§4.11 - L'Hopital's Rule

It turns out that derivatives can help us evaluate *limits*, Specifically *limits* of <u>indeterminate form</u> (where we can't just "plug in" x = a): " $9_0''$, " $9_0''$, " $0 \cdot \infty$ ", " ∞° ," " 0° ," " 1° ," " $\infty - \infty$ "

L'Hopital's Rule
Suppose that near
$$x=a$$
, except possibly at $x=a$,
 f and g are differentiable and $g'(x) \neq 0$.
If $\lim_{x \to a} \frac{f(x)}{g(x)}$ has the form " $\frac{0}{0}$ " or " $\frac{\pm \infty}{\pm \infty}$ ", and
if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists or is $\pm \infty$, then
 $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Examples: Evaluate the following limits.

(a) $\lim_{X \to 3} \frac{\chi^3 - \chi - 24}{\chi - 3}$ $\left(\frac{0}{0}\right)$ $\stackrel{\text{LH}}{=} \lim_{X \to 3} \frac{(\chi^3 - \chi - 24)'}{(\chi - 4)'}$ $= \lim_{X \to 3} \frac{3\chi^2 - 1}{1} = 3(3)^2 - 1 = 26$

(b)
$$\lim_{X \to 2} \frac{X-2}{\sqrt{X}-\sqrt{2}} \left(\frac{0}{0}\right)$$

 $\lim_{z \to 2} \lim_{X \to 2} \frac{1}{\frac{1}{2} \times \sqrt{2}} = \lim_{X \to 2} 2\sqrt{X} = 2\sqrt{2}$

Note: L'Hopital's rule also works on limits where
$$X \longrightarrow a^+$$
, $X \longrightarrow a^-$, or $X \longrightarrow \pm \infty$

(c)
$$\lim_{X \to \infty} \frac{X^3 + X - 7}{3X^3 + X + 1}$$
 $\left(\frac{\infty}{\infty}\right)$
 $\stackrel{\text{LH}}{=} \lim_{X \to \infty} \frac{3x^2 + 1}{9x^2 + 1}$ $\left(\frac{\omega}{\infty} \text{ again!}\right)$

$$\underset{X \to \infty}{\overset{\text{Lim}}{=}} \frac{6x}{18x} = \frac{6}{18} = 3$$

(d)
$$\lim_{X \to \infty} \frac{\ln(x)}{x} \left(\frac{\infty}{\infty}\right)$$

 $\stackrel{\text{LH}}{=} \lim_{X \to \infty} \frac{1}{1} = \lim_{X \to \infty} \frac{1}{x} = 0$
(e) $\lim_{X \to \infty} \frac{e^{x}}{x^{2}+1} \left(\frac{\infty}{\infty}\right)$
 $\stackrel{\text{LH}}{=} \lim_{X \to \infty} \frac{e^{x}}{x^{2}+1} = \lim_{X \to \infty} \frac{e^{x}}{2} = \infty$
 $\stackrel{\text{LH}}{=} \lim_{X \to \infty} \frac{e^{x}}{2x} = \lim_{X \to \infty} \frac{e^{x}}{2} = \infty$

(f)
$$\lim_{X \to 1} \frac{\chi^2 - 1}{\chi^2 + 1}$$
 $\left(\frac{0}{2} \Rightarrow Don't use L'Hopital!! \right)$
= $\frac{0}{2} = 0$

For other indeterminate forms, try to rewrite the limit in the form "%" or "%", then use L'Hopital.

For "0.00", move one function to the denominator as
a reciprocal:
$$0.00" \longrightarrow "\frac{0}{100}" \longrightarrow "\frac{0}{0}"$$
!

<u>Ex</u>: Evaluate the following limits.

(a)
$$\lim_{X \to 0^{+}} X \cdot ln(X) = (0 \cdot -\infty)$$

= $\lim_{X \to 0^{+}} \frac{ln(X)}{V_{X}} = (\frac{\infty}{\infty})$
 $\lim_{X \to 0^{+}} \frac{V_{X}}{V_{X}} = lim_{X} = X^{2}$

$$= \lim_{X \to 0^+} \frac{\sqrt{x}}{\sqrt{x^2}} = \lim_{X \to 0^+} \frac{-x^2}{x} = \lim_{X \to 0^+} -x = 0$$

Simplify before proceeding!

