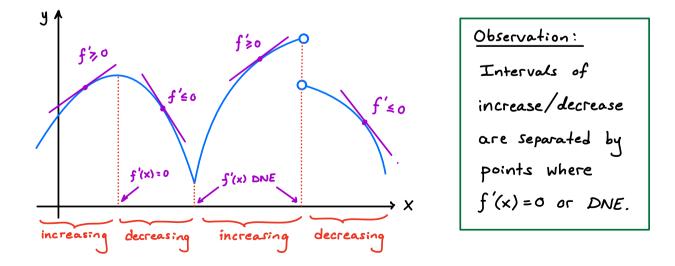
In these next few sections, we will learn how to
Use properties of
$$f'$$
 to study the behaviour of f .
In fact, last time we used the MVT to prove
the following connection between f and f' :
Test for Increase / Decrease:
If $f'(x) \ge 0$ for all $x \in (a,b)$, then f is increasing on (a,b) .
If $f'(x) \le 0$ for all $x \in (a,b)$, then f is decreasing on (a,b) .



Cool! To figure out where f is increasing / decreasing, We can find any points where f'(x) = 0 or DNE, then check the sign of f' in the surrounding intervals !

Remarks:

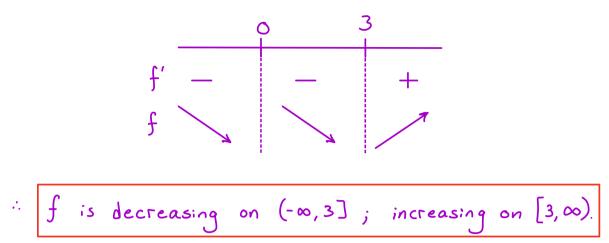
- 1. We will include an endpoint on an interval of increase / decrease if f is continuous there.
- 2. An endpoint can belong to both an interval of increase and an interval of decrease.
- 3. Don't joint intervals of increase/decrease with unions (U), just write them out separately.

<u>Ex</u>: Where is f increasing? Where is f decreasing? (a) $f(x) = x^2$

Solution:

[First, find any X's where
$$f'(x) = 0$$
 or $f'(x)$ DNE.]
 $f'(x) = 2x$, which exists everywhere.
 $f'(x) = 0 \Rightarrow 2x = 0 \Rightarrow x = 0$
[Next, check the sign of f' around these points.]
 $f' - + + f$ increasing on $[0,\infty)$
 $decreasing on $(-\infty, 0]$
 $f(x) = x^2$ is continuous at $x = 0$, so include the endpoint.]
(b) $f(x) = x^4 - 4x^3 + 1$
Solution: $f'(x) = 4x^3 - 12x^2$, which exists everywhere.
 $f'(x) = 4x^3 - 12x^2 = 0 \Rightarrow 4x^2(x-3) = 0$$

 \Rightarrow X=0 or X=3.



(c)
$$f(x) = \frac{2-x}{(x+1)^2}$$

Solution:
$$f'(x) = \frac{(x+1)^{2} (2-x)' - (2-x) [(x+1)^{2}]'}{(x+1)^{4}}$$
$$= \frac{-(x+1)^{2} - 2(2-x) (x^{4}1)}{(x+1)^{3/3}}$$
$$= \frac{-(x+1) - 2(2-x)}{(x+1)^{3}} = \frac{x-5}{(x+1)^{3}}$$
DNE when $x=-1$, $f'(x) = 0$ when $x=5$.

f is increasing on
$$(-\infty, -1)$$
 and on $[5, \infty)$.
f is decreasing on $(-1, 5]$.
 $(x=-1 not included since f Not continuous there!)$

A point
$$X=c$$
 in the domain of f is said to be
a critical point (CP) of f if $f'(c)=0$ or $f'(c)$ DNE.

<u>Ex</u>: We saw that $f(x) = X' - 4X^3 + 1$ has critical points at X = 0 and X = 3, Since f'(0) = 0 and f'(3) = 0. <u>Ex:</u> We saw that $f(x) = \frac{2-x}{(x+1)^2}$ has a critical point at x = 5.

Note: Even though
$$f'(-1)$$
 DNE, $X = -1$ is NOT a
critical point as it isn't in the domain of f .