$\underline{\$4.11 - L'Hopital's Rule}$

It turns out that derivatives can help us evaluate limits specifically limits of indeterminate form (where we can't just "plug in" $x = a$): $\overline{O_{\rho}}$ $\overline{$

L'Hopital's Rule
\nSuppose that near x=a, except possibly at x=a,
\n
$$
\int
$$
 and g are differentiable and $g'(x) \neq 0$.
\nIf $\lim_{x \to a} \frac{f(x)}{g(x)}$ has the form $\frac{0}{0}^{\infty}$ or $\frac{1}{10} \frac{1}{100}$, and
\nif $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists or is $\pm \infty$, then
\n $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Examples: Evaluate the following limits.

(a) $\lim_{x\to 3} \frac{x^3 - x - 24}{x - 3}$ $\left(\frac{0}{0}\right)$ $\frac{2H}{2}$ $\int_{x\to 3}^{x} \frac{(x^3 - x - 24)^2}{(x-4)^2}$ = $\lim_{x\to 3} \frac{3x^2-1}{1}$ = $3(3)^2-1$ = 26

(b)
$$
\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}
$$
 $\left(\frac{0}{0}\right)$
 $\lim_{x \to 2} \frac{1}{\sqrt{x} - \sqrt{2}} = \lim_{x \to 2} \frac{1}{\sqrt{x}} = \boxed{2\sqrt{2}}$

Note:	L'Hopital's rule	also works on limits where
$X \longrightarrow a^+$, $X \longrightarrow a^-$, or $X \longrightarrow \pm \infty$		

(c)
$$
\lim_{x \to \infty} \frac{x^3 + x - 7}{3x^3 + x + 1}
$$
 $\left(\frac{\infty}{\infty}\right)$

$$
\frac{\omega}{2} \lim_{x \to \infty} \frac{3x^2 + 1}{9x^2 + 1} \left(\frac{\infty}{\infty} \text{ again!}\right)
$$

$$
\frac{24}{x} \quad \lim_{x\to\infty} \frac{6x}{18x} = \frac{6}{18} = \boxed{3}
$$

(d)
$$
\lim_{x \to \infty} \frac{\ln(x)}{x}
$$
 $\left(\frac{\infty}{\infty}\right)$
\n $\frac{\pi}{2}$ $\lim_{x \to \infty} \frac{y_x}{1} = \lim_{x \to \infty} \frac{1}{x} = 0$
\n(e) $\lim_{x \to \infty} \frac{e^x}{x^2 + 1} = \lim_{x \to \infty} \frac{1}{\infty}$
\n $\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \lim_{x \to \infty} \frac{e^x}{2} = \infty$
\n $\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \lim_{x \to \infty} \frac{e^x}{2} = \infty$

$$
\begin{array}{lll}\n\text{(f)} & \frac{\sqrt{100}}{100} & \frac{\sqrt{100}}{100} & \frac{\sqrt{100}}{100} \\
\text{(g)} & \frac{1}{\sqrt{100}} & \frac{\sqrt{100}}{100} & \frac{\sqrt{100}}{100} & \frac{\sqrt{100}}{100} \\
\text{(h)} & \frac{1}{\sqrt{100}} & \frac{\sqrt{100}}{100} & \frac{\sqrt
$$

For other indeterminate forms, try to rewrite the Limit in the form $\frac{1}{6}$ or $\frac{1}{60}$, then use L'Hopital.

For "0·
$$
\infty
$$
", move one function to the denominator as
a reciprocal: "0· ∞ " \longrightarrow " $\frac{0}{\frac{1}{\infty}}$ " \longrightarrow " $\frac{0}{0}$ " !

Ex: Evaluate the following Limits.

(a)
$$
\lim_{x \to 0^{+}} x \cdot ln(x)
$$
 (0. -00)
= $\lim_{x \to 0^{+}} \frac{ln(x)}{1/x}$ ($\frac{\infty}{\infty}$)

 $ln ln ln \frac{1}{x}$

$$
\frac{2M}{2} \lim_{x \to 0^{+}} \frac{y_{x}}{-y_{x^{2}}} = \lim_{x \to 0^{+}} \frac{-x^{2}}{x} = \lim_{x \to 0^{+}} -x = 0
$$

Similarly before preceding!