(b)
$$\lim_{X \to \infty} \chi^{2} \cdot \sin\left(\frac{1}{X}\right) \quad (\infty \cdot 0)$$

$$= \lim_{X \to \infty} \frac{\sin\left(\frac{y_{X}}{x}\right)}{\frac{y_{X^{2}}}{2}} \quad \left(\frac{0}{0}\right)$$

$$\lim_{X \to \infty} \frac{-\frac{y_{X^{2}}}{2} \cos\left(\frac{y_{X}}{x}\right)}{-\frac{2y_{X^{3}}}{2}}$$

$$= \lim_{X \to \infty} \frac{x \cos\left(\frac{y_{X}}{x}\right)}{2} = \frac{\infty \cdot 1}{2} = \infty$$

For "0", "
$$\infty^{\circ}$$
", or "1", apply a logarithm to
the limit to bring down the exponent!
Example: Evaluate the following limits.
(a) $\lim_{x\to 0^+} X^{\times}$ (0°, indeterminate!)
Let $L = \lim_{x\to 0^+} X^{\times}$. We have
 $\ln L = \ln \left(\lim_{x\to 0^+} X^{\times} \right) = \lim_{x\to 0^+} \ln (X^{\times})$
 $= \lim_{x\to 0^+} x \ln x = \frac{\lim_{x\to 0^+} \ln (X^{\times})}{V_X} = \dots = 0$
Since $\ln L = 0$, we have $L = \lim_{x\to 0^+} X^{\times} = e^{\circ} = 1$

(b)
$$\lim_{X \to \infty} \left(1 + \frac{1}{X} \right)^{X}$$
 $\left(1^{\infty}, \text{ indeterminate} \right)$
Let $L = \lim_{X \to \infty} \left(1 + \frac{1}{X} \right)^{X}$, so
 $\ln L = \lim_{X \to \infty} X \ln \left(1 + \frac{1}{X} \right)$ $(\infty \cdot 0)$

$$= \lim_{X \to \infty} \frac{\ln(1+\frac{1}{X})}{\frac{1}{X}}$$

$$= \lim_{X \to \infty} \frac{1}{\frac{1}{X^{2}} \cdot \frac{1}{1+Y_{X}}}{\frac{1}{1+Y_{X}}} = \frac{1}{1+0} = 1$$
Thus, $L = \lim_{X \to \infty} (1+\frac{1}{X})^{X} = e^{1} = e$
(which matches our definition of e from §1.9!)
(c) $\lim_{X \to \frac{1}{Y_{2}}} (\sec X)^{\cos X}$ (∞° , indeterminate)
(c) $\lim_{X \to \frac{1}{Y_{2}}} (\sec X)^{\cos X}$ (∞° , indeterminate)
(c) $\lim_{X \to \frac{1}{Y_{2}}} (\sec X)^{\cos X}$ (∞° , indeterminate)
(c) $\lim_{X \to \frac{1}{Y_{2}}} (\sec X)^{\cos X}$ (∞° , indeterminate)

$$= \lim_{X \to \pi_{1/2}^{-}} \frac{\ln(\sec x)}{\sec x} \qquad \left(\frac{\infty}{\infty}\right)$$

$$\underset{X \to \pi_{2}^{-}}{\overset{\text{LH}}{\underset{X \to \pi_{2}^{-}}{\overset{\text{Lm}}{\underset{(\text{Sec} X)'}{\overset{1}{\overset{1}{\text{sec} X}}}}} = \underset{X \to \pi_{2}^{-}}{\underset{(\text{Sec} X)'}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}}{\overset{1}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}^{-}}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}{\underset{x \to \pi_{2}^{-}}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}^{-}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{2}}}{\underset{x \to \pi_{$$

For "
$$\infty - \infty$$
" limits: Try putting everything over a common denominator or multiplying by a conjugate to get a " Θ " or " ∞ " limit.

$$\underline{E_{X}}: \lim_{X \to T_{2}} \left(\sec x - \tan x \right) \quad (\infty - \infty)$$

$$= \lim_{X \to T_{2}} \left(\frac{1}{\cos x} - \frac{\sin x}{\cos x} \right)$$

$$= \lim_{X \to T_{2}} \frac{1 - \sin x}{\cos x} \quad \left(\frac{0}{0} \right)$$

$$\lim_{X \to T_{2}} \frac{1 - \sin x}{\cos x} \quad \left(\frac{0}{0} \right)$$

$$\lim_{X \to T_{2}} \frac{-\cos x}{-\sin x}$$

$$= \frac{\cos \left(\frac{\pi/2}{2} \right)}{\sin \left(\frac{\pi/2}{2} \right)}$$

$$= \frac{0}{1} = 0$$