in terms of the rank functions rg,r; of (S, Fo), (S, F1), namely

r(A) = min (ro(X U (AN Sy)) +r (X U(ANS)) — |X]).

XESOOSl

The research in [6, 23] concentrated on cases where |S| > |Sy|,|S1| and treated the resulting
decomposition, which has some nice properties based on connectivity. But the composition

also yields constructions for smaller matroids, as follows.



(2.5) Corollary. Let My = (So,Bo) and My = (S1,B1) be matroids with S1 C So. Then
{B\ S1: B € By, BN S, € Bi}, if non-empty, is the family of bases of a matroid on
S =80\ S1. Its rank function is given by

r(A) = )Erlgig(ro(AU X) 4+ r(X) —|X]).

(2.6) Corollary. Let My = (So,Bo) be a matroid, let S C Sy, let S; = So\ S, and let k be
an integer. Then {BN S : B € By, |BNSi| = k}, if non-empty, is the basis family of a

matroid on S. Its rank function is given by
r(A) = min(ro(A), ro(AU S1) — |S1| + k).

Proof. We apply (2.5), taking M; to be the uniform matroid of rank k on S;. This matroid
has rank function r; defined by r1(X) = min(|X|, k). In the expression for r(A), we see that
if | X| > k, then we may as well take X = S;, and if |X| < k, we may as well take X = 0.

This leads to the required expression for the rank function. L]

We observe that the last construction contains as special cases both contraction and

deletion.

Efficient realization of composed delta-matroids

Another application of Theorem (2.2) is the following result of Boucuer [4]. We use it and
its further corollary to make an important point about the availability of the oracle for a

composition of delta-matroids.

(2.7) Corollary. Let G be a bipartite graph with bipartition {S,S'}, let (S, F) be a delta-
matroid, and let F' = {F' C S’ : F' is matched in G to a member of F}. Then (S',F') is a

delta-matroid.



Proof. (5, F) is the composition of (S, F) with the matching delta-matroid of G. L]

In the special case of (2.7) in which (S5, F) is a matroid, we get that (S’, F’) is also a
matroid; this is a classical result (see WeLsk [25]). A further specialization gives a “partition”

construction for delta-matroids. This is also from [4].

(2.8) Corollary. Let (S,Fo), (S,F1) be delta-matroids, and let F = {Fy U Fy @ Fy €
Fo, F1 € Fi, FonN Fy = 0}. Then (S,F) is a delta-matroid. L]

We refer to this construction as the “union” of delta-matroids. Corollary (2.8) can be
used to show that the composition theorem (2.2) is not necessarily algorithmically realizable,
in the sense that an oracle for (5, F) may not be available from oracles for (So, Fo), (S1, F1)-
In the applications (2.5), (2.6), oracles can be constructed efficiently, essentially by means
of the matroid partition algorithm, and of course (2.4) is even easier. We show that in (2.8)
(and hence in (2.7), (2.2)), in general, they cannot.

Suppose we are given a graph G = (V. E) and a matroid M = (V,B). Consider the
union (V, F) (as in (2.8)) of the matching delta-matroid of G with the dual matroid M* of
M. Suppose that we have an oracle for (V,F). Then we can apply the greedy algorithm
to find a largest member of F, and in particular to decide whether V € F. But V € F if
and only if it is partitionable into a matchable set and a basis of M*, that is, if and only if
there is a basis of M that is matchable in G. It is well known that deciding whether this
is true (“the matroid matching problem” [17]) is not generally solvable in polynomial time.
Hence an oracle for the union of (S, Fy), (S, F1) is not constructible in polynomial time from
oracles for (5, Fo), (S, F1). The composition is a useful construction, but it is important to
distinguish the cases where it is efficiently constructible from those where it is not.

We conclude the section by deriving a new class of delta-matroids from the composition
theorem, and constructing the relevant oracle. A red-blue graphis a graph each of whose edges
1s coloured either red or blue. A vertex v of a red-blue graph is bichromatic or monochromatic
according to whether v is incident to edges of both colours or not. An alternating path of

a red-blue graph is a path of length at least one whose edges alternate in colour. Here is a



class of delta-matroids arising from red-blue graphs. Notice that the matching delta-matroids

form a subclass, arising from the case where there are no blue edges.

(2.9) Proposition. Let G = (V. E) be a red-blue graph, S be the set of monochromatic
vertices, and F = {F C S : F is the set of end vertices of a set of vertez-disjoint simple
alternating paths}. Then (S, F) is a delta-matroid.