(b)
$$
\lim_{x \to \infty} x^2 \cdot \sin(\frac{1}{x})
$$
 $(\infty \cdot 0)$
\n
$$
= \lim_{x \to \infty} \frac{\sin(\frac{y}{x})}{y} \left(\frac{\infty}{\infty}\right)
$$
\n
$$
\frac{24}{\pi} \lim_{x \to \infty} \frac{-y}{\frac{y}{x} \cdot \cos(\frac{y}{x})}{-2y^{3}}
$$
\n
$$
= \lim_{x \to \infty} \frac{x \cos(\frac{y}{x})}{2} = \frac{\infty \cdot 1}{2} = \boxed{\infty}
$$

For "0" "oo", oc "1" , apply a logarithm to
\nthe limit to bring down the exponent!
\nExample: Evaluate the following limits.
\n(a)
$$
\lim_{x\to 0^+} x^x
$$
 (o", indeterminate!)
\nLet $L = \lim_{x\to 0^+} x^x$, We have
\n $\ln L = \ln(\lim_{x\to 0^+} x^x) = \lim_{x\to 0^+} \ln(x^x)$
\n $\ln \lim_{x\to 0^+} x \ln x = \lim_{x\to 0^+} \ln(\frac{x}{x}) = \dots = 0$
\nSince $\ln L = 0$, we have $L = \lim_{x\to 0^+} x^x = e^e = 1$

(b)
$$
\lim_{x \to \infty} (1 + \frac{1}{x})^{x}
$$
 (1[∞], indeterminate)
Let L = $\lim_{x \to \infty} (1 + \frac{1}{x})^{x}$, so
 $\ln L = \lim_{x \to \infty} x ln(1 + \frac{1}{x})$ (∞·0)

$$
= \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}
$$

\n
$$
= \lim_{x \to \infty} \frac{\frac{\ln(1+\frac{1}{x})}{\frac{1}{x} + \frac{1}{x}}}{\frac{-1}{x^{2}}} = \frac{1}{1+\sigma} = 1
$$

\nThus, $\mathbb{L} = \lim_{x \to \infty} (1+\frac{1}{x})^{x} = e^{1} = e$
\n(which matches our definition of e from §1.9!)

(c)
$$
\lim_{x \to \pi/2^-} (secx)^{cosx}
$$
 (∞^0 , indeterminate)
\nLet $L = \lim_{x \to \pi/2^-} (secx)^{cosx}$. Then
\n $\ln L = \lim_{x \to \pi/2^-} cos(x) \cdot ln (secx)$ ($0 \cdot \infty$)
\n $= \lim_{x \to \pi/2^-} \frac{ln (secx)}{secx}$ ($\frac{\infty}{\infty}$)
\n $= \lim_{x \to \pi/2^-} \frac{ln (secx)}{secx}$ ($\frac{\infty}{\infty}$)
\n $= \lim_{x \to \pi/2^-} \frac{(secx)^{1/2} - secx}{(secx)^{1/2}} = \lim_{x \to \pi/2^-} cosx = 0.$

$$
\therefore \quad \underline{\bigcup} = \lim_{x \to \pi/2^{-}} \left(\underline{\text{Sec } x} \right)^{\text{cos}x} = \underline{\, \bigcap} \, \underline{\, \bigcap} \, \underline{\, \bigcap}
$$

For "ro-0" Limits: Try Putting everything every thing over a
common denominator or multiplying by a conjugate
to get a "0" or "
$$
\frac{\infty}{\infty}
$$
" limit.

$$
\underline{Ex}: \quad \begin{array}{c} \hline \lim_{x \to \tau_2} \left(\sec x - \tan x \right) & (\infty - \infty) \\ \hline \lim_{x \to \tau_2} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right) \\ \hline \lim_{x \to \tau_2} \frac{1 - \sin x}{\cos x} & (\frac{0}{0}) \end{array}
$$
\n
$$
\begin{array}{c} \frac{1}{x} \lim_{x \to \tau_2} \frac{-\cos x}{- \sin x} \\ \hline \lim_{x \to \tau_2} \frac{-\cos x}{- \sin x} \end{array}
$$
\n
$$
= \frac{\cos (\pi / 2)}{\sin (\pi / 2)}
$$
\n
$$
= \frac{0}{1} = \boxed{0}
$$