§4.4 - Concavity

Notice that if
$$f'$$
 (i.e., the slope
of the tangent line) is increasing
on I, then f is concave up on I.

Since f'' tells us whether f' is increasing or decreasing, we can use f'' to detect the concavity of f! Also written $\frac{d^2f}{dx^2}$ or $\frac{d^3y}{dx^3}$

Test for Concavity
If
$$f''(x) \ge 0$$
 for all $x \in (a,b)$, then f is concave
up on (a,b) . Likewise, if $f''(x) \le 0$ for all $x \in (a,b)$,
then f is concave down on (a,b) .

<u>Note</u>: Intervals of concavity are separated by points where f''(x) = 0 or DNE. A point in the domain of f separating intervals of <u>opposite</u> concavity is called a <u>point of inflection</u>. $y_{f'(x) \leq 0}$ $f''(x) \leq 0$ Concave down concave up concave down

<u>Remarks</u>: As with intervals of increase / decrease,
1. We include an endpoint in an interval of concavity if f is continuous there.
2. an endpoint can belong to two intervals of different concavity.
3. don't joint intervals of concavity with unions (U).

<u>Ex:</u> Find the intervals of concavity and any points of inflection.

(a)
$$f''(x) = x^2 + 10x - 1$$

Solution:
$$f'(x) = 2x + 10$$
, $f''(x) = 2$
positive everywhere

$$f$$
 is concave up on $(-\infty,\infty)$; no inflection points.

(b)
$$f(x) = \chi^{4} - 4\chi^{3} + 1$$

Solution: $f'(x) = 4\chi^{3} - |\lambda \chi^{2}|, \quad f''(x) = |\lambda \chi^{2} - \lambda 4\chi$
 $f''(x) = 0 \implies |\lambda \chi^{2}(x-\lambda) = 0 \implies \chi = 0 \text{ or } \chi = \lambda$

The Second Derivative Test
Suppose
$$f'(c) = 0$$
 and f'' is continuous around $X = c$.
(i) $f''(c) > 0 \implies local min at $x = c$
(ii) $f''(c) < 0 \implies local max at $x = c$.
(iii) $f''(c) = 0 \implies the test gives no information. We$
may have a local max, local min, or neither.$$

Ex: Classify the critical point of
$$f(x) = x^4 - 4x^3 + 1$$

at $x = 3$ as a local max, min, or neither.
Solution: $f''(x) = 12x^2 - 24x \implies f''(3) = 36$.
Since $f''(3) > 0$, there is a local min at $x = 3$.