Proof. Let (So,Fo) be the matching delta-matroid of the graph (So, Eo), where Sy = {v €
V : v is incident to a red edge} and Ej is the set of red edges. Similarly define (Si, F1) with
red replaced by blue. It is easy to see that (.S, F) is the composition of (So, Fo) and (51, F1).
U]

We describe an efficient construction of the oracle for this class of delta-matroids, due to
John Vande Vate. Given disjoint subsets A, B of S, delete the vertices of B from G. For
each bichromatic vertex w, split w into two vertices wy, ws such that w; is incident to the
red edges previously incident to w, and w, is incident to the blue edges previously incident
to w. Also join wy,ws by a new “white” edge. Let G’ be the new graph. Let P be the
set of edges of a set of alternating paths determining a feasible set F, A C F C S\ B, and
let M be P together with the set of white edges corresponding to bichromatic vertices not
in any of the paths. Then M is a matching of G’ covering all vertices not in S\(A U B).
Conversely, any such matching of G’ determines such a set of alternating paths. Hence the
oracle is provided by a matching algorithm. In the next section we will see another example

based on red-blue graphs, but allowing the alternating paths to be nonsimple.

3 2-step axiom and jump systems

For vectors z,y € Z%, we use the norm ||z|| = ¥(|z;| : 7 € S) and the distance d(z,y) =
|z — y||. For z,y € Z° a step from z to yis a vector s € Z°% such that ||s|| = 1 and
d(z+s,y) = d(z,y) — 1. We denote the set of steps from « to y by St(z,y). A jump system
is a pair (S, F) where F C Z% satisfies the following 2-step aziom:

(2-SA) If z,y € F, s € St(z,y), and © + s ¢ F, then there exists t € St(z + s,y) with
z+s+teF.
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We begin by considering some simple examples of jump systems.

Low dimensional jump systems. In Figure 1 we illustrate two choices of F for the
case where |S| = 2. In both we denote members of F with solid dots and nonmembers by
hollow or non-existent dots. It is easy to see that in the first case, we have a jump system,
whereas in the second case a pair @,y violating the 2-SA is indicated. It is interesting also
to consider the case |S| = 1, that is, to ask which subsets of the integers satisfy 2-SA. These
are the sets having no gap of size bigger than one, that is, there do not exist two consecutive
integers not in F, unless either all elements of F are bigger than both or all are smaller than

both.

L O L L O @
O O O @ O O
L O L L O L

Figure 1: The 2-step axiom

Hyperplanes. Let a € {0,1, —1}°,let b € Z, and let F = {z € Z° : az = b}. It is easy
to check that (S, F) is a jump system.

Delta-matroids. It is an easy exercise to prove that a pair (S, F) such that F C {0,1}%
is a jump system if and only if it is a delta-matroid. (Here, of course, we are identifying

subsets of S with their characteristic vectors.)

Simple operations on jump systems

Here we mention a few elementary operations that preserve 2-SA.
Translation. Let (S, F) be a jump system and let a € Z°. Then the translation (S, F")
of (S, F) by a is defined by F' = {z + a: = € F}, and is clearly a jump system.
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Cartesian Product. Let Sy, S; be disjoint sets, and let (5;, F;) be a jump system for
i =0,1. Define S = SoU Sy and F ={Fy U Fy: Fy € Fyo, F1 € Fi}. Then (S, F) is a jump
system.

Reflection. Let (S, F) be a jump system and let N C S. For each z € R¥, let 2’ be the
vector obtained by reflecting = in the co-ordinates indexed by N, that is, 2, = z; if j ¢ N
and z; = —z; otherwise. Then, where 7' = {z': = € F} , it is easy to see that (S, F') is
a jump system. We observe that the twisting operation on delta-matroids is a combination
of reflection and translation; more precisely, twisting by N is equivalent to reflecting in the
co-ordinates indexed by N followed by translating by the characteristic vector of N.

Minors. Let (S, F) be a jump system, let S’ C S, let z € Z5\%' and let F' = {2’ €
Z5 . (¢',x) € F}. Then (S, F') is a jump system.

Intersection with a box. A bozis a set of the form {z € R% : [ < z < u}, where
l € (RU{—00})® and u € (R U {oo})’. Tt is easy to see that the intersection of a jump
system with a box is again a jump system.

Restriction or projection. Let (S, F) be a jump system and let S’ C S. Then (5, F)
is a jump system, where 7' = {z)¢ : = € F}. We remark that this is not completely
obvious, but we leave the (easy) proof to the reader. Also, we point out that the minor
operation is now redundant, in the sense that it can be obtained as an intersection with a
box followed by a projection. (Namely, intersect with the box defined by I; = —oc0, u; = oo,

j €5’ and l; = u; = x; otherwise, and then restrict to S’.)

