Applications of Integration

The remainder of MATH 116 will be devoted to applications.

Big idea Integrals arise when adding ^a continuum of tiny quantities. You can think of $\int f(x) dx$ like a big sum

6.6 Average Values

<u>Recall:</u> The average value of real numbers y., y2. ..., yn is

Similarly, we can define the notion of an "average" for infinitely many quantities. Specifically, the <u>average value</u> of $y = f(x)$ for $x \in [a, b]$ is

$$
\int avg. = \frac{1}{b-a} \int_{a}^{b} f(x) dx
$$

Divide by the length of [a, b]

(similar to dividing by the Sample size!)

Ex: The average value of $f(x) = x^2$ for $x \in [0,2]$ is $\int \omega g = \frac{1}{2-0} \int_{0}^{2} f(x) dx$ $=\frac{1}{2}\int^2 x^2 dx$ = $\frac{1}{2} \left[\frac{x^3}{3} \right]_0^4$ = $\frac{1}{2} \left(\frac{8}{3} \right)$ = $\boxed{\frac{4}{3}}$

 $EX:$ The temperature throughout the day is given by $T(t) = 4 - \pi sin(\frac{\pi}{12}t)$ °C

where t is the time in hours since midnight $(t=0)$.

Determine the average temperature from midnight to noon.

 $Solution:$ For $te[0,12]$, we have

$$
T_{avg.} = \frac{1}{12-0} \int_{0}^{12} (4 - \pi \sin(\frac{\pi}{12}t)) dt
$$

$$
= \frac{1}{12} \int_{0}^{12} 4 dt - \frac{\pi}{12} \int_{0}^{12} \sin(\frac{\pi}{12}t) dt
$$

$$
= \frac{1}{12} [4t]_{0}^{12} - \frac{\pi}{12} \cdot \left[\frac{-\cos(\frac{\pi}{12}t)}{\frac{\pi}{12}} \right]_{0}^{12}
$$

$$
= \frac{1}{12} [4(t)]_{0}^{12} - 0 + [\cos(\pi) - \cos(0)]
$$

$$
= 4 + (-1) - 1
$$

$$
= 2 \frac{1}{2} \left[2 \left(\frac{1}{2} \right) - 1 \right]
$$

87.1 - Area Between Curves

Recall: If $f(x) \ge 0$, then the area between the graph of f and the x -axis from $x = a$ to $x = b$ is

$$
Area = \int_{\alpha}^{b} f(x) dx
$$
 (1)

More generally the area between two curves from ^x ^a to ^x ^b can be calculated as

Ex: Find the area enclosed between
$$
y = x
$$
 and $y = x^2$
\n(a) from $x = 2$ to $x = 3$
\n(b) from $x = 0$ to $x = 3$
\nSolution: Start with a picture!

(a) For $X \in [2,3]$, we have $X \leq X^2$, hence

$$
Area = \int_{0}^{1} (y_{upper} - y_{lower}) dx + \int_{1}^{3} (y_{upper} - y_{lower}) dx
$$

=
$$
\int_{0}^{1} (x - x^{2}) dx + \int_{1}^{3} (x^{2} - x) dx
$$

=
$$
\left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1} + \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} \right]_{1}^{3} = ... = \frac{1}{6} + \frac{14}{3} = \frac{29}{6}
$$

Ex: Calculate the area enclosed between
$$
y = x^2
$$
 and
 $y = 2x^2 - 1$.

Solution: The curves intersect when $x^2 = 2x^2 - 1$, or

equivalently, when $x^2 = 1$, hence $x = \pm 1$. We have

 $y_{upper} = x^2$ and $y_{lower} = 2x^2 - 1$. Thus,

Note: It is actually possible to determine Yupper and Ylower without graphing Instead (i) find the point(s) where the curves cross, and ii check the value of each function at ^a point in between to see which is yupper / ylower.

Ex: Calculate the area enclosed between
$$
y = \cos x
$$

and $y = \sin x$ from $x = 0$ to $x = \pi$.
Solution: The curves cross when $\sin x = \cos x$,
hence, when $x = \frac{\pi}{4}$.

$$
0
$$
\n
$$
\frac{1}{\pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\pi} \pi
$$
\n
$$
0
$$
\n
$$
\frac{1}{4}
$$
\n
$$
\frac{1}{4}
$$
\n
$$
0
$$
\n
$$
\frac{1}{4}
$$
\n
$$
\frac{1}{4}
$$
\n
$$
0
$$
\n
$$
\frac{1}{4}
$$
\n
$$
\frac{1}{4}
$$
\n
$$
0
$$
\n
$$
\frac{1}{4}
$$
\n
$$
\frac{1}{4}
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
0
$$
\n
$$
\frac{1}{4}
$$
\n
$$
0
$$
\n

Thus, we have
\n
$$
Area = \int_{0}^{\pi/4} (y_{upper} - y_{lower}) dx + \int_{\pi/4}^{\pi} (y_{upper} - y_{lower}) dx
$$
\n
$$
= \int_{0}^{\pi/4} (cosx - sinx) dx + \int_{\pi/4}^{\pi} (sinx - cosx) dx
$$
\n
$$
= \left[sinx + cosx \right]_{0}^{\pi/4} + \left[-cosx - sinx \right]_{\pi/4}^{\pi}
$$
\n
$$
= \left[(sin\frac{\pi}{4} + cos\frac{\pi}{4}) - (sin(x - cosx)) \right] + \left[(-cos\pi - sin\frac{\pi}{4}) - (-cos\frac{\pi}{4} - sin\frac{\pi}{4}) \right]
$$
\n
$$
= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \sqrt{2} - (\sqrt{2}) + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \boxed{2\sqrt{2}}
$$

If we <u>did</u> graph, we would see the picture below:

If the region is enclosed between ^a left curve and a right curve from $y = c + b$ $y = d$, then we can get the area in between by integrating with respect to y:

Area =
$$
\int_{y=c}^{y=d}
$$
 $(x_{rightmost} - x_{leftmost}) dy$

Ex: Find the area between $x = y - 1$ and $x = y^2$ for $y \in [0,2]$. Solution

 $x = y - 1$ Here, the region is bounded y_1 y_2 y_3 $x = y^2$ 2 1 between X leftmost = Y^{-1} and $\overline{}$ x rightmost = Y⁻ trom y=0 to y=2

$$
\therefore \text{Area } = \int_{0}^{2} \left(y^{2} - (y-1) \right) dy
$$

$$
= \left[\frac{y^{3}}{3} - \frac{y^{2}}{2} + y \right]_{0}^{2} = \frac{g}{3} - \frac{4}{2} + 2 = \boxed{\frac{g}{3}}
$$