Integral polymatroids

Now we introduce a less trivial example. An integral polymatroidis a polyhedron P = {z €
R : z(A) < f(A) for all A C S}, where f : {0,1}° — Z, is normalized (f(0) = 0) and
submodular (f(A) + f(B) > f(AUB)+ f(AN B) for all A,B C 5).

(3.1) Proposition. If P is an integral polymatroid in R, then P N 25 satisfies 2-SA.

The proof uses a well-known result, from [11]. Given # € P, where P is determined by f,

we say that a set A C S is z-tight or just tight if ©(A) = f(A).

12



(3.2) Lemma. The union and intersection of tight sets are tight. L]

Proof of Proposition (3.1). Let z,y be integral points of P and s a step from = to y
such that @ + s ¢ P. Then it is easy to see that s must be non-negative, so s = {e} for
some e € S such that z, < y.. It follows that there is an z-tight set A such that e € A.
Now if y; > z; for all j € A, then y(A) > z(A) = f(A), a contradiction. So there exists
j € Awith z; > y,;. If # + {e} — {j} € P, we are done, so we may assume that for every
such j there is an z-tight set A; with e € A; and j ¢ A;. The intersection of all these A;
with A is, by (3.2), an z-tight set B such that e € B and z; < y; for all j € B. But then
y(B) > z(B) = f(B), a contradiction. L]

Sum of jump systems

The sum of jump systems (S, Fy) and (S, F1), defined on the same set S, is the pair (S, F)
where F = Fo+ Fi={x+y: « € Fo, y € F1}. The simple proof of the following theorem
was suggested to us by Andras Sebo.

(3.3) Theorem. The sum of two jump systems is a jump system.

Proof. We use the above notation. Let z,y € F; + F» and let s be a step from = to y.
We have to prove that ¢ + s € F; + F» or there exists a step ¢t from x + s to y such that
r+s+teF + F,. Weassume that z + s ¢ F; + F, and we search for t. Let ¢ = ©; + @,
and y = y; + y» with 1,91 € F; and @3,y € Fa. We have 1 + s € F; and 22 + s ¢ F» (for
example if #; + s € F; then (z1 + 8) + 22 = & + s € F1 + F, a contradiction).

We claim that we can find 2} € Fi, ¢, € F, and a step t satisfying « + s + ¢ = &} + z,.
Since s is a step from x; + x5 to y; +y2, s 1s a step from z; to y; or a step from x5 to y5. By
symmetry we may assume the former. Apply 2-SA to z1,y; € F; and the step s from z; to
y1. Since x; + s € F; there exists a step ¢ from #; + s to y; such that ¢; +s+¢ € F;. Then
(x14+s+t)+xs =2+ s+t € F+ Fp, which implies the existence of | and =z5,.

Choose a triple (z], ¢, t) that minimizes d(z),y1) + d(z5,y»). We show that, under this

assumption, ¢ is a step from z + s to y, proving the theorem. Assume not for a contradiction.
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Then —t is a step from z] + z, = * + s + ¢ to y; + y2 = y. This implies that —¢ is a step
from x| to y; or a step from z, to y,. By symmetry we assume the former. Apply 2-SA
to z},y; € F; and the step —t. The point =] — ¢ does not belong to F; because, if so,
we should have (2] — ) + 4 = @ + s € F1 + F2, which contradicts the initial assumption.
Thus we can find a step r from z] — ¢t to y; such that @} —t + r € F;. This implies
t+s+r= (] —t+r)+azy, € Fi+Fs, where &} —t + 7 is closer to y; than #}. So the triple

(x}] —t + 7, &4, 7) contradicts the choice of (], x5, t). [

Bidirected graphs

We consider finite graphs that may have loops and multiple edges. In order to define bidi-
rections, it is convenient to let each edge be incident to two half-edges. Formally a graph
G 1s defined by three pairwise disjoint finite sets: a set of vertices V', a set of edges E, and
a set of half-edges H. There i1s an incidence relation between H and V', as well as between
H and E. These incidence relations are such that each half-edge is incident to precisely one
vertex and one edge. Further an edge 1s incident to precisely two half-edges. We denote by
ho the set of the half-edges incident to a vertex v. The degree of v is d(v) = |ho|.

A biorientation, or bidirection, over G is a function ¢ : H — {—1,+1}. For f € Z¥ and
v € V, the excess of f at v is ex(f), = X (e(h)f(e) : b € ho, e is the edge incident to h), and
the excess of f is the vector ex(f) = (ex(f), : v € V). Given c1,cy € ZP, with ¢; < o, we
denote by [e1,¢z] the set {f € ZF : ¢; < f < s}

(3.4) Proposition. Let ¢;,cy € ZF, such that ¢; < c3. Then (V, {ex(f) : f € [e1,¢2]}) is a

Jump system.

Proof. For h € H let z(h) € ZY be defined by z(h), = €(h) if the vertex v is incident
to h, z(h), = 0 otherwise. For e € E let F, = {A=(h') + z(h")) : A € [ci(e),c2(e)]},
where h' and A" are the half-edges of G incident to e. We easily verify that (V,F.) is a
jump system. (One way is to observe that it is a hyperplane jump system intersected with

a box and then extended by zeroes, but it is perhaps as easy to check directly.) We have
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(Vi {ex(f) : f € [c1,¢2]}) = Z((V, F.) : e € E), where the summation stands for the sum

operation considered in Theorem (3.3). The result follows from that theorem. (]

The special case in which we take the bidirection to be trivial, that is, all the values of
€ to be +1, is already quite interesting. If we also define ¢;(e) = 0 and ca(e) = 1 for each
edge e, then {ex(f) : f € [c1, c2]} is the set of degree sequences of subgraphs of G. If we now
intersect this set with the unit cube, we get the matching delta-matroid of G. More general
sets of this type are investigated in [7].

Suppose that we consider again the red-blue graph example of Proposition (2.9), but this
time we allow the alternating paths to repeat vertices, but not edges. We show that we
obtain another delta-matroid. We form a bidirected graph, by assigning to each red edge
two positive half-edges, and assigning to each blue edge two negative half-edges; we define
again c;(e) = 0 and cs(e) = 1 for each edge e. Now consider the resulting jump system,
and reflect it in the co-ordinates corresponding to the vertices incident only to blue edges.
Next, intersect 1t with the box determined by 0,u, where u; = 1 if j is monochromatic, and
u; = 0 otherwise. Finally, project the jump system to the co-ordinates corresponding to the
monochromatic vertices. The resulting jump system is a delta-matroid, and it is easy to see
that it is precisely the desired one. Moreover, an oracle for this delta-matroid can be realized

in polynomial time by methods of bidirected matching; see [12].

Composition of jump systems

Let (So,Fo) and (S1,F1) be two jump systems. The composition of (S, Fo) and (S, Fi) is
the pair (S, F), where S = SyAS; and F C Z5 is defined by = € F if and only if there exists
g € J,To and T, € .71 Satisfying $0|Soﬁ.5'1 = $1|500517 £B|SO\51 = $0|SO\517 £B|Sl\50 = w1|51\50‘
(We may also speak of the composition F of Fy and F;.) Notice that this definition, in the

case of {0, 1}-valued vectors, corresponds to the composition of delta-matroids introduced

in Section 2. Hence the next result generalizes (2.2).

(3.5) Proposition. The composition of two jump systems is a jump system.
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Proof. For i = 1,2 we extend each vector in F; to an element of Z%Y51 by filling it out
with zeroes. Then we reflect F; in the components corresponding to So N S7, then we take

the sum, and then we take the minor associated with the vector 0 € Z50"51, L]

Conversely, Theorem (3.3) can be easily derived from the preceding proposition. (In
fact, the original version of this paper proved the proposition directly and used it to prove
Theorem (3.3).) Consider two sets F', F" C Z° that satisfy 2-SA. We first notice that
® = {(z,y,z+vy) : z,y € Z} is a subset of Z* which satisfies 2-SA. (For example, it is
an instance of the hyperplane systems introduced earlier.) Let us consider a family (7, =
{v',v",v} : v € §) of pairwise disjoint 3-element sets. For each v € Slet &, = {(zy, Ty, 2,) :
Loty Tyt € Ly Ty = Ty + Tyn } C ZT and consider the cartesian product ® = (P, :veES)C
X(ZTv :v € §) = 255"V with ' = {v':v € S} and §” = {v" : v € S}. Then ® satisfies
2-SA. We make a copy G’ C Z5 of F' and a copy G” C Z%" of F”. The cartesian product
G =G xG"C Z5YS" satisfies 2-SA. Finally we notice that the composition of & C Z5'vs"us
with G C Z5'Y5" is equal to F' + F".

4 Bisubmodular polyhedra and jump systems

Here we describe a generalization of (integral) polymatroids, called (integral) bisubmodular
polyhedra. We show that the integral points of an integral bisubmodular polyhedron satisfy
the 2-SA. In the next section, we show a partial converse: The convex hull of a set satisfying
the 2-SA is an integral bisubmodular polyhedron.

A function f from pairs (A, B) of disjoint subsets of S to RU{oo} is called bisubmodular
if it satisfies, for all such pairs (A, B), (4', B'),

F(A,B)+ f(A, B) = f((A, B) A (A, B)) + f((A, B) vV (A, BY)).

Here (A, B) A (A', B') denotes (AN A, BN B'), and we call it the intersection of (A, B) and
(A", B'); (A,B)V (A, B’) denotes (AU A')\ (BU B'),(BUB’')\ (AU A")), and we call it
the reduced union of (A, B) and (A’, B'). (Notice that the operation V is not associative.)

It is convenient to assume throughout that f(0,0) = 0. The bisubmodular inequality (on
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real-valued functions) has been introduced by Kasapr and CHANDRASEKARAN [5, 16], by Naka-
mura [18, 19], and by Q1 [22]. The term “bisubmodular” was introduced by Nakamura [20].

The bisubmodular polyhedron associated with f is P(f) = {z € R® : z(A) — z(B) <
f(A,B), A,B C S, ANB = 0}. These polyhedra, again with the exception that the function
values are finite, were introduced by Dunstan and Wersa [10] and studied in [16, 18, 22].
Nakamura showed the equivalence of the Dunstan-Welsh definition and the bisubmodular
one. The function f associated in Section 2 with a delta-matroid (S,F) is bisubmodular
and the associated bisubmodular polyhedron is the convex hull of the elements of F. This
result appears in [5] and [2]. We say that f is integral if its finite values are integral, and
that P(f) is integral if f is integral.

A number of more familiar classes of polyhedra fall into this class. If f’ is submodular on
subsets of S, and f'(0) = 0, then f defined by f(A,0) = f'(A) for AC S and f(A, B) = oo
for B # 0, is bisubmodular. The associated P(f)is {z € R® : z(A) < f/(A) for all A C S},
the submodular polyhedron associated with f'. If we take f(A, B) = f'(A) for all pairs A, B
of disjoint subsets of S, then it is easy to check that f is bisubmodular if and only f’ is
also monotone: if A; C Ay, then f'(A1) < f/(As). In this case P(f) is {# € R} : z(4) <
f'(A) for all A C S}, the polymatroid associated with f'. (Although P(f') is a polymatroid
even without the assumption of monotonicity, it is known that every polymatroid is deter-
mined by a monotone submodular function, so every polymatroid is a bisubmodular poly-
hedron.) Finally, the base polyhedron {z € R : z(A) < f'(A) for all A C S, z(S) = f/(S)}
associated with f’ is obtained by taking f(A,B) = f'(A) + f'(S\ B) — f'(5), and f is
bisubmodular.

Another, more general, class of bisubmodular polyhedra consists of Frank’s generalized
polymatroids. Here we suppose that g, A are submodular functions on S, which are allowed

to take the value oo, and that they also satisfy
9(A) + h(B) = g(A\ B) + h(B\ A)

for all pairs of subsets A, Bof S. Then Q(g,h) = {z € R® : —h(A4) < z(A) < g(4) for all A C
S} is the generalized polymatroid determined by g and h. If we define f(A,B) to be
g(A) + h(B) for disjoint pairs A, B of subsets of S, then P(f) = Q(g,h), and f is bisub-
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modular. The class of generalized polymatroids contains all the special classes mentioned

earlier, but the class of bisubmodular polyhedra is even larger.

(4.1) Proposition. Let f be bisubmodular and let C C S. Then reflecting P(f) in C gives
a bisubmodular polyhedron P(f'), where f' is defined by

f'(A,B) = f(A\C)U(BNC),(B\C)U(ANC)).

Proof. It is clear that «’ € P(f) if and only if 2'(A") — «/(B’) < f(A', B') for all pairs
(A’, B'), where 2’ is obtained by reflecting « in C'. But this is equivalent to

(A\NC)—z(ANC)—z(B'\C)+z(B'NnC)< f(A",B')
or, taking A= (A'"\C)U(B'NnC), B=(B'\C)u (A’ NnC),
2(4) — 2(B) < f((A\ C)U(BAC),(B\C)U(AN C))

Hence, the reflection of P(f) is P(f’), and it remains only to prove that f’ is bisubmodular.

This can be done by a straightforward computation, which we omit. L]

(4.2) Proposition. Let f be bisubmodular and S" C S. Then the projection of P(f) onto
the co-ordinates indexed by S’ is a bisubmodular polyhedron P(f'), where f' is the restriction
of f to S’.

Proof. It is obvious that f’ is bisubmodular, so we need only show that P(f’) is the
projection. It is enough to prove this in the case in which §' = S\ {e} for some ¢ € S. By
Fourier elimination of ., the projection is determined by two classes of inequalities. The

first consists of inequalities
(i) z(A) —2(B) < f(A,B), wheree¢ AU B.

The second consists of inequalities each of which is obtained by adding an inequality for P(f)
in which z, has coefficient 1, to one in which z, has coefficient —1. So each such inequality

has the form
(i) #(A") — z(B')+ z(A") —x(B") < f(A",B") + f(A",B"), where e € A'N B".
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We need to show that each inequality of type (ii) is implied by those of type (i). In fact, we
add the inequality for (A’, B')A (A", B") to the one for (A’, B')V (A", B”). These inequalities
are both of type (i). Their sum has the same left-hand side as (ii) and its right-hand side is
no larger than the right-hand side of (ii), by bisubmodularity. L]

We remark that it follows that every bisubmodular polyhedron is non-empty: since
f(0,0) = 0, this is true by induction. Besides projection, several other operations that
preserve 2-SA also preserve bisubmodular polyhedra, and the corresponding bisubmodular
function can be explicitly constructed. For cartesian product, translation, and minors this
1s easy to show, and we do not bother to state the results. On the other hand, for intersec-
tion with a box, it is not obvious, and the formula for the defining function is not easy to
establish. This result will be discussed elsewhere.

The proof that integral bisubmodular functions yield jump systems uses a basic lemma,

the analogue for bisubmodular polyhedra of Lemma (3.2). Given # € P(f), we say that a
pair (A, B) is x-tight (or just tight) if z(A) — «(B) = f(A, B).

(4.3) Lemma. The intersection and the reduced union of x-tight pairs are x-tight.

Proof. Suppose that (A, B) and (A’, B') are z-tight.

z((AUAN\(BUB')) — z((BUB)\(AUA)) +z(ANA)—2(BNB)
A) — z(B) + z(A") — (B

,B)+f(A’ )
N(ALB) + f((A,B)V (A, B)).

AV Il
~ \s 8
E

Since € P(f), the inequality also holds in the other direction, so we have equality
throughout. (]

We remark that the above lemma, or similar arguments as in the proof, can be used to

obtain further results. For example, if (A, B) and (A’, B') are z-tight, then so is (A\ B’, B\
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A’), by applying the lemma again to (A, B) and (A, B) V (4’, B'). This was pointed out in
[16]. Also if f and z are integral, (A, B) is z-tight, and z(A’) — «(B') = f(A’, B') — 1, then

one of the intersection and reduced union is z-tight.

(4.4) Theorem. Let f be bisubmodular and integral. Then F = Z° N P(f) satisfies the
2-SA.

Proof. Let z,y € F and s € St(z,y) and suppose 2-SA fails. By reflecting P(f) in {j : z; >
y;}, we may assume that z < y. Suppose that s = {e}. Let Q@ = {j € S\ {e} :z; <y,;},
and let Q' = {j € @ : there exists z-tight (A, B) with e € A, j & B}.
Claim. There exists z-tight (A, B) with e € Aand Q \ B = Q".
Suppose first that @' = 0. Choose z-tight (A’, B') with ¢ € A’. (Such exists, because
z + {e} € P(f).) Then by the definition of @', @\ B’ = 0 = @Q’, as required. So suppose
that Q' # 0. Now take the intersection of all the z-tight pairs (A", B”) with ¢ € A” and
Q\ B" # 0. This gives an z-tight pair (A4, B) with BN Q' = 0 and so, by the definition of
Q', @\ B = This completes the proof of the claim.

Suppose there exists j € Q \ @'. Notice that 5 € B. Since = + {e} + {j} ¢ P(f) and
J & @', there exists (A’, B') such that

(i) z(A) —z(B')= f(A',B"), j€ A', e¢ B';
(i) z(A") —z(B") > f(A",B') -1, je € A"

In case (i) the reduced union of (A, B) and (A’, B’) is an x-tight pair (A”, B”) with
e € A" j & B" soj € (@Q, a contradiction. In case (ii) both the reduced union and the
intersection of (A, B), (A’, B') are pairs (A", B"”) with e € A", j ¢ B”. Moreover, at least
one of the two pairs is z-tight, so j € @', a contradiction. It follows that Q \ Q' = 0, so
y(A) —y(B) > z(A) — z(B) = f(A, B), again a contradiction. L]

We use Lemma (4.3) to prove another basic fact about bisubmodular polyhedra, that
each such polyhedron has a unique defining function. For the case where all function values

are finite, this result is proved in [14], page 94.
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(4.5) Theorem. If f is bisubmodular on pairs of disjoint subsets of S, then for each such
pair A, B we have f(A, B) = maxyep(s)(z(A) — x(B)). Moreover, if f is integral, then the

mazimum s achieved by an integral x.

Proof. By applying reflection and projection, using Propositions (4.1) and (4.2), we can
assume that A = S and B = (. Obviously, the maximum is at most f(5,0), so if it is oo,
we are done. We choose Z € P(f) maximizing z(A) — z(B). Fix e € S. Since Z. cannot be
increased, there is a tight pair (A’, B’) with e € A'.
Claim. For each j ¢ A’ there is a tight pair (A4;, B;) such that e € A; and 5 ¢ B;.
Proof of Claim. If not, then there is a tight pair (A”, B”) with j € A” and e ¢ B".
(Otherwise we could increase both Z. and ;). Now take (A;, B;) = (A’, B")V (A", B”). This
pair is tight by Lemma (4.3), and it is easy to see that it satisfies the conditions of the claim.
Now take the intersection over all j ¢ A’ of the pairs (A;, B;). We get a tight pair
(Ae, B.) with e € A, and B. C A’. The intersection of (A., B.) with (A4’, B) is a tight pair
(AL,0) with e € A’. Finally, the union over all e of these tight pairs is the tight pair (.5,0),
so Z(S) = f(S5,0), as required. It is straightforward to check that if f is integral, then the

whole argument applies to integral points, so the second part is proved also. L]

5 Jump systems and bisubmodular polyhedra

We say that @ € F is (A, B)-mazimalin F if y € F, y; > x; for all j € A, y; < @; for all

J € B imply yjau = TjauB-

(5.1) Lemma. If F satisfies 2-SA and y,z € F with y(A) —y(B) > z(A) — «(B), then

is not (A, B)-mazimal.

Proof. By twisting at B, we may assume that B = (). Suppose that z is (A, )-maximal
and there exists y € F and y(A) > x(A). Subject to this, choose y so that 3-;c 4 |z; — y;| is
minimum. By the maximality of #, there exists e € A with #, > y.. Either y' = y+ {e} € F,
ory" =y +{e} + s € F for some step s from y + {e} to x. But this contradicts the choice
of y. L]
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Given F, define f by f(A, B) = max,ecr(z(A) — z(B)), if the maximum exists, and to

be oo otherwise.

(5.2) Lemma. If F satisfies 2-SA, then f is bisubmodular.

Proof. Let (A, B), (A’, B') be pairs of disjoint sets. First, we consider the case where the
right-hand side of the bisubmodular inequality is not co. We may assume that f(A, B) # oo,
since otherwise the inequality holds trivially. Choose © € F to be (AN A’ BN B’)-maximal.
Now by increasing z; for j € (BAB’)\ (AU A’), we can find an z’ that is (AV A’, BV B’)-
maximal. Then by ((5.1)), we get

F(A.B)+ f(A. B
> #/(A) - o/(B) + /(A) — #(B)
= 2(ANA)—2(BNB)+2'(AUA)\ (BUB)) —/(BUB')\ (AU A))
= J((A,B)A (A B) + f((A.B) V (4, B)),

as required.

Now suppose that the right-hand side of the bisubmodular inequality is infinity. Let
Frbe Fni{z € 25 : —k < z; < kforall j € S}. Then F* satisfies 2-SA; let f* be
the corresponding (bisubmodular!) function. Then the right-hand side of the bisubmodular

inequality for f* goes to co with %, and so the left-hand side must also, and we are finished.

]

(5.3) Theorem. If F satisfies 2-SA, then conv(F) is an integral bisubmodular polyhedron.

Proof. Define f by f(A, B) = max,cr(2(A) —z(B)). Then f is integral and bisubmodular,
by (5.2), and F C P(f). If P(f) # conv(F), then there exists ¢ € R® and y € P(f) such
that cy > cx for every x € F. By a straightforward perturbation argument we can choose
¢ so that there does not exist j € S with ¢; = 0 and there do not exist distinct elements
J, k of S with |¢;| = |ex|. By reflection in N = {j : ¢; < 0}, we may assume that ¢; > 0
for all 7 € S. Now max,cr ce exists, so max,cr z(S) exists, by (5.1) with A =S, B = (.
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Therefore, we can form the polyhedron B(f) = {z € P(f) : #(S) = f(S,0)}. The set B of
maximal members of F is contained in B(f). Since ¢; > 0, j € S, there exists y € B(f)
with cy > ca for every @ € B. This again follows from (5.1). We need the following

Claim. If y,2 € B, AC S, and y(A) > z(A), then = is not A-maximal over B.

Proof of Claim. If possible, choose y and z violating the statement with Y., |2; — y;| as
small as possible. Clearly there exists e € A with ., > y.. Apply the 2-SA to get 7 € S with
y+{e}ory+{e}+{j} or y+ {e} — {j} € F. By the definition of B, the only possibility
is the last one. But then y” = y + {e} — {j} € B, and this contradicts the choice of y, and
the claim is proved.

Let us relabel the elements of S as eq, es, ..., e, so that ¢, > ¢, > ... > c.,, and let T;
denote {ej,es,...,e;t for 0 < i <n. For T C S, z € RT, and Q C R’ we write 2EQ to
mean that there exists z € () such that zj7 = z. Choose Z € B as follows:

Fori=1ton
Choose Z., to be max(« : (Z,,. .., %,_,,@)EB, if the maximum exists.
Otherwise, stop.
Now suppose the procedure runs to completion and delivers & € B. By the claim, #(T;) =

f(T;,0) < 0o, 1 <4 < n. Now for any = € B(f), we have

cx = i Ce; (JB(Tz) - w(Ti—l))

n—1
= Z(C€i+1 - cei)x(Ti) + Cen:l?(Tn)
=1
n—1
S Z(Cez+l cez)i(Ti) —I_ CenZB(Tn) = cT

This shows that a point of B maximizes cx over B(f), a contradiction. Now suppose that
the procedure stops early; say that j is the first index for which the maximum does not exist
and 7 is the point constructed after step j — 1. Then by the claim, we have (T;) = f(T3, 0)
for 1 <7 < j — 1. Moreover,  is not A-maximal in B, so there exists =’ € B with z, = Z.;,

1 <7< j—1and 2} = Z;+a for some positive integer a. But then, z'(S\T;) = #2(S\T}) —«a,

23



so cx’ > ¢k + ae, where € = min(ce; — ¢y, : 1 <4 <n —1). But the same argument can be

applied to z’, and so on, so cz is unbounded on B, a contradiction. (]

We remark that the proof of (5.3) contains the basis of a greedy algorithm for optimizing
a linear function over a set satisfying 2-SA. However, we have managed to avoid many of the
awkward parts of such an algorithm (such as those dealing with unboundedness and equal
cost coefficients). These difficulties are handled for some classes of polyhedra in [13], [14],
[15].

It is a consequence of (5.3) that the convex hull of a set satisfying 2-SA is given by
inequalities having coefficients 0,1, —1. This result can be applied to the bidirected-graph
example of Section 3 to conclude that the resulting polyhedra can be described in this way.
For the case of trivial bidirections, these results, and somewhat more, were proved in [7].

We can also prove that an integral bisubmodular polyhedron, that is, the polyhedron
determined by a bisubmodular polyhedron that is integral, is indeed an integral polyhedron.
This result, in a slightly less general setting, appears in [16], [18], and [22].

(5.4) Corollary. Every integral bisubmodular polyhedron is the convex hull of its integral

points.

Proof. Let f be an integral bisubmodular function defined on pairs of disjoint subsets of
S. By Theorem (4.4), F = P(f) N Z* satisfies 2-SA, and so by Theorem (5.3), conv(F) is
a bisubmodular polyhedron P(f'), where f’ is defined by f'(A, B) = max,cr(z(4) — z(B)).
Now by Theorem (4.5), we have that f = f’, and we are done. L]

A gap of a set F C Z% is an integral point in conv(F) \ F. The examples of Figure 1
show that adding a gap to a set satisfying 2-SA can create a set violating 2-SA. On the other

hand we have the following result.

(5.5) Corollary. Suppose that F satisfies 2-SA and F' is obtained from F by adding all of
the gaps of F. Then F' satisfies 2-SA.

Proof. By (5.3), conv(F) is an integral bisubmodular polyhedron P. By (4.4), the integral
points in P satisfy 2-SA. L]
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The following related results have been obtained recently. Ducuamp [9] has proved that
the “delta-sum” (S, F), of delta-matroids (.5, Fy) and (.5, F1), is again a delta-matroid. Here
F = {F,AF, : Fy € Fo, Fy € Fi}. This result implies the composition theorem for delta-
matroids. Pavan [21] has proved that the mod 2 reduction of a jump system is a delta-
matroid. (That is, each component of a vector in F is replaced by 0 or 1 according to its
parity.) This result together with Theorem (3.3) implies the result of Duchamp. Although
adding an arbitrary gap can violate 2-SA. there is a notion intermediate between this and
adding all gaps. If j € S, a gap in direction jis a point ¢ F such that z +{j} and « — {j}
are both in F. We originally conjectured that adding all gaps in the same direction preserves
the 2-SA. Pavan [21] has proved this conjecture.

Acknowledgment. We are grateful to Andras Sebd for his help and encouragement.
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